
This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16).
November 2–4, 2016 • Savannah, GA, USA

ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Machine-Aware Atomic Broadcast Trees
for Multicores

Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz Hoffmann, Sabela Ramos,
and Timothy Roscoe, ETH Zurich

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kaestle

Machine-aware Atomic Broadcast Trees for Multicores

Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz Hoffmann, Sabela Ramos, Timothy Roscoe
Systems Group, Department of Computer Science, ETH Zurich

Abstract
The performance of parallel programs on multicore ma-
chines often critically depends on group communication
operations like barriers and reductions being highly tuned
to hardware, a task requiring considerable developer skill.

Smelt is a library that automatically builds efficient
inter-core broadcast trees tuned to individual machines,
using a machine model derived from hardware registers
plus micro-benchmarks capturing the low-level machine
characteristics missing from vendor specifications.

Experiments on a wide variety of multicore machines
show that near-optimal tree topologies and communica-
tion patterns are highly machine-dependent, but can nev-
ertheless be derived by Smelt and often further improve
performance over well-known static topologies.

Furthermore, we show that the broadcast trees built by
Smelt can be the basis for complex group operations like
global barriers or state machine replication, and that the
hardware-tuning provided by the underlying tree is suffi-
cient to deliver as good or better performance than state-
of-the-art approaches: the higher-level operations require
no further hardware optimization.

1 Introduction

This paper addresses the problem of efficiently commu-
nicating between cores on modern multicore machines,
by showing how near-optimal tree topologies for point-
to-point messaging can be derived from online measure-
ments and other hardware information.

The problem is important because parallel program-
ming with message-passing is increasingly used inside
single cache-coherent shared-memory machines, mod-
ern safe concurrent programming languages, runtime sys-
tems, and for portability between single-machine and dis-
tributed deployments.

This in turn leads to the need for distributed coor-
dination operations, e.g. global synchronization barriers
or agreement protocols for ensuring consistency of dis-
tributed state, to be implemented over message-passing
channels. Efficient use of these channels becomes critical
to program performance.

The problem is hard because modern machines have

MCS Diss Smelt MCS Diss Smelt
0

8

16

24

32

E
x
ec

u
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

32 Threads 64 Threads

Figure 1: Comparison of thread synchronization using
different barriers on Intel Sandy Bridge 4x8x2 with and
without Hyperthreads. Standard error is < 3%.

complex memory hierarchies and interconnect topologies.
Significant latency improvements for group operations
can result from careful layout and scheduling of messages.
Unlike classical distributed systems, the extremely low
message propagation times within a machine mean that
small changes to message patterns and ordering have large
effects on coordination latency. Worse, as we show in our
evaluation (§5.1), different machines show radically dif-
ferent optimal layouts, and no single tree topology is good
for all of them.

In response, we automatically derive efficient commu-
nication patterns tuned for each particular machine based
on online measurements of the hardware and data from
hardware discovery. We realize this technique in Smelt,
a software library which builds efficient multicast trees
without manual tuning. Smelt serves as a fundamental
building block for higher-level operations such as atomic
broadcast, barriers and consensus protocols.

Smelt provides significant performance gains. Despite
other modern barrier operations being highly tuned mono-
lithic implementations, Smelt barriers are constructed
over the multicast tree without the need for further
hardware-specific tuning. Even so, they provide 3× better
performance than a state-of-the-art shared-memory dis-
semination barrier, and is up to 6× faster than an MCS-
based barrier (Figure 1) in our experiments (§5).

In the next section we further motivate this problem,
and discuss the unexpected challenges that arise in solving
it efficiently on real hardware platforms. We then describe
Smelt’s design (§3) and give details on its implementation
(§4). We evaluate Smelt with a set of micro-benchmarks,
existing runtime systems and applications in §5.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 33

2 Motivation and background

We motivate our work in this section by first surveying
the trend of building parallel programs using message-
passing rather than shared-memory synchronization, even
in a single cache-coherent machine. We then discuss mes-
saging in a multicore machine, and how efficient imple-
mentations of group communication operations depend
critically on the characteristics of complex and diverse
memory systems. We then survey common tree topolo-
gies used in large computers for communication as a pre-
lude to our discussion of Smelt in the next section.

2.1 The move to message passing
Modern high-end servers are large NUMA multiproces-
sors with complex memory systems, employing cache-
coherency protocols to provide a consistent view of mem-
ory to all cores. Accessing shared data structures (e.g.
shared-memory barriers or locks) thus entails a sequence
of interconnect messages to ensure all caches see the up-
dates [9]. This makes write-sharing expensive: cache
lines must be moved over the interconnect incurring laten-
cies of 100s of cycles. Atomic instructions like compare-
and-swap introduce further overhead since they require
global hardware-based mutual exclusion on some re-
source (such as a memory controller).

This has led to software carefully laying out data
in memory and minimizing sharing using techniques
like replication of state, in areas as diverse as high-
performance computing [32], databases [35], and operat-
ing systems [3]. Systems like multikernels eschew shared-
memory almost entirely, updating state through communi-
cation based on message-passing.

There are other reasons to use local message-passing.
Several modern systems languages either have it as a first-
class language feature (like Go) or impose strong restric-
tions on sharing memory access (like Rust).

Furthermore, while contemporary machines are mostly
coherent, future hardware might not even provide glob-
ally shared non-coherent memory [13]. Here, efficient
message-passing is not merely a performance optimiza-
tion – it is required functionality. The same is true to-
day for programs that span clusters of machines. A single
paradigm facilitates a range of deployments.

Ironically, most NUMA message-passing mechanisms
today use cache-coherence. With few exceptions [4],
multicore machines provide no message-passing hard-
ware. Explicit point-to-point message channels are imple-
mented above shared-memory such that a cache line can
be transferred between caches with a minimum number
of interconnect transactions. Examples are URPC [5],
UMP [2] and FastForward [16]; in these cases, only two
threads (sender and receiver) access shared cache lines.

2.2 Communication in multicores
While cache-coherency protocols aim to increase mul-
ticore programmability by hiding complex interactions
when multiple threads access shared-memory, this com-
plexity of the memory hierarchy and coherency protocol
makes it hard to reason about the performance of commu-
nication patterns, or how to design near-optimal ones.

The protocols and caches also vary widely between ma-
chines. Many enhancements to the basic MESI protocol
exist to improve performance with high core counts [18,
28], and interconnects like QPI or HyperTransport have
different optimizations (e.g., directory caching) to reduce
remote cache access latency.

Worse, thread interaction causes performance variabil-
ities that prevent accurate estimation of communication
latency. For example, when one thread polls and another
writes the same line, the order in which they access the
line impacts observed latency.

Prior work characterized [29] and modelled [32]
coherence-based communication, optimizing for group
operations. However, these models require fine-grained
benchmarking of the specific architectures, providing
more accurate models but less portable algorithms.

Smelt is much more general: we abstract coherence de-
tails and base our machine model on benchmark measure-
ments, simplifying tree construction while still adapting
to underlying hardware. We show that sufficient hard-
ware details can be obtained from a few microbenchmarks
which are easily executed on new machines without need-
ing to understand intricate low-level hardware details.

2.3 Group communication primitives
In practice, message-passing is a building block for
higher-level distributed operations like atomic broadcast,
reductions, barriers or agreement. These require messages
to be sent to many cores, and so they must be sent on mul-
tiple point-to-point connections.

The problem described above is therefore critical, par-
ticularly in complex memory hierarchies. A large coher-
ent machine like an HP Integrity Superdome 2 Server has
hundreds of hardware contexts on up to 32 sockets, with
three levels of caching, many local memory controllers,
and a complex interconnection topology.

Consider a simple broadcast operation to all cores.
Baumann et et al. [2] show how a careful tree-based ap-
proach to broadcast outperforms and out-scales both se-
quential sends and using memory shared between all re-
cipients. Both the topology and the order to send mes-
sages to a node’s children are critical for performance.

The intuition is as follows: unlike classical distributed
systems, message propagation time in a single machine is
negligible compared to the (software) send- and receive
time as perceived by the sender and receiver. The store

34 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

operation underlying each send operation typically takes
a few hundred cycles on most machines. Loads on the re-
ceiver wait until the cache line transfer is done, which is
between 300 and 1000 cycles depending on the machine.
Since sequential software execution time therefore domi-
nates, it is beneficial to involve other cores quickly in the
broadcast and exploit the inherent parallelism available.
Figure 2 shows an example of such a hierarchical broad-
cast in a 8-socket machine.

r

CPU L3 $ socket interconnect tree topology

Figure 2: Multicore with message-passing tree topology

The cost of sending and receiving messages between
cores is a subtle machine characteristic typically not
known to programmers, and depends both on the separa-
tion of cores in the machine hierarchy and on more com-
plex subtleties of the cache-coherency protocol. Very lit-
tle of this information is provided by hardware itself (e.g.
in the form of registers with hardware features) and ven-
dor specifications are often incomplete or vague. Worse
hardware diversity is increasing as much as complexity.

Despite this, prior work has built machine-optimized
broadcast trees (e.g. Fibonacci trees [8]), and MPI li-
braries provide shared-memory optimizations for group
or collective operations which try to account for NUMA
hierarchies [25] using shared-memory communication
channels [17]. Our results in §5 show that these trees are
sometimes good, but there is no clear winner across all
our machines we used for evaluation.

2.4 Common tree topologies

We now introduce the tree topologies we evaluate in this
paper. The first three are hardware-oblivious, constructed
without accounting for the underlying topology. We pro-
vide a visualization for each of these on all evaluation ma-
chines: http://machinedb.systems.ethz.ch/topologies 1.

Binary trees have each node connected to at most two
children. Here, each node n connects to nodes 2n + 1

1We refer to http://machinedb.systems.ethz.ch with the symbol

and 2n + 2. Such trees often introduce redundant cross-
NUMA links, causing unnecessary interconnect traffic.
Performance is suboptimal since the low fanout (two) of-
ten means that nodes become idle even when they could
further participate in the protocol.

Fibonacci trees [22] are widely used unbalanced trees:
left-hand subtrees are larger than right-hand ones. In con-
trast to binary trees, this imbalance allows more work
to be executed in sub-trees that receive messages earlier,
which prevents nodes from being idle when they could
otherwise further participate in the broadcast. However,
like binary trees they also have a fixed fanout and can ex-
hibit redundant cross-NUMA transfers.

Sequential trees are also widely used: a root sends a
message to each other node sequentially (star-topology).
Send operations are not parallelized since one node does
all the work. This scales poorly for broadcasts on most
large multicore machines.

The other three trees we compare with consider ma-
chine characteristics in their construction:

Minimum spanning trees (MSTs) use Prim’s algo-
rithm [31] by adding edges in ascending order of cost until
the graph is connected. This minimizes expensive cross-
NUMA transfers, but does not optimize fanout and hence
send parallelism. Among others, the resulting topology
can be a star or a linear path, which both are purely se-
quential in sending.

Cluster trees are built hierarchically, as in HMPI [25].
A binary tree is built between NUMA nodes, and mes-
sages are sent sequentially within a node.

Bad trees are a worst-case tree example, built by run-
ning an MST algorithm on the inverse edge costs, maxi-
mizing redundant cross-NUMA links. We use this to show
that the topology matters, and choosing a sub-optimal tree
can be as bad as sequentially sending messages on some
machines.

3 Design

We now elaborate on the design considerations for Smelt
and describe our multicore machine model (§3.1) includ-
ing its properties and assumptions. Next, we show how we
populate it (§3.2) and how our adaptive tree is built (§3.3).
In §3.4, we will further show that exhaustive search is not
a viable solution for finding the optimal broadcast tree.

Smelt is a library which simplifies efficient program-
ming of multicore machines by providing optimized
atomic broadcast trees adapted to the hardware at hand.
The tree topology and sending order is generated automat-
ically from a machine model constructed from informa-
tion given by the hardware itself and a set of fine-grained
micro-benchmarks.

Surprisingly, the trees derived by Smelt also function

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 35

http://machinedb.systems.ethz.ch/topologies
http://machinedb.systems.ethz.ch
http://machinedb.systems.ethz.ch
http://machinedb.systems.ethz.ch/topology/bintree
http://machinedb.systems.ethz.ch/topology/fibonacci
http://machinedb.systems.ethz.ch/topology/sequential
http://machinedb.systems.ethz.ch/topology/mst
http://machinedb.systems.ethz.ch/topology/cluster
http://machinedb.systems.ethz.ch/topology/badtree

well as building blocks for higher-level protocols – for
example, given a Smelt tree, an efficient barrier can be
implemented in two lines of code and performs as well
as or better than state-of-the-art shared-memory barriers
written and hand-tuned as monolithic components.

As a further evaluation of the applicability of Smelt, we
also re-implemented the 1Paxos [10] consensus algorithm
using Smelt trees (§5.6), which can be used to provide
consistent updates on replicated data. Further, we build a
key-value store on top of that (§5.7), which provides good
performance for consistently replicated data.

Current server machines, of course, do not exhibit par-
tial failure, and so our agreement protocol should be con-
sidered a proof-of-concept rather than a practical tool.
However, we note that even in the absence of failures,
replication within a multicore can be useful for perfor-
mance [21, 35]. Coordination and synchronization would
then still be needed to provide a consistent view of the sys-
tem state. However, it seems likely that future machines
will expose partial failures to programmers [13], requiring
replication of services and data also for fault-tolerance.

Smelt combines various tools to a smart runtime sys-
tem: (i) a machine model with micro-benchmarks to
capture hardware characteristics, (ii) a tree generator for
building optimized broadcast trees and (iii) a runtime li-
brary providing necessary abstractions and higher-level
building blocks to the programmer. We visualize this in
Figure 3.

static
information

micro-
benchmarks

Tree
Generator

tree topology +

schedule

Smelt runtime

program

Figure 3: Overview of Smelt’s design

3.1 Modelling broadcasts on multicore

Figure 4 visualizes a timeline for message-passing on a
multicore system, specifically the time that it takes for a
thread vi to send a message to two threads v j and vk.

Unlike classical networks, tsend and treceive times domi-
nate the total transmission time. We show this in our pair-
wise send and receive time (§3.2). This is significant as
the sending and receiving threads are blocked for tsend and
treceive respectively. It implies that the cost of sending n
messages grows linearly with the number of messages to
be sent, whereas in classical distributed systems, tpropage

tsend((vi, vk)) tsend((vi, v j))

treceive((vi, v j))

treceive((vi, vk))

vi

v j

vk

tpropagate

tpropagate

time

Figure 4: Visualization of a send operation: thread vi

sends a message to vk followed by another message to v j.
Send operations are sequential, while the receive opera-
tions can be processed in parallel on threads v j and vk.

dominates independently of how many messages are sent
in a single round trip.
Multicore machine model: Communication in a mul-
ticore machine can be represented as a fully connected
graph G = (V, E). Vertices vi correspond to threads,
and edges e = (vi, v j) model communication between
threads vi and v j, with edge weights as a tuple w(e) =

(tsend, treceive). We show an example of such a graph in
Figure 5. We now define tsend, treceive and tpropage:

tsend(e) denotes the time to send a message over an edge
e = (vi, v j) from sender vi to receiver v j. The sender vi

is blocked during this time. Sending a message involves
invalidating the cache line to be written and therefore
often depends on which cores the cache line is shared
with and also depend on the sequence of previously sent
messages at the sender. Moreover, it may vary with the
state of the cache line to be written.

treceive(e) denotes the time to receive an already-queued
message. The receiver is blocked while receiving the
message. In many cache-coherency protocols, receiv-
ing (reading) changes the state of the cache line in the
receiver’s cache from invalid to shared, and from mod-
ified to shared in the sender.

tpropagate(e) is the time it takes to propagate a message on
the interconnect. Propagation time is neither visible on
the sender nor receiver. We assume tpropagate = 0, as
propagation time can be seen as part of the treceive.

Our model is similar to the telephone model [38], with a
few differences: In the telephone model, each participant
has to dial other participants sequentially before transmit-
ting data. Similarly, the Smelt model has a sequential
component when sending: the thread is blocked for the
duration of tsend, and consecutive sends cannot be exe-
cuted until the previous ones are completed. However,
note that several threads can send messages concurrently
and independently of each other.

The weight of edges in our model is non-uniform: the
cost of receiving and sending messages from and to cores
that are further away (NUMA distance) is higher. This

36 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

1

2

3

(rreceive, tsend)

input graph G

0

1

2

3

1

2

1

example output tree τ

Figure 5: Example of fully connected input graph for four
CPUs and one possible resulting broadcast tree topology
τ with root 1 and send order as edge weights.

is even true for sending messages, since cache lines may
have to be invalidated on the receiver before they can be
modified on the sender.
Output The desired output consists of three parts: (i) A
root vroot, (ii) a tree T = (V, E′) with E′ ⊆ E, where T
is a spanning tree of G, (iii) edge priorities w′(v) repre-
senting the order in which a vertex v sends messages to its
children. T is to be chosen such that the latency lat(T) is
minimal. The latency is given recursively as

lat(T) = max(∀v ∈ V : lat(T, v))
with

lat(T, vroot) = 0

lat(T, v) = lat(T, vp) +

k∑
i=1

tsend(vp, vi)

with vp being parent of v and v the k-th child of vp. Note
that this latency includes the send-cost for k − 1 children
that vp sends a message to first.

3.2 Populating the machine model
We derive the input values for our machine model from
various sources: libraries such as libnuma [36], tools
like likwid [34], or special OS provided file systems
like /proc and /sys on Linux. The OS and libraries
obtain their information by parsing ACPI [20] tables like
the static resource affinity table (SRAT) and system local-
ity information table (SLIT), which, for example, provide
the NUMA configuration. However, this information is
coarse-grained and insufficient for our purposes.

To address this, Smelt enriches relevant static machine
information with a carefully chosen set of micro bench-
marks that capture relevant hardware details that cannot
be inferred from this static information.
Pairwise send and receive time (tsend and treceive) Mo-
tivated by §3.1, we measure the pairwise send (tsend) and
receive (treceive) latency between all hardware threads in
the system. Figure 6 shows a visualized output of this
benchmark on a 32-core AMD machine (A IL 4x4x2 in
Table 1). Both the receive and send time clearly show
the NUMA hierarchy of this eight node system. Note that
the receive costs are asymmetric: treceive does not only de-
pend on the NUMA distance but also on the direction i.e.

0 5 10 15 20 25 30
sending core

0

5

10

15

20

25

30

re
ce

iv
in

g
co

re

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30
sending core

0

5

10

15

20

25

30

re
ce

iv
in

g
co

re

0

40

80

120

160

200

240

280

320

360

Figure 6: Pairwise send (upper) and receive time (lower)
on A IL 4x4x2.

treceive(vi, vk) , treceive(vk, vi). This observation is inline
with [24].

The send cost is smaller compared to receive and (on
this machine) shows the same NUMA hierarchy. Note
that we measure the cost of sending batch of 8 messages
and take the average to compensate for the possible exis-
tence of a hardware write buffer: software is only blocked
until the store is buffered (and not until the cache line is
fetched). This hides the full cost of the cache-coherency
protocol. Ideally, Smelt would measure the effect of the
write buffer as well. This makes benchmarking signifi-
cantly more complex as the cost of sending a message be-
tween two cores would also depend on the cost of previous
send operations and the ocupancy of the write buffer.

Fortunately, write buffers are relatively small, so that
their effects do not change the runtime behavior signifi-
cantly. We keep such a benchmark open for future work
and use the more simple batch sending approach instead.

Data from our pairwise send- and receive experiments
allow us to predict the time a core is busy sending or re-
ceiving a message and when it will become idle again.
The busy/idle pattern of the cores is essential to de-
cide which topology to use and the send-order of mes-
sages. Our pairwise benchmark works independently of
the cache-coherency protocol as it determines the cost of

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 37

http://machinedb.systems.ethz.ch/machine/sgs-r815-03#pairwise

sending and receiving messages using the same software-
message-passing library and hence including all over-
heads induced by interconnect transfers triggered by the
cache-coherency protocol implemented on each machine.

Pairwise benchmarks for all our machines are avail-
able on our website (http://machinedb.systems.ethz.ch)
and the pairwise benchmark’s code can be found on
http://github/libsmelt.

3.3 Tree generation: adaptive tree
We now describe how Smelt generates trees automatically
based on the machine model. Since the tree topology for
multicast operations depends on which cores are allocated
for an application, a new tree has to be generated when-
ever an application is started. Smelt generates the tree
topologies offline in a separate tree generation step. Cur-
rently, this is done in a separate process when the applica-
tion is initialized, but we anticipate that generating a tree
topology will be a frequent operation on future machines
as a consequence of reconfiguration in the case of fail-
ure or if group communication membership changes. We
show the tree topologies generated for each of our ma-
chines on http://machinedb.systems.ethz.ch .

3.3.1 Base algorithm

When building our adaptive tree, we rely on the perfor-
mance characteristics described in §3.2, and make use of
the fact that the tree generator can defer a global view
of the system state from message send and receive times.
For example, it knows which messages are in transit and
which nodes are idle. The tree generator operates as an
event-based simulation using our pairwise measurements.
Whenever a core is idle, it uses the model to choose the
next core to send the message to.

The desired output of the tree generator is (i) the root
of the tree, (ii) a spanning tree connecting all nodes, and
(iii) a schedule that describes the send-order in each node.
If not specified by the application, we select the root to
be the thread having the lowest average send cost to ev-
ery other node in the system. The task then is to design
a good heuristic to find near-optimal solutions for find-
ing the tree topology. For example, messages can first
be sent on expensive links to minimize the cost of the
link that dominates the broadcast execution time. Alter-
natively, we can send on cheap links first to increase the
level of parallelism early up. We found that for current
multicore machines, it is more important to send on ex-
pensive links first: local communication is comparably
fast, so messages can be distributed locally and efficiently
once received on a NUMA node.

Another trade-off is between minimizing expensive
cross-NUMA links and avoiding nodes being idle. For

the machines we evaluated, we found that there is little
or no benefit from sending redundant cross-NUMA mes-
sages even if cores are otherwise idle. For the few excep-
tions, our optimizations described in §3.3.2 detect oppor-
tunities for additional cross-NUMA links and adds them
iteratively later where appropriate. Our heuristics are as
follows:

• Remote cores first: We prioritize long paths as they
dominate the latency for broadcasts. We select
the cheapest core from the most expensive remote
NUMA node. Local communication is executed af-
terwards, since this is relatively cheap.

• Avoid expensive communication links: We send the
message to a remote NUMA node only if no other
core on that node has received the message. We can
do this because our tree generator has global knowl-
edge on the messages in flight. This minimizes cross-
NUMA node communication.

• No redundancy: We never send messages to the same
core twice. The tree generator knows which mes-
sages are in flight and will not schedule another send
operation to the same core.

• Parallelism: We try to involve other nodes in the
broadcast as much as possible. The challenge here
is to find the optimal fan-out of the tree in each node.
The result often resembles an imbalanced tree so that
cores that received a copy of the message early have
a larger sub-tree than later ones.

We describe the tree generation in detail in Algorithm 1.
At any point during the generation run, a core in the tree
generator can be in either of two states: (i) active meaning
that it has received a message and is able to forward mes-
sage to other nodes, or (ii) inactive otherwise. Inactive
nodes are waiting to receive a message from their parent.
The set of active cores is denoted as Acores. NUMA nodes
are active if at least one of its cores is active (Anodes).

We observe that the tree obtained from this algorithm
is a multilevel tree for most machines (). Message de-
livery is first executed across NUMA nodes and then fur-
ther distributed within each node. The tree generator cre-
ates a multilevel hierarchy in either of these steps only
if the send operation is relatively expensive compared to
receive operations. Otherwise, it will sequentially send
messages. For example, with a NUMA node, due to rel-
atively low send costs, sequentially sending messages is
often faster than a multilevel sub-tree, especially for sys-
tems with only a few cores per node.

In our evaluation (§5.1), we show that a tree gener-
ated with our tree generator performs comparably with or
better than the best static tree topology on a wide range
of machines. While the algorithm itself might have to
be adapted in the future to cope with changes in hard-
ware development, the approach of using micro bench-

38 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://machinedb.systems.ethz.ch/model/pairwise
https://github.com/libsmelt/libsmelt/blob/master/bench/pairwise.c
http://machinedb.systems.ethz.ch/topology/adaptivetree
http://machinedb.systems.ethz.ch/topology/adaptivetree

Algorithm 1 Smelt’s adaptive tree

Call . Set of cores
Anodes ← node_of(croot) . Active nodes
Acores ← croot . Active cores
function pick_most_expensive(C, i)

return arg maxx∈C (tsend(i, x) + treceive(i, x))
end function
function pick_cheapest(C, i)

return arg minx∈C (tsend(i, x))
end function
function node_idle(i) . Executed for active idle node i

Cinactive ← Call ∩ (Acores∪ cores_of(Anodes))
cnext ← pick_most_expensive(Cinactive, i)
if same_node(i, cnext) then . Local

Send(cnext)
Acores ← Acores ∪ cnext . Mark core active

else
Celigible ← node_of(cnext) . All cores on node
cnext ← pick_cheapest(Celigible, i)
send(cnext) . Send remotely
Anodes ← Anodes∪ node_of(cnext)
Acores ← Acores ∪ r

end if
end function
function adaptive_tree . Run for core csel f

while Call ∩ Acores , ∅ do
if csel f ∈ Acores then
node_idle(csel f)

else
wait_message

end if
end while

end function

marks to capture fine-grained hardware details for build-
ing machine-aware broadcast trees should still be applica-
ble. Programmers then automatically benefit from an im-
proved version of the algorithm constructing the tree, even
in the presence of completely new and fundamentally dif-
ferent hardware without having to change application pro-
gram code. Consequently, we believe our generator to be
useful for future increasingly heterogeneous multicores.

Note that our algorithm is designed for broadcasts trees,
but we show in §5 that it also works well for reduc-
tions. However, our design and implementation are flexi-
ble enough to use different trees for reductions and broad-
casts if necessary for future hardware.

3.3.2 Incremental optimization

Smelt’s base algorithm produces an hierarchical tree,
where only one expensive cross-NUMA link is taken per
node. This gives a good initial tree, but leaves room for
further improvements, which we describe here:

Reorder sends: most expensive subtree Smelt’s basic
algorithm as described before sends on expensive links
first. This is a good initial strategy, but can be further
improved after constructing the entire tree-topology. In
order to minimize the latency of the broadcast, the time
until a message reaches the last core has to be reduced.
Sending on links that have the most expensive sub-tree
intuitively achieves that.
Shuffling: adding further cross-NUMA links As soon
as a NUMA node is active, i.e. has received a message or
has a message being sent to it already, it will not be con-
sider for further cross-NUMA transfers. On larger ma-
chines, this can lead to an imbalance, where some threads
already terminate the broadcast and become idle when
they could still further participate in forwarding the mes-
sage to minimize global latency of the broadcast tree.

Figure 7 shows this as a simple example for only two
cores 0 and 14. Core 14 finishes early and does not
consider sending any more messages, since each other
NUMA node is already active and all its local nodes fin-
ished as well. Core 0 terminates considerably later. The
time between core 0 and core 14 finishing is tslack as indi-
cated in the figure.

If an additional cross-NUMA link between core 14’s
and core 10’s NUMA node would terminate faster despite
adding another expensive cross-NUMA link, it is benefi-
cial from a purely-latency perspective to allow core 14 to
execute this additional NUMA link replacing the link that
initially connected node 0 before this optimization.

0

14

..
.

..
.

tslack

tsend + treceive

Figure 7: Optimization: add further cross-NUMA links

Smelt executes the following algorithm to decide based
on the model if an additional cross-NUMA link vs → ve

would reduce the latency of the broadcast. In each itera-
tive step, we select nodes vs and ve as the node that first be-
comes idle and the node that terminates last respectively.
If tsend + treceive < tslack, Smelt adds an additional cross-
NUMA link. Then we iteratively optimize until adding
edge vs → ve does not further reduce the latency of the
tree. If this is the case, the resulting tree from replacing
previous edge vx → ve with vs → ve is always better ac-
cording to the model. If slower, the algorithm would not
have chosen to optimize it and terminated.

The result can be further improved by sorting the edges.
Hence, after each “shuffle”-operation, we reorder the
scheduling of sends on each outgoing connection of a core

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 39

by the cost of the receiving core’s sub-tree as described in
the previous section.

3.4 Finding the optimal solution

Despite being a type of minimum spanning tree, tradi-
tional graph algorithms cannot be used to solve the MST
problem in our context as they do not consider the edge
priorities. In fact, finding a broadcast tree in the telephone
model for an arbitrary graph is known to be NP hard [37].

A brute-force approach to the problem is not feasible
as the search space grows rapidly. To obtain the best tree
given a set of nodes n, we need to construct first all the
possible trees with n nodes. This is the Catalan Num-
ber [11] of order n− 1 (Cn−1). Moreover, there are n! pos-
sible schedules per tree. Hence, the number of possible
configurations is shown in Equation 1.

Ntrees = n!Cn−1 =
(2n − 2)!
(n − 1)!

(1)

Assuming 1ms for evaluating the model of a single tree,
this would take over 6 months for 10 cores. We ran a
brute-force search for up to 8 cores (5 hours) for a subset
of our machines, and compared the adaptive tree against
the optimal solution under the model. The estimated run-
time by our tree generator predicts that Smelt has a rela-
tive error of 9% versus the optimal solution. In real hard-
ware the error is larger at around 13%.

Note that we designed our algorithm for large multicore
machines, and evaluating its optimality for configurations
of only 8 cores does not show the full potential of our
methodology. Unfortunately, due to the high cost of cal-
culating the optimal tree with a brute-force approach, we
were not able to extend this validation to bigger machines.

4 Implementation

The Smelt runtime (SmeltRT) is a C++ library that allows
the programmer to easily implement machine optimized
higher-level protocols by abstracting the required chan-
nel setup and message-passing functionality. SmeltRT is
structured in two layers: (i) a transport layer providing
send/receive functionality and (ii) a collective layer sup-
porting group communication. For each layer, we explain
its core concepts, interfaces and abstractions.

4.1 Transport layer

SmeltRT uses message-passing as a communication
mechanism between threads, which SmeltRT pins to
cores. The transport layer provides point-to-point
message-passing functionality between threads including

send(), receive() and OS independent control proce-
dures. Those message-passing channels are abstracted us-
ing a bi-directional queuepair, allowing different transport
backends to be used transparently.

Properties All queuepair backends must implement the
following properties: (i) reliability: a message sent over a
queuepair is never lost or corrupted and will be received
eventually. (ii) ordering: two messages sent over the same
queuepair will be received in the same order. (iii) a queue-
pair can hold a pre-defined number of messages. Since
today’s multicores are reliable, only flow control has to be
implemented to guarantee above properties. It is needed
to notify the sender which slots can be reused for further
messages.

Interface The basic send/receive interface can be seen
in the following listing. Messages are abstracted using
Smelt-messages which encapsulate payload and length to
be sent over the queuepair. The send and receive opera-
tions may block if the queuepair is full or empty respec-
tively. The state of a queuepair can be queried to avoid
unecessary blocking.

errval_t
smlt_queuepair_send(struct smlt_qp *qp,

struct smlt_msg *msg);
errval_t
smlt_queuepair_recv(struct smlt_qp *qp,

struct smlt_msg *msg);

Message-passing backends The transport layer is mod-
ular and supports multiple backends. Each queuepair
backend must adhere to the properties of a Smelt queue-
pair as stated above. Smelt’s message-passing back-
end is an adapted version of the UMP channel used
in Barrelfish [2], originally inspired by URPC [5]. A
Smelt UMP queuepair consists of two circular, unidirec-
tional buffers of cache line-sized message slots residing
in shared-memory. Each message contains a header word
which includes the sequence number for flow-control and
an epoch bit to identify new messages. Each cache
line has one producer and one consumer to minimize the
impact of the cache-coherency protocol. The cache lines
holding messages are modified only by the sender. The
receiver periodically updates a separate cache line with
the sequence number of the last received message. This
line is checked by the sender to determine whether a slot
can be reused.

Further, we implemented other shared-memory back-
ends (such as FastForward [16]) and plan to support inter-
machine message-passing backends over IP or RDMA
protocols in the future.

40 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4.2 Collective layer
The collective layer builds upon the transport layer and
provides machine-aware, optimized group communica-
tion primitives such as broadcasts and reductions. A re-
duction is a gather operation which blocks until the node
has received the value from all its children and the aggre-
gate is forwarded to the parent. Such collective operations
involve one or more threads in the system.

4.2.1 Concepts

Smelt’s collective operations rely on Smelt’s core con-
cepts of topologies and contexts.
Topologies A topology describes the communication
structure for the collective operation. It defines which par-
ticipants are part of this communication group (i.e. multi-
cast). Each topology has a distinct node, the root, where
all broadcasts are initiated and all reductions end. The
topology can be generated deterministically at runtime,
loaded from a configuration file, or returned by a service.
The latter two can describe a hardware aware topology
either precalculated or supplied on demand respectively.
Contexts Smelt takes the topology description as a
blueprint for creating the required transport links which
are encapsulated in a context. A topology can be used
to create multiple contexts. Collective operations require
a valid context to identify the parent and child nodes for
sending and receiving messages.

4.2.2 Collective operations

Next we show the interface for collective operations. The
context identifies the location in the tree of the calling
thread and defines the operations being executed. The
reduction takes an operation argument – a function
pointer – to implement the reduction operation. At the
root, the result parameter contains the gathered value.

errval_t smlt_broadcast(struct smlt_context *ctx,
struct smlt_msg *msg);

errval_t smlt_reduce(struct smlt_context *ctx,
struct smlt_msg *input,
struct smlt_msg *result,
smlt_reduce_fn_t op);

Broadcasts Smelt’s broadcast primitives guarantee re-
liability and ensure that all nodes in a given context re-
ceive messages in the same order (atomic broadcast). We
assume that multicores today are fail-stop as a whole
and hence either run reliable or the entire machine fails.
Smelt’s broadcasts start at a defined, per context root and
therefore all messages are sent through the root, that acts
as a sequentializer. It is possible to have multiple con-
texts with different roots. In that case, however, each core

has to poll several memory locations for messages associ-
ated with multiple endpoints from different trees. This in-
creases the receive overhead on each core, but also the la-
tency, as multiple channels have to be polled. The sequen-
tializer, together with the FIFO property of the edge links
and reliable transmission, implements the atomic broad-
cast property.
Reductions Reductions do in-network processing on
each node from payload received from all children, and
pass the new value to the parent node. We use the same
tree as in the broadcasts and the final value can be ob-
tained at the root.
Barriers With the basic collective operations reduce
and broadcast, we implement a barrier as shown in
the code below. Note that we use the optimized zero-
payload variants of reduce and broadcast. Despite
its simplicity, our barrier outperforms or is comparable
to state-of-the-art implementations, as we show in §5.4
and §5.5. This demonstrates that a highly-tuned generic
machine-aware broadcast as implemented by Smelt can
be used for higher-level protocols that benefit automati-
cally from Smelt’s optimizations.

void smlt_barrier(struct smlt_context *ctx) {
smlt_reduce(ctx);
smlt_broadcast(ctx);

}

5 Evaluation
We ran our experiments on eleven machines of two ven-
dors with different microarchitectures and topologies (c.f.
Table 1). Throughout this section, we indicate the number
of threads as triple #sockets×#cores×#threads.

Due to space constraints, in most sections we focus
on the largest machines for each vendor. In addition to
the results shown here, we provide a website showing
detailed results for all experiments on each machine:
http://machinedb.systems.ethz.ch.

5.1 Message passing tree topologies
We evaluate the performance of Smelt’s adaptive tree
against the tree topologies shown in §2.4. We run
atomic broadcasts, reductions, barriers and two-phase
commit [23] as workloads on all of our machines.

We measure how long it takes until every thread has
completed the execution of the collective operation. We
avoid relying on synchronized clocks by introducing an
additional message to signal completion: for atomic
broadcast and two-phase commit a distinct leaf sends a
message to the root. We measure the time until the root
(i.e. the initiator of the operation) receives this message.
We repeat this for all leaves and select the maximum time

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 41

http://machinedb.systems.ethz.ch
http://machinedb.systems.ethz.ch

machine A MC 4x12x1 I IB 2x10x2 I NL 4x8x2 A BC 8x4x1 I KNC 1x61x4 I SB 2x8x2

CPU AMD Opteron 6174 Intel Xeon E5-2670 v2 Intel Xeon L7555 AMD Opteron 8350 Xeon Phi Intel Xeon E5-2660 0
micro arch Magny Cours IvyBridge Nehalem Barcelona k1om SandyBridge
#cores 4x12x1 @ 2.20GHz 2x10x2 @ 2.50GHz 4x8x2 @ 1.87GHz 8x4x1 @ 2.00GHz 1x60x4 @ 1.00GHz 2x8x2 @ 2.20GHz
caches 64K/ 512K/ 4M 32K/ 256K/ 25M 32K/ 256K/ 24M 64K/ 512K/ 2M 32K/ 512K/ 32K/ 256K/ 20M
memory 126G 252G 110G 15G 15G 64G

machine A SH 4x4x1 A IL 4x4x2 I SB 4x8x2 I BF 2x4x2 A IS 4x6x1

CPU AMD Opteron 8380 AMD Opteron 6378 Intel Xeon E5-4640 0 Intel Xeon L5520 AMD Opteron 8431
micro arch Shanghai Interlagos SandyBridge Bloomfield Istanbul
#cores 4x4x1 @ 2.50GHz 4x4x2 @ 2.40GHz 4x8x2 @ 2.40GHz 2x4x2 @ 2.27GHz 4x6x1 @ 2.50GHz
caches 64K/ 512K/ 6M 16K/2048K/ 6M 32K/ 256K/ 20M 32K/ 256K/ 8M 64K/ 512K/ 4M
memory 16G 512G 505G 24G 15G

Table 1: Machines used for evaluation. Caches given as L1 data / L2 / L3. (L2 per core, L3 socket). Number of cores
represented as sockets / cores per socket / threads per core.

among them. In reductions, this is reversed as the root
sends the message to the leaf. For barriers, we measure
the cost on each core and take the maximum. Barriers are
implemented as shown in §4.2.2. We repeat the experi-
ment 10’000 times and collect 1’000 data points.

We first show a detailed breakdown for selected ma-
chines to motivate that no single tree topology performs
well across all machines followed by giving an overview
of the performance across all evaluated machines. There,
we show that Smelt not only matches the best tree topol-
ogy on each machine, but further improves performance
on top of that.
Breakdown for selected machines Figure 8 shows the
detailed comparison of an 4-socket AMD machine (A IL
4x4x2), a 4-socket Intel machine (I SB 4x8x2) and an In-
tel’s Xeon Phi coprocessor (I KNC 1x60x4). The latter
uses a ring topology to connect cores instead of a hierar-
chical interconnect. In our evaluation, we use only one
thread per physical core.

Our results support the claim that there is no clear best
static topology for all machines and that the best choice
depends on the architecture and workload. As expected,
sequential sending results in a significant slowdown com-
pared to all other topologies. The other hardware oblivi-
ous trees, binary and Fibonacci, perform comparably but
suffer from using too many inter-socket messages on hier-
archical machines. The cluster topology performs well in
many cases, but since it relies on the machine’s hierarchy,
it is slow on machines not having a hierarchical memory
topology (I KNC 1x60x4). On A IL 4x4x2, the cluster is
comparable but slower than Smelt. This is because of the
rather static ordering for sending the messages as well as a
node’s outdegree in the tree that is not optimized. Despite
using machine characteristics, the MST topology does not
consider the protocol’s communication patterns nor tries
to maximize parallelism.

In contrast, Smelt’s adaptive tree (AT) achieves good
performance across all configurations due to the fact that
it uses hardware information enriched with real measure-
ments to capture fine-grained performance characteristics
of the machine and adapt the message scheduling accord-
ingly. Our results show that generating a tree based on

our machine model as described in § 3.3 achieves good
results without the programmer’s awareness of hardware
characteristics and manual tuning.

We demonstrate that the tree topology matters and that
there is no static topology that performs best on all ma-
chines even when considering the NUMA hierarchy. We
show that Smelt is able to adapt to a wide set of micro-
architectures and machine configurations without manual
tuning.

I KNC 1x61x4

I BF 2x4x2

I SB 2x8x2

I IB
2x10x2

A SH 4x4x1

A IS
4x6x1

A IL
4x4x2

A MC 4x12x1

I SB 4x8x2

I NL 4x8x2

A BC 8x4x1

2PC
barrier

red
bcast

1.17

1.12

1.18

1.24

1.09

1.07

0.86

1.06

1.22

1.30

1.08

1.11

1.35

1.41

1.27

1.37

1.10

1.09

1.24

1.13

1.13

1.08

1.01

1.10

1.11

1.13

1.24

1.16

1.07

1.03

1.09

1.15

1.17

1.09

1.18

1.07

1.33

1.38

1.53

1.22

1.01

1.02

1.21

1.01

0.6
0.8
1.0
1.2
1.4

Figure 9: Comparison of Smelt to the best static tree
topology on each machine. Ordered by the the number
of sockets as indicated by the label.

Comparison with the best other topology. Figure 9 is
a heat-map showing the speedup of Smelt compared to the
best static tree on all machines. For example, if the “clus-
ter” topology is the best tree topology besides Smelt on a
machine, we use that as a baseline. All tree topologies use
Smelt’s transport layer (§4.1).

The Fibonacci tree achieves the best performance on
three of these machines, the binary tree on one of them
and the cluster tree on the remaining seven.

Smelt not only matches the best tree topology for all but
one configuration, but also manages to achieve an average
speedup of 1.16 over all machines, peaking at a speedup
of up to 1.24x compared to the best static tree on AMD
(A SH 4x4x1) and up to 1.53x on Intel (I NL 4x8x2).

To conclude, this experiment shows that even when
the best static topology for a concrete machine is known,
Smelt still manages to further improve the performance
since, in addition to considering the hierarchy of the ma-
chine to avoid expensive cross-NUMA links, it optimally
configures the outdegree in each node of the tree. It does

42 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://machinedb.systems.ethz.ch/experiment/ab-bench

bcast red barrier 2PC
0

20

40

60

80

100

120
E

x
ec

u
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

mst

bintree

cluster

badtree

fibonacci

sequential

AT

(a) I KNC 1x60x4

bcast red barrier 2PC
0

5

10

15

20

25

30

35

40

E
x
ec

u
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

mst

bintree

cluster

badtree

fibonacci

sequential

AT

(b) A IL 4x4x2

bcast red barrier 2PC
0

10

20

30

40

50

60

70

E
x
ec

u
ti

on
ti

m
e

[x
10

00
cy

cl
es

] 93
.5

mst

bintree

cluster

badtree

fibonacci

sequential

AT

(c) I SB 4x8x2

Figure 8: Details of micro benchmark results for all the evaluated tree topologies.

so based on the machine characteristics gathered from the
pairwise send and receive measurements (§3.2).

5.2 Multicast topologies

Certain workloads require collective communications
within a subset of the threads (i.e. multicast). We eval-
uate this scenario by running the benchmarks from § 5.1
with an increasing thread count starting from 2 up to the
maximum number of threads of the machine. For this,
we assign threads to NUMA nodes in round-robing, e.g.
when showing four cores on a machine with four NUMA
nodes, we would place one thread on each NUMA node.

Figure 10 shows the multicast scaling behavior of Smelt
compared to the static trees on A IL 4x4x2 and A IS
4x6x1. For a low number of cores — for example one
core per NUMA node to implement consistent updates to
data replicated on a per-NUMA basis as in §5.7 — it is
often best to send messages sequentially: we observe this
behavior in both Figure 10b and 10a. At that point, all
communication links are remote and the hierarchical clus-
ter approach does not work well. When more cores are
involved and the effects of local vs. remote communica-
tion become more obvious, the cluster topology performs
best again. In summary, the choice of topology does not
only matter on the machine, but also the multicast group
intended to use.

Further, the performance benefit when using Smelt is
often higher in intermediate configurations: for example
in Figure 10b, the maximum speedup over the best static
topology is 1.25 with 12 cores as to compared to 1.02 for a
reduction involving all 24 cores. The maximum negative
speedup of Smelt is 0.97 on A IS 4x6x1 for 22 cores.

5.3 Comparison with MPI and OpenMP

We compare Smelt with two established communication
standards: MPI and OpenMP. MPI (Message Passing In-
terface) [30] is a widely used standard for message-based
communication in the HPC community. MPI supports a
wide range of collective operations, including broadcasts,
reductions and barriers. Furthermore, the MPI libraries

provide specific channels and optimizations for shared-
memory systems.

OpenMP 4.0 [39] is a standard for shared-memory
parallel processing and is supported by major compil-
ers, operating systems and programming languages. The
OpenMP runtime library manages the execution of paral-
lel constructs. Threads are implicitly synchronized after a
parallel block or explicitly by the barrier directive.

We compare the collectives of MPI (Open MPI v1.10.2)
and OpenMP (GOMP from GCC 4.9.2) with Smelt. For
MPI we compare broadcasts, reductions, and barriers.
OpenMP only provides reductions and barriers.

For each of the runtimes, we execute the experiment
3000 times and take the last 1000 measurements. At the
beginning of each round, we synchronize all the threads
with two dissemination barriers so that all threads enter
the collective operation at the same time. This is different
from the benchmark in § 5.1 since here the cost of the
extra message depends on the used library. The broadcast
is executed with a one byte payload and reduction has a
single integer payload.

Figure 11 shows the results of the largest machines.
Smelt outperforms MPI for all the tested collective op-
erations. In broadcasts and reductions Smelt outperforms
MPI with speedups between 1.6x and 2.6x. For barriers
the lead is smaller (between 1.19x and 1.41x). OpenMP
performs worse than MPI, showing that message-passing
approaches are better-suited for large multicore machines
than shared-memory programming models. Moreover,
OpenMP is clearly outperformed by Smelt in reductions
on the three machines. OpenMP barriers perform well on
A IL 4x4x2 but still Smelt is between 1.5x and 3.8x faster.

Since OpenMP uses explicit and implicit barriers af-
ter each parallel construct, we extend the evaluation to
demonstrate how Smelt can be used to improve the GOMP
library [15]. GOMP’s standard barriers are based on
atomic instructions and the futex syscall on Linux [12,
14, 26]. We replaced GOMP’s barrier with Smelt and
compared it against the vanilla version. As workload we
took syncbench and arraybench from the EPCC OpenMP
micro-benchmarks suite [27] using standard settings and
5000 outer repetitions. We ran the benchmark using all

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 43

http://machinedb.systems.ethz.ch/machine/phi#ab-bench
http://machinedb.systems.ethz.ch/machine/sgs-r815-03#ab-bench
http://machinedb.systems.ethz.ch/machine/sgs-r820-01#ab-bench
http://machinedb.systems.ethz.ch/experiment/ab-bench

322 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of cores

0

2

4

6

8

10

12
E

x
ec

u
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

s/
1
.0

0

s/
1
.1

6 f/
1
.0

4

s/
1
.1

9

f/
1
.1

3

c
/
1
.1

7

c
/
1
.2

2

c
/
1
.1

1

c
/
1
.2

3

c
/
1
.1

0

c
/
1
.0

9

c
/
1
.2

6

c
/
1
.1

8

c
/
1
.2

1

c
/
1
.1

8

c
/
1
.1

3

mst

AT

cluster

seq

fibonacci

bintree

(a) Broadcast A IL 4x4x2

2 4 6 8 10 12 14 16 18 20 22 24

Number of cores

0

2

4

6

8

E
x
ec

u
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

b
/
1
.0

0

s/
0
.9

9

s/
0
.9

9

f/
1
.2

4

c
/
1
.2

2

c
/
1
.2

5

b
/
1
.2

5

c
/
1
.1

8

c
/
1
.0

2

c
/
1
.2

0

c
/
0
.9

7

c
/
1
.0

2

mst

AT

cluster

seq

fibonacci

bintree

(b) Reduction A IS 4x6x1

Figure 10: Multicast, cores allocated round-robin to NUMA nodes. Labels: speedup compared to the best static
topology and first letter of that topology’s name.

Broadcast Reduction Barrier
0

5

10

15

20

25

E
xe

cu
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

OpenMP

MPI

Smelt

(a) A IL 4x4x2

Broadcast Reduction Barrier
0

10

20

30

40

50

60

E
xe

cu
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

OpenMP

MPI

Smelt

(b) I NL 4x8x2

Broadcast Reduction Barrier
0

5

10

15

20

25

30

35

E
xe

cu
ti

on
ti

m
e

[x
10

00
cy

cl
es

]

OpenMP

MPI

Smelt

(c) I SB 4x8x2

Figure 11: Comparison with MPI and OpenMP .

available threads.
The results of the benchmark are shown in Table 2.

Overall, Smelt performs significantly better or compa-
rable to the original GOMP barriers. In the BAR-
RIER micro-benchmark, we achieve up to 2.5x and 1.5x
speedup respectively. These results show that replacing
the standard barriers in GOMP with Smelt reduces the
overhead for synchronization significantly.

5.4 Barriers micro-benchmarks
Barriers are important building blocks for thread synchro-
nization in parallel programs. We compare our barrier im-
plementation (§ 4.2.2) with the state-of-the-art MCS dis-
semination barrier [1] (parlibMCS) and a 1-way dissemi-
nation barrier that uses atomic flags [33] (dissemination).
We show that our simple barrier implementation, based on
broadcast and reduction, can compete with highly-tuned
state-of-the-art shared-memory implementations.

In this evaluation, we synchronize threads using the dif-
ferent barriers in a tight for-loop of 10,000 iterations. This
is yet another barrier benchmark and cannot be directly
compared with the previous sections.

The results in Table 3 show significant differences be-
tween machines and whether or not hyperthreads are used.
Whereas on A IL 4x4x2 Smelt performs worse and there
is no clear winner, Smelt is up to 3x faster on Intel ma-
chines relative to the dissemination barrier and up to 6x

machine C parlibMCS dissemination Smelt

I SB 4x8x2 32 16,718 (495) 6,699 (63) 4,725 (6)
64 38,494 (755) 19,762 (22) 6,348 (10)

I NL 4x8x2 32 13,836 (348) 5,777 (239) 4,035 (22)
64 15,604 (1,366) 6,333 (185) 5,755 (26)

A IL 4x4x2 16 4,288 (7) 4,596 (92) 4,792 (9)
32 5,989 (23) 5,220 (12) 7,016 (35)

Table 3: Barrier micro-benchmark for 32 and 64 threads,
median of 100 calls [cycles], standard error in brackets.

faster compared to parlibMCS.
With this evaluation we have shown how a competitive

barrier can be implemented easily using Smelt’s hardware
aware collective operations.

5.5 Streamcluster

PARSEC Streamcluster [6] solves the online cluster-
ing problem. We chose this benchmark because it is
synchronization-intensive. We evaluate the performance
of Smelt’s barriers compared to PARSEC’s default barri-
ers, pthread barriers, and parLib dissemination barrier [1].

For all configurations, we used the native data set and
run the benchmark with and without Shoal, a framework
for optimizing memory placement and access based on
access patterns [21]. Otherwise, Streamcluster’s perfor-
mance is limited by memory bandwidth and the effects of
optimizing synchronization are less visible.

Our results in Table 4 confirm that optimizing both

44 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://machinedb.systems.ethz.ch/machine/sgs-r815-03#scalebench
http://machinedb.systems.ethz.ch/machine/ziger#scalebench
http://machinedb.systems.ethz.ch/experiment/scalebench
http://machinedb.systems.ethz.ch/machine/sgs-r815-03#colbench
http://machinedb.systems.ethz.ch/machine/gottardo#colbench
http://machinedb.systems.ethz.ch/machine/sgs-r820-01#colbench
http://machinedb.systems.ethz.ch/experiment/colbench
http://machinedb.systems.ethz.ch/experiment/barrier-throughput

PARALLEL FOR BARRIER SINGLE COPYPRIV COPY PRIV

A IL 4x4x2 GOMP 21.81 (112.16) 6.93 (0.15) 6.92 (0.15) 11.31 (1.41) 287.84 (122.97) 101.40 (1.22) 52.20 (301.56)
Smelt 13.93 (0.15) 4.15 (0.07) 4.13 (0.07) 7.83 (0.08) 120.10 (24.52) 104.66 (0.94) 13.84 (0.28)

I SB 4x8x2 GOMP 55.41 (333.78) 9.50 (3.22) 9.51 (3.23) 14.85 (2.26) 319.44 (7.29) 135.16 (1.13) 46.69 (140.40)
Smelt 38.31 (0.17) 5.64 (0.02) 5.63 (0.02) 10.27 (0.98) 141.95 (1.81) 128.48 (1.04) 37.20 (0.44)

Table 2: EPCC OpenMP benchmark. Average in microseconds, standard error in brackets.
pthread parsec Smelt parlib MCS

A IL 4x4x2

no Shoal 215.619 207.929 181.405 202.801
Shoal 51.816 52.075 41.116 41.061

I SB 4x8x2

no Shoal 236.476 235.394 124.492 125.184
Shoal 66.421 68.079 28.283 28.779

Table 4: Execution time of Streamcluster [seconds]

memory accesses and synchronization primitives matter
for achieving good performance of parallel programs. We
also show that our simple barrier implementation (§4.2.2)
based on a generic broadcast tree performs better than
shared-memory barriers and is competitive with a state-
of-the-art dissemination barrier.

5.6 Agreement
We implemented the 1Paxos [10] agreement protocol us-
ing Smelt. 1Paxos is a Paxos-variant optimized for mul-
ticore environments. Normal operation is shown in Fig-
ure 12a: a client sends a request to the leader which for-
wards the request to the acceptor. Then there is a single
broadcast from the acceptor to the replicas that we op-
timize using Smelt. Upon receiving the broadcast, the
leader responds to the client.

We re-implemented 1Paxos with and without Smelt,
because the original 1Paxos paper uses its own thread-
ing and message passing library. Furthermore, they cre-
ate one thread for each incoming connection which has a
large negative impact on performance [19]. The process-
ing time then dominates over communication cost making
it unsuitable for the evaluation of our work.

We vary the number of replicas from 8 to 28 and use
4 cores as load generators, which was sufficient to issue
enough requests to keep the system busy. The measure-
ments are averaged over three runs of 20 seconds each.
Figures 12b and 12c present the performance of the agree-
ment protocol and an atomic broadcast with the same
threads.

The results show that the agreement protocol on mul-
ticore machines can benefit from an optimized broadcast
primitive: using Smelt improves the throughput and re-
sponse time up to 3x compared to sequential sending on
28 replicas. As we increase the number of replicas, the
sequential broadcast quickly becomes the bottleneck. Our
results show that 1Paxos is highly tuned towards multi-
cores as its scaling behavior and performance are similar

to a plain broadcast.
By using Smelt, we can improve the performance of

agreement protocols on multicore machines, improving
also the scalability to larger number of replicas.

5.7 Key-value store
We implemented a replicated key-value store (KVS) using
1Paxos from § 5.6 to ensure consistency of updates while
reads are served directly by the replica. In our implemen-
tation, the nearest replica responds to the client request.
Our implementation supports a get/set interface. We fo-
cus on small keys (8 byte) and values (16 byte) to avoid
fragmentation. If fragmentation was implemented, larger
messages would simply be split up in multiple smaller
messages. This would cause a behavior similar to adding
more clients to the system.

We placed a KVS instance on each NUMA node of
the machine, 8 on A IL 4x4x2. An increasing number
of clients connect to their local KVS instance and issue
requests. We executed the benchmark for 20 seconds and
3 runs with a get/set ration of 80/20.

The set performance results are shown in Figure 13. We
omit the get results as they are served locally. Our results
demonstrate that Smelt is able to improve performance
even for a small number of replicas. Scalability and sta-
bility under high load are even better, resulting in up to 3x
improvement for throughput and response time.

1 4 8 12 16 20 24 1 4 8 12 16 20 24

Number of clients

0

100

200

300

400

500

600

700

800

900

S
et

th
ro

u
gh

p
u

t
[x

10
00

se
ts

/s
]

Throughput Response Time

Sequential Smelt

0

50

100

150

200

250

300

S
et

ti
m

e
[x

10
00

cy
cl

es
]

Figure 13: Set performance on A IL 4x4x2

6 Conclusion
Smelt is a new approach for tuning broadcast algo-
rithms to multicore machines. It automatically builds effi-
cient broadcast topologies and message schedules tuned

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 45

http://machinedb.systems.ethz.ch/experiment/epcc
http://machinedb.systems.ethz.ch/experiment/streamcluster
http://machinedb.systems.ethz.ch/machine/sgs-r815-03#kvs

P/L P P P

A

L L L L

P/L leader P proposer A acceptor L learner
accept broadcast forward

(a) 1Paxos failure-free case.

8 12 16 20 24 28 8 12 16 20 24 28

Number of Replicas

0

10

20

30

40

50

60

R
es

p
on

se
ti

m
e

[x
10

00
cy

cl
es

]

1Paxos Broadcast

Sequential Smelt

(b) Response time on A IL 4x4x2.

8 12 16 20 24 28 8 12 16 20 24 28

Number of Replicas

0

100

200

300

400

500

600

700

800

900

T
h

ro
u

gh
p

u
t

[x
10

00
ag

re
em

en
ts

/s
]

1Paxos Broadcast

Sequential Smelt

(c) Throughput on A IL 4x4x2.

Figure 12: Performance results of 1Paxos agreement.

to specific hardware environments based on a machine
model which encodes both static hardware information
and costs for sending and receiving messages, generated
from micro-benchmarks that capture low-level machine
characteristics. Smelt provides an easy-to-use API which
can be used to build high-level applications on top of it.
We have shown that the trees generated by Smelt match
or outperform the best static topology on each of a variety
of machines.

Moreover, we also show how other collective opera-
tions can be constructed using these trees as a building
block and achieve good performance without requiring
any extra tuning effort. Barriers implemented trivially on
top of Smelt outperform state-of-the-art techniques, in-
cluding shared-memory algorithms which do not use mes-
sage passing. We also achieve good scaling with the num-
ber of parallel requests in an in-memory replicated key-
value store built on top of Smelt’s adaptive trees.

Consequently, we claim that automatically generated
broadcast topologies can deliver high performance in par-
allel applications without requiring programmers to have
detailed understanding of a machine’s topology or mem-
ory hierarchy. Smelt is open source and available for
download at https://github.com/libsmelt.

6.1 Future work
We believe that using Smelt will have an even larger ben-
efit on future machines that experience partial transient
hardware failures [7, 13], are more heterogeneous [7] and
increasingly rack-scale.

In the case of failures, the tree has to be reconfigured
dynamically. To make this fast, the changes in the tree
topology should ideally be kept local. We believe that our
optimizations to the basic tree topology as described in
§3.3.2 are a good starting point to explore strategies to ef-
ficiently update trees topologies locally. Furthermore, the
asymmetry of group communication as a result of spacial
scheduling and failures will make static tree topologies
less ideal (e.g. the cluster works best for a “regular” sym-
metric machine and less for irregular topologies).

Smelt will likely be able to handle more heterogeneous

hardware, as microbenchmarks reflect these performance
characteristics and the adaptive tree automatically handles
such cases. We show this by running Smelt on the Xeon
Phi, which exposes a completely different architecture,
without having to modify Smelt. Furthermore, simula-
tion based on pairwise send and receive cost should work
equally well on multicore machines providing message-
passing hardware, as long as tsend and treceive adequately
represent the system’s cost for communication. However,
it is likely that more microbenchmarks have to be added in
the future to precisely capture hardware characteristics as
more intricate accelerator hardware is added (e.g. deeper
write buffers). However, the general approach of model-
ing the machine combined with simulation will likely still
work in such a setting.

Further, we plan to extend our machine model to in-
clude more hardware details that may have an additional
impact in larger machines, like contention on inter-socket
links and write-buffer effects. Also, to date Smelt does not
address partial failures, and assumes the entire machine
to be fail-stop. Extending the system to support multi-
ple failure domains and fully networked communication
at rack scale is a natural line of extension of our work.

Acknowledgments

We thank our mentor Peter Chen and the anonymous re-
viewers for their detailed and useful reviews and the Com-
puter Architecture Group from the University of A Coruña
for the access to their cluster Pluton (Project TIN2013-
42148-P).

References

[1] Amplab, UC Berkeley. PARLIB, MCS Locks. On-
line. http://klueska.github.io/parlib/mcs.html. Ac-
cessed 05/10/2016.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and

46 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://machinedb.systems.ethz.ch/machine/sgs-r815-03#agreement
http://machinedb.systems.ethz.ch/machine/sgs-r815-03#agreement
http://machinedb.systems.ethz.ch/experiment/agreement
https://github.com/libsmelt
http://klueska.github.io/parlib/mcs.html

A. Singhania. The Multikernel: A new OS Architec-
ture for Scalable Multicore Systems. In Proceedings
of the 22nd ACM Symposium on Operating System
Principles, SOSP ’09, pages 29–44, Big Sky, Mon-
tana, USA, 2009.

[3] A. Baumann, S. Peter, A. Schüpbach, A. Singhania,
T. Roscoe, P. Barham, and R. Isaacs. Your computer
is already a distributed system. Why isn’t your OS?
In Proceedings of the 12th Workshop on Hot Topics
in Operating Systems, May 2009.

[4] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce,
V. Leung, J. MacKay, M. Reif, L. Bao, J. Brown,
M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff,
W. Anderson, E. Berger, N. Fairbanks, D. Khan,
F. Montenegro, J. Stickney, and J. Zook. TILE64 -
Processor: A 64-Core SoC with Mesh Interconnect.
In Digest of Technical Papers of the IEEE Interna-
tional Solid-State Circuits Conference, ISSCC 2008,
pages 88–598, Feb 2008.

[5] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and
H. M. Levy. User-level Interprocess Communication
for Shared Memory Multiprocessors. ACM Trans-
actions on Computer Systems, 9(2):175–198, May
1991.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC Benchmark Suite: Characterization and
Architectural Implications. In Proceedings of the
17th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’08, pages
72–81, Toronto, Ontario, Canada, 2008. ACM.

[7] S. Borkar and A. A. Chien. The future of micropro-
cessors. Communications of the ACM, 54(5):67–77,
May 2011.

[8] J. Bruck, R. Cypher, and C.-T. Ho. Multiple
Message Broadcasting with Generalized Fibonacci
Trees. In Proceedings of the 4th IEEE Symposium
on Parallel and Distributed Processing, pages 424–
431, Arlington, Texas, USA, Dec 1992.

[9] T. David, R. Guerraoui, and V. Trigonakis. Ev-
erything You Always Wanted to Know About Syn-
chronization but Were Afraid to Ask. In Proceed-
ings of the 24th ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, pages 33–48, Farminton,
Pennsylvania,USA, 2013. ACM.

[10] T. David, R. Guerraoui, and M. Yabandeh. Con-
sensus Inside. In Proceedings of the 15th Inter-
national Middleware Conference, Middleware ’14,
pages 145–156, Bordeaux, France, 2014. ACM.

[11] N. Dershowitz and S. Zaks. Enumerations of Or-
dered Trees. Discrete Mathematics, 31(1):9–28,
1980.

[12] U. Drepper. Futexes Are Tricky. Technical report,
Red Hat, Inc., Dec 2011.

[13] P. Faraboschi, K. Keeton, T. Marsland, and D. Milo-
jicic. Beyond Processor-centric Operating Sys-
tems. In Proceedings of the 15th USENIX Confer-
ence on Hot Topics in perating Systems, HOTOS’15,
pages 17–17, Kartause Ittingen, Switzerland, 2015.
USENIX Association.

[14] H. Franke and R. Russell. Fuss, Futexes and Fur-
wocks: Fast Userlevel Lockingin Linux. In Proceed-
ings of the 2002 Ottawa Linux Symposium, OLS ’02,
pages 18:1–18:11, Denver, Colorado, USA, 2002.

[15] Free Software Foundation, Inc. Welcome to the
home of GOMP. Online. https://gcc.gnu.org/
projects/gomp/. Accessed 05/10/2016.

[16] J. Giacomoni, T. Moseley, and M. Vachharajani.
FastForward for Efficient Pipeline Parallelism: A
Cache-optimized Concurrent Lock-free Queue. In
Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Program-
ming, PPoPP ’08, pages 43–52, Salt Lake City, Utah,
USA, 2008. ACM.

[17] R. L. Graham and G. Shipman. MPI Support
for Multi-core Architectures: Optimized Shared
Memory Collectives. In Proceedings of the 15th
European PVM/MPI Users’ Group Meeting, Eu-
roPVM/MPI ’ 08, pages 130–140, Dublin, Ireland,
2008. Springer Science & Business Media.

[18] D. Hackenberg, D. Molka, and W. E. Nagel. Com-
paring Cache Architectures and Coherency Proto-
cols on x86-64 Multicore SMP Systems. In Proceed-
ings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, pages
413–422, New York, New York, USA, 2009. ACM.

[19] R. Haecki. Consensus on a Mulicore Machine. ETH
Zurich, 2015. Master’s Thesis, http://dx.doi.org/10.
3929/ethz-a-010608378.

[20] Hewlett-Packard, Intel, Microsoft, Phoenix,
Toshiba. Advanced Configuration and Power
Interface Specification, Rev. 4.0a, Apr. 2010.
http://www.acpi.info/.

[21] S. Kaestle, R. Achermann, T. Roscoe, and T. Harris.
Shoal: Smart Allocation and Replication of Memory
for Parallel Programs. In Proceedings of the 2015
USENIX Annual Technical Conference, USENIX
ATC ’15, pages 263–276, Santa Clara, CA, 2015.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 47

https://gcc.gnu.org/projects/gomp/
https://gcc.gnu.org/projects/gomp/
http://dx.doi.org/10.3929/ethz-a-010608378
http://dx.doi.org/10.3929/ethz-a-010608378
http://www.acpi.info/

[22] D. E. Knuth. The Art of Computer Programming,
volume 3. Addison-Wesley, 2nd edition, 1998.

[23] B. W. Lampson and H. E. Sturgis. Crash Recovery
in a Distributed Data Storage System, 1979.

[24] B. Lepers, V. Quema, and A. Fedorova. Thread
and memory placement on numa systems: Asym-
metry matters. In Proceedings of the 2015 USENIX
Annual Technical Conference, USENIX ATC ’15,
pages 277–289, Santa Clara, CA, July 2015.

[25] S. Li, T. Hoefler, and M. Snir. NUMA-
aware Shared-memory Collective Communication
for MPI. In Proceedings of the 22nd International
Symposium on High-performance Parallel and Dis-
tributed Computing, HPDC ’13, pages 85–96, New
York, New York, USA, 2013. ACM.

[26] Linux Programmer’s Manual. futex - fast user-space
locking. Online. http://man7.org/linux/man-pages/
man2/futex.2.html. Accessed 05/10/2016.

[27] Mark Bull and Fiona Reid. EPCC
OpenMP micro-benchmark suite. Online.
https://www.epcc.ed.ac.uk/research/computing/
performance-characterisation-and-benchmarking/
epcc-openmp-micro-benchmark-suite. Accessed
05/10/2016.

[28] D. Molka, D. Hackenberg, and R. Schöne. Main
Memory and Cache Performance of Intel Sandy
Bridge and AMD Bulldozer. In Proceedings of
the Workshop on Memory Systems Performance and
Correctness, MSPC ’14, pages 4:1–4:10, Edinburgh,
United Kingdom, 2014. ACM.

[29] D. Molka, D. Hackenberg, R. Schöne, and W. E.
Nagel. Cache Coherence Protocol and Memory Per-
formance of the Intel Haswell-EP Architecture. In
Proceedings of the 44th International Conference on
Parallel Processing, ICPP ’ 15, pages 739–748, Bei-
jing, China, 2015.

[30] MPI Forum. Message Passing Interface Forum. On-
line. Accessed 05/10/2016.

[31] R. C. Prim. Shortest connection networks and some
generalizations. The Bell System Technical Journal,
36(6):1389–1401, Nov 1957.

[32] S. Ramos and T. Hoefler. Cache Line Aware Op-
timizations for ccNUMA Systems. In Proceed-
ings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing,
HPDC ’15, pages 85–88, Portland, Oregon, USA,
2015. ACM.

[33] S. Ramos and T. Hoefler. Cache Line Aware Al-
gorithm Design for Cache-Coherent Architectures.
IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS), 27(10):2824–2837, Oct 2016.

[34] RRZE - Regionales RechenZentrum Erlangen. lik-
wid. Online, 2015. https://github.com/RRZE-HPC/
likwid.

[35] T.-I. Salomie, I. E. Subasu, J. Giceva, and G. Alonso.
Database Engines on Multicores, Why Parallelize
when You Can Distribute? In Proceedings of the
6th Conference on Computer Systems, EuroSys ’11,
pages 17–30, Salzburg, Austria, 2011. ACM.

[36] Silicon Graphics International Corporation. lib-
numa. Online, 2015. http://oss.sgi.com/projects/
libnuma/.

[37] P. J. Slater, E. J. Cockayne, and S. T. Hedetniemi.
Information dissemination in trees. SIAM Journal
on Computing, 10(4):692–701, 1981.

[38] Y.-H. Su, C.-C. Lin, and D. Lee. Broadcasting
in Heterogeneous Tree Networks. In Proceed-
ings of the 16th Annual International Conference
on Computing and Combinatorics, pages 368–377.
Springer-Verlag, 2010.

[39] The OpenMP Architecture Review Board. The
OpenMP API specification for parallel program-
ming. Online. http://openmp.org/. Accessed
05/10/2016.

48 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://man7.org/linux/man-pages/man2/futex.2.html
http://man7.org/linux/man-pages/man2/futex.2.html
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://github.com/RRZE-HPC/likwid
https://github.com/RRZE-HPC/likwid
http://oss.sgi.com/projects/libnuma/
http://oss.sgi.com/projects/libnuma/
http://openmp.org/

	Introduction
	Motivation and background
	The move to message passing
	Communication in multicores
	Group communication primitives
	Common tree topologies

	Design
	Modelling broadcasts on multicore
	Populating the machine model
	Tree generation: adaptive tree
	Base algorithm
	Incremental optimization

	Finding the optimal solution

	Implementation
	Transport layer
	Collective layer
	Concepts
	Collective operations

	Evaluation
	Message passing tree topologies
	Multicast topologies
	Comparison with MPI and OpenMP
	Barriers micro-benchmarks
	Streamcluster
	Agreement
	Key-value store

	Conclusion
	Future work

