
Preventing Internet Denial-of-Service with Capabilities

Tom Anderson
University of Washington

Timothy Roscoe
Intel Research at Berkeley

David Wetherall
University of Washington

Abstract
In this paper, we propose a new approach to preventing and
constraining denial-of-service (DoS) attacks. Instead of be-
ing able to send anything to anyone at any time, in our
architecture, nodes must first obtain ”permission to send”
from the destination; a receiver provides tokens, or capa-
bilities, to those senders whose traffic it agrees to accept.
The senders then include these tokens in packets. This en-
ables verification points distributed around the network to
check that traffic has been certified as legitimate by both
endpoints and the path in between, and to cleanly discard
unauthorized traffic. We show that our approach addresses
many of the limitations of the currently popular approaches
to DoS based on anomaly detection, traceback, and push-
back. Further, we argue that our approach can be readily
implemented in today’s technology, is suitable for incre-
mental deployment, and requires no more of a security in-
frastructure than that already needed to fix BGP’s security
weaknesses. Finally, our proposal facilitates innovation in
application and networking protocols, something increas-
ingly curtailed by existing DoS measures.

1 Introduction

“Generality in the network increases the chance
that a new application can be added without hav-
ing to change the core of the network”
– Blumenthal & Clark [4]

The Internet owes much of its historic success and growth
to its openness to new applications. A key design feature of
the Internet is that any application can send anything to any-
one at any time, without needing to obtain advance permis-
sion from network administrators. New applications can be
designed, implemented and come into widespread use much
more quickly, if they do not need to wait for key features to
be added to the underlying network.

Quietly, however, the Internet has become much less
open to new applications over the past few years. Per-
versely, this has happened as a rational response of network
and system administrators needing to cope with the conse-
quences of the Internets openness. The Internet architecture
is vulnerable to denial-of-service (DoS) attacks, where any
collection of hosts with enough bandwidth (e.g., using ma-
chines taken over by a virus attack) can disrupt legitimate
communication between any pair of other parties, simply by
flooding one end or the other with unwanted traffic. These
attacks are widespread, increasing, and have proven resis-
tant to all attempts to stop them [16].

Operationally, to deal with persistent and repeated DoS
and virus attacks, network and system administrators have

begun deploying automated response systems to look for
anomalous behavior that might be an attack. When alarms
are triggered, often by legitimate traffic, the operational re-
sponse is typically to “stop everything and ask questions
later.” Unfortunately, any new application is likely to appear
to be anomalous! Our experience with this comes from op-
erating the PlanetLab testbed over the past year. PlanetLab
is designed to make it easy to develop and deploy new, ge-
ographically distributed, Internet applications [18]. On sev-
eral occasions, we have observed innocuous, low-rate traffic
from a single application trigger alarms that have caused en-
tire universities to be completely disconnected from the In-
ternet. Since alarm rules are by nature secret, the only way
to guarantee that a new application does not trigger an alarm
(and the resulting disproportionate response) is to make its
traffic look identical to some existing application. In other
words, the only safe thing to do is to precisely mimic an old
protocol.

Trading openness for security might be reasonable if it
was effective, but unfortunately, none of the proposals for
addressing DoS are sufficient for completely eliminating
DoS attacks over the long run. Attackers are winning the
arms race with anomaly detection by making their traffic
look increasingly like normal traffic. The CodeRed and
follow-on viruses have demonstrated repeatedly that it is
possible to recruit millions of machines to the task of send-
ing normal HTTP requests to a single destination [14, 13].
This problem is fundamental to the Internet architecture:
no matter how over-provisioned you are, if everyone in the
world sends you a single packet, legitimate traffic will not
get through.

We argue for taking a step back, to ask how, at an archi-
tectural level, we can completely address the DoS problem
while still allowing new applications to be deployed? Our
goal, in essence, is to let any two nodes exchange whatever
traffic they like (subject to bandwidth constraints of inter-
mediate links), such that no set of third parties can disrupt
that traffic exchange. Our approach is based on tokens, rep-
resenting one-time temporary leases or capabilities to send,
that authenticate that the packet is desired by the destina-
tion. Capabilities have been used in many systems, with
mixed success; we argue that in the Internet context their
use can lead to a more secure and more open system than
the current approach of ad hoc anomaly detection.

The rest of this paper presents our argument in more de-
tail. Section 2 puts our approach in the context of related ef-
forts to develop DoS solutions. Section 3 outlines the goals
of our approach, and Section 4 gives a detailed design of
our proposed solution. Section 5 summarizes our results
and discusses future work.

1



2 Background and Related Work

Internet denial-of-service (DoS) attacks work by flooding
some limited resource on the Internet, thereby preventing
legitimate users from accessing that resource. Targets have
included not only the bandwidth of access links and other
network bottlenecks, but also the computing and memory
resources on servers, clients, routers, and firewalls. For
example, some low-end routers will crash if they are sent
pings at too fast a rate, because their CPU becomes over-
whelmed. While this might seem to be easily fixed by build-
ing more robust host software, as a practical matter, almost
every device connected to the Internet has some vulnera-
bility to a flooding attack, just as almost every host on the
Internet is vulnerable to a virus attack.

As DoS attacks have become more frequent and persis-
tent, the DoS problem has inspired an avalanche of research
into solutions. Our work generalizes and builds on several
of these efforts, particularly the pushback [11] and secure
overlay proposals [8, 1].

Most of the evaluation of DoS solutions has focused on
their feasibility and/or effectiveness in preventing DoS at-
tacks. While this is clearly important, we also draw atten-
tion here to a different kind of issue with existing work in
this field: the future consequences for the Internet and its
applications if these approaches are adopted. Our experi-
ence with new applications on PlanetLab indicates that a
good DoS solution must not only be effective, it must also
permit the seamless introduction of new network services.

Source Address Filtering

One of the earliest proposals to mitigate DoS attacks was
to deploy source address filtering at all network ingress and
egress points [5]. This would prevent attackers from placing
arbitrary source addresses in their packets and would there-
fore be useful in reducing the kinds of attacks that could be
launched. Source filtering can be generalized to allow for
filtering any packet that cannot have legitimately arrived at
any point in the middle of the network [17].

Ingress filtering becomes effective only with a high de-
gree of deployment; a source address only provides proof
of authorship if every node in the network is part of the
trusted computing base. Despite being recommended as a
“best practice” for over five years, there are still many gaps
in the enforcement of ingress filtering. Even with com-
plete deployment, advances in attack methods have largely
rendered source filtering irrelevant. Source addresses can
be spoofed among all addresses sharing the same network
prefix behind the filter; this can be many thousands of ad-
dresses. Worse, automated virus tools have made it easy to
enlist very large numbers of hosts in a given attack; attacks
today often comprise lots of legitimate, unspoofed packets –
if a million machines send your DSL modem a single TCP
SYN packet, it doesn’t matter that they are all using their
real source address – your link will be unusable.

Traceback and Pushback

Several sophisticated methods have been proposed for trac-
ing attacks back through the network toward their source [3,
19, 20, 21]. Traceback concentrates on identifying the hosts
responsible for an attack and, like source filtering, does lit-
tle to prevent sources from sending traffic. DoS attacks are
generally launched from a (possibly large) number of com-
promised host machines. Traceback mechanisms can be in-
valuable in identifying such compromised hosts, but this is
too late to prevent the attack from occuring and is also of
limited use in determining the ultimate perpetrators of the
attack.

To address this limitation, some researchers have pro-
posed adding network support for dynamic traffic filters,
called pushback [11, 7]. Although the pushback proposals
to date have focused on controlling link bandwidth floods,
in theory any host or resource on the Internet could use dy-
namic pushback to prevent resource exhaustion. With push-
back, a node or link characterizes the types of packets caus-
ing the flood, and sends requests upstream to rate limit them
closer to the source.

Unfortunately, it can be difficult to design filters that per-
fectly discriminate between good and bad traffic, especially
at line rates in the middle of the network. Discrimination
based on packet headers is vulnerable to spoofing; discrim-
ination based on packet contents is foiled by the increasing
use of end to end encryption. Sophisticated attacks can also
use probes to reverse engineer a filter as a prelude to evad-
ing it [1]. For example, the initial pushback implementation
simply rate limits all traffic to the same destination. This
approach will not only throw out good traffic with the bad,
it can be foiled by attacks that rotate destination addresses
through a bottleneck link.

As we will describe later, our approach can be seen as a
particular instance of dynamic filtering that uses end-to-end
cooperation to make filtering more effective and easier to
implement.

Overlay Filtering

Overlays have been proposed as a way of incrementally de-
ploying DoS filtering, given the lag time to add support for
sophisticated filters in router hardware. For example, Cen-
terTrack [22] re-routes all traffic aimed at a destination un-
der attack, through an special-purpose intermediate node;
because it is out of the normal path, the intermediate node
can do sophisticated analysis and filtering.

More generally, the Secure Overlay Service (SOS) [8]
and Mayday [1] pass all traffic to a protected destination
through a large overlay. After authenticating an incoming
packet, the overlay adds a secret into the packet header be-
fore forwarding it to the destination. Downstream routers
can then be configured to discard all packets for the desti-
nation that do not contain the secret. This is an ingenious
approach that is vulnerable to an attacker discovering the
secret. The secret is a target because it is shared among all
traffic through the overlay to the same destination.

2



Our approach has a similar flavor to SOS and Mayday,
in that we also include a nonce token in every packet as
a lightweight authenticator. However, in our system, to-
kens are transient and limited in scope to a single source-
destination path. This limits the damage that can occur
when one of the tokens is discovered by an attacker. Unlike
overlays, our system uses regular Internet routes; ISPs have
policy control over routing using BGP in the same manner
that they depend on today. We also target dynamic commu-
nication patterns, instead of just static pre-approved ones.

Many of the differences between our approach and that
of SOS and Mayday is due to a difference in goals; they
attempt to filter unwanted packets using existing network
router hardware, and we explore the case where we are free
to redesign the Internet to be architecturally more resistant
to DoS attacks.

Anomaly Detection

Perhaps the most active area of DoS prevention work is
anomaly detection [2, 6, 12]. Rule-based or statistical tech-
niques are used to classify traffic patterns as as friendly or
malicious. Malicious traffic causes a number of actions to
be performed, such as raising alarms, installing network fil-
ters, and sending automatically generated emails to the ad-
ministrators at sites suspected of generating the traffic. The
argument has been made that only an automated response
to a DoS attack or security intrusion can be fast enough to
prevent damage or loss of service [15].

We have grave misgivings about the consequences of de-
ploying such systems.

One of a large collection of PlanetLab “incidents” will
serve to illustrate this. A network tomography project run-
ning on PlanetLab sent a small number of packets that were
almost but not completely like traceroute to a few hosts in
every BGP-visible prefix; only one organization (out of over
10,000) complained, with an automated email message gen-
erated by an anomaly detection system. This caused ten
percent of the sites hosting PlanetLab to immediately dis-
connect their machines.

Ultimately, anomaly detection is not a sufficient response
to the problem—the decision as to whether a particular flow
is an attack or not needs to be made end-to-end at the ap-
plication level. Worse, in the limit anomaly detection leads
to closed systems as ISPs and sysadmins lock down every-
thing that isn’t completely standard in the arms race with
attackers. Since the filter policies are typically secret and
complaints sent out-of-band, a legitimate application de-
veloper may never know exactly why the traffic triggered
an alert. How is an application to know, for example, the
maximum rate that a low-end router can accept ping pack-
ets before crashing, if the router has no way of informing
the sender of its resource limits? Innovation in the network
in effect becomes a practical impossibility: a new applica-
tion must be extraordinarily conservative in what it sends
to avoid triggering a disproportionate response from system
and network administrators.

3 Towards a Capability-Based Internet

If we could start over, how would we re-design the Internet
to be resistant to DoS attacks? Source authentication is in-
sufficient – given the widespread success of virus attacks,
knowing the source of a packet is potentially helpful but by
no means a complete solution. Source authentication also
provides no way for a fragile host to signal its resource lim-
its. Rather, we argue that any complete solution to DoS at-
tacks must give control over resource usage to the owner of
the limited resource – the destination host and the interme-
diate links along the path. Further, any solution we consider
should be open to new applications; the network should not
be able to prevent two consenting hosts from exchanging
packets, subject to resource constraints inside the network.
Finally, the solution should be secure; no host distant from
the path between source and destination should be able to
disrupt their communication.

We argue that tokens, each representing a temporary
single-use capability, issued by destinations, included in
every packet, and enforced inside the network, provide
a complete, open and secure solution to DoS attacks.
Putting practical considerations aside, a conceptually sim-
ple scheme might be as follows. Each destination would
generate certificates as tokens representing permission-to-
send, each with a timestamp to limit hoarding of certificates,
signed by the destination’s private key. If every packet in-
cluded a certificate, routers along the path could verify that
the packet was recently requested by the destination, dis-
carding those that were not and allowing the remainder to
compete for bandwidth as usual. Certificates would be re-
quested by a source, and granted by a destination, using a
protected setup channel. Again ignoring practical consid-
erations, we could extend this to allow administrative do-
mains to protect their links from persistent overloading, by
including the path in the certificate and requiring that every
domain in the path countersign the certificate before it is
considered valid. In this way, only legitimate traffic will be
able to transit the network.

Our challenge, of course, is to design a solution which
is not only complete, open and secure, but also feasible:
scalable, able to implemented in today’s technology, and
incrementally deployable. The remainder of this paper con-
siders this question of feasibility. While we are willing to
trade silicon for increased robustness, the use of public key
signature and verification is not likely to be viable on a per
packet basis in the foreseeable future. Even assuming short
signatures that cannot be broken for short periods of time
(say 128 bit signatures using elliptic curve cryptography)
such a scheme would involve considerably more compu-
tation than other kinds of security designs such as IPSEC
and S-BGP. To be viable, any realistic scheme must in-
volve far less computation and use as little packet space and
router state as possible. Since we are dealing with denial-
of-service, the mechanisms must also not be vulnerable to
attack themselves, e.g., by overloading.

3



4 Strawman Design

The strawman design presented here is the basis of our ar-
gument that the capability approach is feasible. There are
clearly more details to be considered to reduce the design to
practice, along with much room for improvement. For ex-
ample, we have not elaborated how to handle node failures
other than an expectation of applying soft-state techniques.
Nonetheless, we argue that the core mechanisms presented
here achieve our goals: they are implementable with today’s
technologies and do not impose unreasonable requirements
in terms of PKIs, packet overhead, etc. The strawman is
unlike a “public key signature per packet” scheme in all of
these respects.

Our strawman augments the existing Internet infrastruc-
ture with incrementally deployable Request-To-Send (RTS)
servers coupled to ”verification points” (VPs) which sit on
the data path of Internet links. RTS servers are the means
by which sources obtain tokens to send packets. They are
co-located with BGP speakers at network boundaries and
communicate in a hierarchy per destination. VPs perform
access control by verifying the existence of a valid token in
all non-RTS traffic. VPs can be ”bump on the wire” boxes
or implemented as part of router line cards (with which they
share much functionality). They are deployed near RTS
servers at network choke points, such as customer access
links and BGP peering points. We describe the scheme in
terms of the sequence of its operation from the point of view
of a single source talking to a single destination.

Obtaining Permission to Send

A source must obtain tokens before it can send a series of
packets to a destination that participates in our scheme. RTS
servers assist destinations in granting these tokens and pre-
pare VPs for subsequent token checking.

Autonomous systems whose clients wish to have their in-
bound traffic filtered advertise the fact by annotating their
BGP advertisements with a community attribute giving the
(IP) address of their RTS server. As the BGP advertise-
ment propagates across network boundaries, any AS in the
path that wishes to mediate the communication adds its RTS
server to the BGP advertisement, forming a chain of RTS
servers from source to destination. RTS servers can thus
be gradually deployed wherever they are found to be use-
ful. Further, the security of RTS chains leverages the se-
curity of BGP advertisements; if an attacker can convince
an upstream domain to accept a bogus BGP advertisement,
connectivity is easily disrupted, making DoS trivial.

Sources can now discover a series of RTS servers through
which to send their request; there is a hierarchy of RTS
servers along the paths to each participating destination.
A source obtains tokens by sending an RTS packet to the
first RTS server on the path to the destination. This is re-
layed along the chain of RTS servers to the destination’s
RTS server, leaving soft-state in each server to allow the
response to traverse the reverse path back to the client in

a manner similar to RSVP, PIM and other protocols [23].
Note that, because they are coupled, the sequence of RTS
servers corresponds to a sequence of VPs that will be tra-
versed by regular packets sent by the source towards the
destination.

RTS packets are sent via RTS servers rather than directly
to the destination to protect the channel used to obtain to-
kens from flooding: RTS servers limit the RTS packets
passed towards a destination prefix to a rate which is a small
fraction of the destination’s access bandwidth. The destina-
tion prefix advertises its token channel bandwidth via an-
other BGP attribute. Combined with active queue manage-
ment at the RTS servers, this prevents any single network
location from hogging the RTS channel. Note that unlike
the current Internet, a distributed attack flooding the RTS
channel has no effect on already established connections
with valid tokens. Mission critical communication could,
for example, always maintain valid tokens. Although we do
not discuss it further here, the scheme could be extended
to allow destinations programmable control over how their
token channel bandwidth is allocated.

Eventually, an RTS packet will reach the destination. If
the destination decides to allow the source to send it pack-
ets, it mints capabilities by calculating a chain of K 64-bit
one-way hash values h1, . . . , hK . Many hash chains could
be inexpensively pre-computed even for K >> 1000, but
in practice K < 100 would be sufficient for most flows.
The values hi are capabilities, possession of each of which
allows the client to send a limited number n of packets,
e.g. 50, in the next t seconds, e.g. 10. The destination
then sends the last hash value hK , along with a random
32-bit initial sequence value s0, to the source via the chain
of RTS servers. We explain the reason for using a hash
chain shortly. Each RTS server remembers the values and
associates them with the flow in the VP coupled to the RTS
server. At this stage, the source and VPs along the path from
source to destination have all received an initial capability.

Sending with Capabilities

The source now has an initial capability hK and is autho-
rized to send n packets along the network path towards the
destination within the next t seconds. Each packet is labeled
with the capability itself and the associated sequence value.
This labelling could be done in several ways: new header
fields, IP options, a shim layer on top of IP, etc. Discussion
of their relative merits is beyond the scope of this paper.

When each VP along the path receives a packet, it checks
the capability, sequence number, and flow identifiers (e.g.
source and destination addresses) in its store of currently
valid capabilities. If the capability is found and the param-
eters match, then the packet is forwarded and the count of
times the capability has been used is increased; if the count
has reached n or t seconds has passed then the capability is
flushed from the VP. If a packet’s token does not match a
stored value, then the token is deemed invalid, meaning that
the packet was never authorized or is no longer authorized,

4



and it is discarded. Downstream bandwidth is thus reserved
for packets with valid tokens.

All this assumes that attackers cannot reliably guess the
capability values (and other parameters) sent to sources, and
cannot snoop links along the path, since it is the simple pos-
session of these values that provides authorization to use a
network path. The choice of 64 bit hash values provides a
space large enough that brute-force guessing attacks, where
attackers send packets with random capabilities, are infea-
sible over the short period that the value is significant. In
the second case, when attackers can snoop links, they by
definition have access to the network path between source
and destination and can disrupt communications even if the
capability value is not known. Because tokens are specific
to a given connection, the mechanism prevents snooping at-
tackers from being able to use their knowledge to disrupt
traffic on other, unrelated paths.

Acquiring new capabilities in-band

The above procedure provides the basic mechanism by
which a destination can authorise the transmission of n

packets from a particular source. We assume that the same
procedure is independently used by the destination to au-
thorize packets that are sent from it to the source, e.g., to
carry the other half of a TCP connection. To send more
packets, the source must acquire a new capability from the
destination. This could be achieved by repeating the proce-
dure, but doing so has drawbacks. It can potentially impose
considerable load on both the destination RTS server and
intermediate RTS/VP pairs. Furthermore, the connection
setup procedure follows a network path which is symmetric
with respect to the RTS server chain, and heavy usage of
this path may be undesirable to carriers.

We avoid these problems as follows: after nearly n pack-
ets have been received by the destination, it can send the
next capability hK−1 back to the source via the normal IP
return path from destination to source (as opposed to the
reverse path via RTS servers). This path will have already
been authorized, e.g., to return ACKs in response to TCP
packets received by the destination. After sending n pack-
ets using hK , the source switches to using hK−1, incre-
ments the sequence number, and continues to send to the
destination.

It only remains for the VPs along the path to switch from
hK to hK−1. The reason for using a hash chain should
now be apparent: it provides auto-keying at VPs. When a
VP receives a packet from a known flow but with an incre-
mented sequence number and new token, it computes the
hash of the new token to see if it matches the old capabil-
ity. If so, the VP updates both its sequence number and
capability for the flow. Note that to handle floods of bogus
packets, the VP must be provisioned to do this for poten-
tially every packet at line rate, even though the sequence
number makes this worst case scenario unlikely. We don’t
see this as a problem: the gate count to perform a 64-bit
one-way hash in hardware is, these days, insignificant com-

pared to current operations performed by medium- to high-
end routers on packets, and the operation can be overlapped
with route lookup. Packet reordering can also be handled by
having VPs retain the previous capability until it has been
exhausted.

With this combined scheme, the destination can authorize
communications from a source once per epoch, yet retain
the ability to selectively shut off any flow or client address
within a window of n packets by simply not revealing the
previous hash value in the chain.

Protecting RTS servers

How do we protect RTS servers from DoS attacks on
the channel reserved for RTS packets? Note that com-
munications between RTS servers are tightly constrained:
RTS servers should only receive requests from local clients
(known through configuration) or adjacent RTS servers
(known through BGP advertisements), and so network fil-
tering can discard all other traffic to RTS servers. This can
be conveniently implemented by VPs. One could also use
quasi-static filtering rules installed at routers, in the same
way that communication between BGP routers is protected
today. This prevents attackers from blocking the RTS chan-
nel except in their immediate vicinity and provides “defence
in depth”: even if attackers compromise hosts, routers, VPs,
or RTS servers themselves, the next filtering point along the
forwarding path will limit the damage.

Incremental Deployment

A key motivation for our work is to enable organizations
to cooperate in addressing DoS attacks, without relying on
any new services to be provided by their ISPs. For example,
suppose Intel and the University of Washington wanted to
work together to ensure that no hosts in either organization
participated in DoS attacks against the other. By setting up
an RTS server and a VP at the ingress/egress router to each
organization, and by advertising their participation through
BGP, the two domains could guarantee that all traffic be-
tween them was validated. The edge VPs in this case would
perform a network translation function, converting normal
TCP connection requests into a token request to the remote
RTS server. As an edge device, we believe a Gb/s VP can be
assembled from commodity hardware combined with fast
packet processing software [9].

Additional organizations could join simply by advertis-
ing their RTS servers, enabling them to control any un-
wanted traffic sourced at the participating sites. Since uni-
versities are responsible for a significant fraction of the In-
ternet’s DoS traffic as well as much of its legitimate new
application traffic, we expect that they would be motivated
to join simply to be good citizens; they may also have an
economic incentive to do so to reduce bandwidth costs. Es-
sentially, our proposal provides a mechanism for an orga-
nization to program the reverse firewall at the organization
sending it traffic.

5



This can all be accomplished without any explicit co-
operation from ISPs or router hardware changes. Once a
significant number of sources of DoS traffic have deployed
RTS servers and VPs, we believe the network effect will en-
gage, providing an incentive for commercial organizations
and ISPs to join simply to reduce the volume of DoS traffic
reaching their sites.

5 Discussion

We feel the scheme outlined above provides a convincing
argument for the feasibility of deploy explicit authorization
in the Internet. Moreover, while comprehensively address-
ing the DoS problem, the use of capabilities for sending
packets also opens up several interesting research areas.

First, note that a destination can vary the overhead of au-
thorization depending on the level of trust in a packet source
by choosing the n and t parameters (the number of packets
and time window per capability). In addition, after initial
setup the destination can send the source r capabilities in a
batch by simply sending it hK−r; the source can compute
the hash in the forwards direction to recover the interme-
diate capabilities. Highly trusted clients can be efficiently
granted large transmit windows, whereas strangers can be
treated cautiously.

Secondly, tokens provide a coarse but interesting form of
service differentiation: by altering the number of capabil-
ities granted in advance to the source, the destination ef-
fectively controls the size of the permission “window” that
limits the source. For example, an e-commerce site might
allow minimal access to clients who have not registered.
Furthermore the initial capability can be accompanied by
other parameters such as a fine-grained token bucket. This
provides an easy, low-cost way to introduce QoS enforce-
ment into the network on the back of a scheme with imme-
diate tangible benefits, i.e. DoS prevention.

This can be further extended to protect links inside the
network from being flooded. Because RTS servers mediate
token communication between sources and destinations, an
ISP operating an RTS server can control resource usage of
any bottleneck links in the ISP. As in the pushback pro-
posal [11], we envision this as a coarse-grained mechanism
to prevent nodes from persistently sending at too high a rate,
not one appropriate for implementing fine-grained conges-
tion control. If a connection refuses to obey congestion sig-
nals, the RTS server can disable future traffic by waiting for
the token to expire and refusing to grant additional tokens.
To control new connections, an RTS server can request the
destination use shorter hash chains, or failing that, refuse to
forward token requests for specific source-destination pairs.
This, and many other details such route aggregation, route
changes and failures, granularity issues, and service differ-
entiation, remain to be worked out as we make our proposal
more concrete.

Finally, the Internet is not the only large-scale network
subject to DoS attacks. The ATM standard, for example,
has no way to manage persistent floods of circuit setup re-

quests (for an alternative, see [10]); ATM DoS floods have
not been a problem to date because most ATM networks
are operated by a single organization with tight operational
controls. As we repeatedly discover whenever there is a nat-
ural disaster, the telephone network has no effective mech-
anisms to deal with call floods into a local area and we ex-
pect the same issues with SIP. While we cast our work in an
Internet context, it is broadly at attempt to define the struc-
tures needed for any scalable network to be DoS-resistant.

References
[1] D. Andersen. Mayday: Distributed Filtering for Internet Services. In

Proc. of USITS 2003.
[2] P. Barford, J. Kline, D. Plonka, and A. Ron. A Signal Analysis of

Network Traffic Anomalies. In Proc. Internet Measurement Work-
shop 2002.

[3] S. Bellovin. ICMP Traceback Messages. Internet
Draft: http://www.research.att.com/~smb/papers/
draft-bellovin-itrace-00.txt, 2000.

[4] M. Blumenthal and D. Clark. Rethinking the design of the Internet:
The end to end arguments vs. the brave new world. In B. Com-
paine and S. Greenstein, editors, Communications Policy in Transi-
tion: The Internet and Beyond. MIT Press, 2001.

[5] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating De-
nial of Service Attacks that Employ IP Source Address Spoofing.
Internet RFC 2827, 2000.

[6] A. Hussain, J. Heidemann, and C. Papadopolous. A Framework for
Classifying Denial of Service Attacks. In Proc. ACM SIGCOMM
2003.

[7] J. Ioannidis and S. Bellovin. Implementing Pushback: Router-Based
Defense Against DoS Attacks. In Network and Distributed System
Security Symposium, 2002.

[8] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Overlay
Services. In Proc. ACM SIGCOMM 2002.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The click modular router. ACM Transactions on Computer Systems,
18(3):263–297, Aug. 2000.

[10] H. Kung and R. Morris. Credit-Based Flow Control for ATM Net-
works. IEEE Network, 9(2), March 1995.

[11] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker. Controlling High Bandwidth Aggregates in the Network.
Computer Communications Review, 32(3), July 2002.

[12] Mazu Networks. Self-Optimizing Network Traffic Security. http:
//www.mazunetworks.com/nts.html, 2003.

[13] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. The Spread of the Sapphire/Slammer Worm. http:
//www.cs.berkeley.edu/~nweaver/sapphire/, Jan. 2003.

[14] D. Moore, C. Shannon, and J. Brown. Code Red: A Case Study
on the Spread and Victims of an Internet Worm. In Proc. Internet
Measurement Workshop 2002.

[15] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet quaran-
tine: Requirements for containing self-propagating code. In Proc.
IEEE Infocom 2003.

[16] D. Moore, G. Voelker, and S. Savage. Inferring Internet Denial of
Service Activity. In Proc. Usenix Security Symposium 2001.

[17] K. Park and H. Lee. On the Effectiveness of Route-Based Packet
Filtering for Distributed DoS Attack Prevention in Power-Law Inter-
nets. In Proc. ACM SIGCOMM 2001.

[18] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A Blueprint
for Introducing Disruptive Technology into the Internet. In Proc.
HotNets-I, 2002.

[19] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Net-
work Support for IP Traceback. In Proc. ACM SIGCOMM 2000.

[20] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio,
S. Kent, and W. Strayer. Hash-Based IP Traceback. In Proc. ACM
SIGCOMM 2001.

[21] D. Song and A. Perrig. Advance and Authenticated Marking
Schemes for IP Traceback. In Proc. IEEE Infocom 2001.

[22] R. Stone. CenterTrack: An IP Overlay Network for Tracking DoS
Floods. In Proc. Usenix Security Symposium 2000.

[23] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP:
A New Resource Reservation Protocol. IEEE Network, Sept. 1993.

6


