
Linkage in the Nemesis Single Address Space
Operating System

T i m o t h y R o s c o e

C o m p u t e r L a b o r a t o r y ,

U n i v e r s i t y o f C a m b r i d g e

M a y 9, 1994

Abstract

The recent interest in single address space operating systems has resulted in a number of papers,
most of which gloss over the issues of linking programs to run in multiple protection domains. Some
of the confusion about 64-bit address spaces is due to the almost pervasive use of UNIX and UNIX-
like operating systems (such as Mach, Chorus and Amoeba) and languages with poor enforcement of
abstraction like C and C++.

This paper describes some of the linkage structure of Nemesis, a multi-service operating system being
developed as part of the Pegasus project. Nemesis provides a simple and efficient mechanism for program
linkage which provides rich sharing of text at a level of individual object classes.

1 M o t i v a t i o n a n d A i m s

Nemesis is a multi-service operating system being developed as part of the Pegasus E S P R I T Project
([Leslie93]). Nemesis is designed to allow sharing of da ta and text with as little overhead as possible
for the efficient processing of continuous media data, while reducing quality-of-service crosstalk between
application domains by moving as much functionality as possible into the application domains. This is in
contrast to microkernel approaches where the functionality has been moved into server processes [Roscoe94] .
This coupled with the use of DEC Alpha machines as one of the target architectures led to the idea of using
one address space throughout the operating system.

This paper does not a t t empt to describe novel features of Nemesis in the area of resource management .
Instead it examines the method of linking and loading programs and system components which we use
to support the rest of the system. The fundamental concepts in single address space operat ing systems
are not new: 0S /360 ([Wit t66]) and Cedar ([Swinehar t86]) are two very different examples f rom some
t ime ago. Similarly there are almost no issues in naming objects within a single operat ing system which
are not addressed fairly comprehensively in [Sal tzer79] . Within the Pegasus Project the aim is to build
an operat ing system to support a Quality-of-Service paradigm for resource allocation and per-application
resource management . With this in mind, we are applying the single address space idea as an enabling
technology for handling a variety of different multimedia-related application types efficiently. We do not

believe 64-bit address spaces are a panacea, and our motivation for building such a system differs from
many other researchers in the field (for example [Wi lk lnson92] , [Heiser93] and [Assenmacher94])~ In
particular:

• The address space is not distributed. Distributed shared virtual memory does not scale and obscures too
many performance issues compared with Remote Procedure Call. RPC with a suitable p rogramming
model such as that described in [Birrel193] offers bet ter abstract ion and makes remote operations

48

explicit when necessary. Coherent distributed memory, if required, can in any case be implemented
in user space on a per-segment basis (the Nemesis virtual memory system runs largely as a shared
library).

Persistent address-space objects are not an aim of the project. Again, user-level support for persistence
can be provided in Nemesis as part of an application's virtual memory system.

We are not interested in providing backward compatibil i ty with operating systems with different
paradigms. This can be done properly with a shared library and some compiler technology, and
we do not consider it worthwhile to bend our operating system architecture unnecessarily. Interest-
ingly, UNIX emulat ion turns out to be quite easy in our system desl~ite it not having been a design
requirement.

2 Single Address Space Issues

The recent resurgence of interest in single address space systems has caused people to rediscover many
naming issues which have been obscured by the almost ubiquitous use of C, C + + and UNIX-like operating
systems.

In particular, being able to assume that a program has the whole address space to itself means that in C
or C + + the execution environment for any procedure call is generally the sum total of da ta in the program.
Aside from encouraging poor programming abstraction, this is disastrous in a single address space.

The naive solution to this problem is to simulate per-process address spaces by keeping around a pointer
(sometimes in a dedicated processor register) to a per-process da ta segment which contains most of the
program state. Apar t f rom being a throwback to the earliest days of mult iprogramming, this has a number
of disadvantages:

• The granulari ty of code sharing is very coarse: all the code constituting a program must be aware of
the structure of the da ta segment. This means in practice that either you can only share text at the
level of entire program binaries (as in UNIX), or every component of loaded code must assume the
same format of da ta segment, which is absurd.

• To regain one of the main advantages of a single address space, namely that one can pass pointers
between processes, there have to be two classes of pointers: both conventional absolute addresses and
offsets from the start of the da ta segment ([Wilkinson93]) . This is unacceptable.

Clearly a bet ter approach is required. The problem is really only one of explicitly specifying the calling
environment to a procedure.

3 I n t e r f a c e s

At an early stage in the Pegasus project it was decided to define all interface types I in the system in an
interface definition language which came to be known as Middl. While aiding system development this has
another benefit: it natural ly leads to a model of programming where an invocation across an interface passes
a reference to the interface as an argument. The interface structure in memory contains a reference to state
unavailable to the client. This state together with the other arguments to the call constitute the complete
calling environment. This device is known as a closure. The style of programming is known as object-based.

A closure is a pair of pointers; one points to some state record, the other to a method table within a
module (see figure 1). Since interfaces are typed, the format of the method table can be derived from the

1 In N e m e s i s , a n interface is a n i n s t a n c e of a p a r t i c u l a r interface type.

49

pointer to ~ , interface I

closure

Text and read-only
data implementing

object

J
method suite

per-
instance

state

Figure 1: Interface data structures

interface type specification. The state record is opaque to any client of the interface; it is only manipulated
by code within the module. Any call across an interface adheres to a particular calling convention, and must
pass the closure as the first argument. Thus the complete environment for the call is passed as arguments.

This technique solves the problem of identifying the calling environment: it is the state in registers
and that accessible on the call stack or via pointers contained therein. All mutable state in a domain
is encapsulated behind interfaces instantiated at runtime. In some ways our system is similar to Opal
([Chase92]) , although the use of Middl allows a rather more flexible computational model (for example, we
can have multiple interfaces attached to object state, efficient cross-module exception handling, and a cleaner
syntax for multiple return values). Nemesis is also a native operating system, rather than one running over
another operating system such as Mach.

Writing programs in this manner is not terribly alien; closures are after all the mechanism used by many
object-oriented languages. As a result, the performance penalty due to the indirection involved is no more
than virtual function lookup in C++ , for example.

By making closures explicit we gain modularity in the system and at the same time do away with the
many of the problems of addressing state in the system. We can share code at a fine level of granularity and
freely pass real pointers between components of the system with compile-time type checking.

At a pinch, we can support existing UNIX-oriented C and C + + programs in the same way that othe, r
operating systems do: by linking the program with a set of stub functions with interfaces to our libraries
and running the whole thing in a single call environment.

4 L i n k i n g a n d L o a d i n g

Like many systems, Nemesis separates the notions of linking and loading: linking is the process of resolving
internal references within a chunk of object code, while loading is the business of relocating it and installing
it in the address space of a Nemesis system. The model of linking and loading adopted in Nemesis needed

50

to:

• solve the addressing issues inherent in a single address space operating system.

• deliver high performance at runtime, and

• allow fine-grained sharing of program text between protection domains.

Our solution is centred around the concept of modules. A Nemesis module is a self-contained chunk of code.
It has no unresolved symbols or mutable data, and when loaded is potentially executable by any domain.
All code in Nemesis (with the exception of the minimal assembler kernel) is part of some module.

The resulting programming model is one of "objects" 2 which export multiple interfaces, each of which is
identified by an address. Every call across an interface (in effect, any call across a module boundary) must
pass the interface address as a closure. Objects p e r se don't have types; their interfaces do. In this way the
notions of type and class are separated: the type of an interface is the set of operations it supports, and the
class of an object is its implementation, which depends on the module that implements it. One way to think
about modules is as CLU clusters ([Liskov81]), except that modules can have no "own" variables since they
are shared read-only between all domains.

We have found programming in this way is actually quite natural in stylised C or C++ , especially with
Middl compiler tools to generate the boilerplate. There is also design work under way to produce a language
which compiles naturally down to C, but which maps very closely onto our computational model and provides
more type safety and compile-time protection than C + + or C.

5 R u n t i m e i s s u e s

Because we expect to support a wide variety of different policies for scheduling, paging, etc. the idea of a
common, ubiquitous runtime is not applicable in the operating system. Thus there is a problem of how to
create objects and interfaces at the start of day-- for example we can't do the equivalent of C + + new since
there is no notion of where the heap state is.

Interfaces which are inherently stateless present no problem: a closure with a null state pointer can
already be executed in any domain. Thus further objects can be created by explicitly passing in closures
which implement the functions normally provided by a runtime system, with greater control over the resource
tradeoffs used (such as designating a heap to allocate storage from). A typical object constructor takes a set
of interfaces as arguments (possibly with some additional parameters) and returns all the interfaces exported
by the new object. The idiom has proved so useful that we are considering giving it language-level syntax.
Most modules are built with only one externally visible symbol, namely the closure for a constructing objects
of the class that the module implements (see figure 2). The address of this interface is registered with a
Nemesis name service when the module is loaded into the system.

Starting up an application domain requires some initial state to be setup, though in practice surprisingly
little is required. Domains are started by a Nemesis service called the Domain Manager, which instantiates
an initial set of interfaces. These include a memory protection domain to run the application in, a basic
memory allocation heap and communication channels to a name server and the inter-domain communication
binder.

These interfaces encapsulate all the mutable state required by an application when it starts up, and are
passed as parameters to the domain entry point. This is a stateless closure within a module which then
instantiates the rest of a domain's paraphernalia (scheduler, language run-time, application-specific state,
etc.).

2 f o r w a n t o f a b e t t e r w o r d ,

51

Pointer to - -

constructor e -
closure

Interface 1

.

m s 0 -

~ / Module Code s t / \

Module
Interface

method suite #2 t method suite #1

per-
instance

state

text and
read-only data
shared between

/ domains

~ p2

Mterface 2

Figure 2: A module implementing an object with two interfaces

6 A C o n c r e t e E x a m p l e

Consider a body of code to implement a hash table. A programmer's interface to the table might be specified
in Middl as follows3:

HashTable : INTERFACE =

BEGIN

Enter : PROC [n : INTEGER, key : STRING]

RETURNS [] ;

[...]

END.

The Middl compiler would generate C defining the following data structures:

struct HashTable_op {

void (*Enter)(struct HashTable_cl *self, int32 n, char *key);

3This is a considerably simplified specification; in particular many features of a real interface type (such as supertypes,
exceptions, etc) have been omitted for clarity.

52

};

struct HashTable_cl {
struct HashTable_op *ms; /* ptr to method suite */
void *st; /* ptr to state */

};

An instance of the hash table would be identified by a pointer to a HashTable_cl structure. This structure 's
m s pointer would point to a constant HashTable_ras structure, whose fields in turn would point to the code
implementing the table. A method invocation in C might would look like:

hi->ms->Enter(hi, 10, "Token") ;

- -whe re h t is a pointer to a Hash Table closure 4.

The code implementing the hash table might reside in a module called HTMod. This would include the
code for the methods, the method suite struct, and a further method suite and closure (with null s tate
pointer) for the following interface:

HTMod : INTERFACE =

NEEDS HashTable ;
NEEDS Heap;

BEGIN

New : PROC [h : IREF Heap]
RETURNS [ht : IREF HashTable];

END

(To create a Hash Table we need to supply a closure for a Heap object, and we are returned a closure to the

newly created hash table)

The only externally visible symbol in the module would be the HTMod closure The address of this struct
is registered with the operating system's name server when the module is loaded The code for the New
method of the HTNod interface is completely stateless, thus it can be executed in any domain

7 P e r v a s i v e I n t e r f a c e s

It becomes very clear that certain interfaces within an application are used in almost all parts of the program.
These include to some extent language support functions (such as those found in the C, C + + or Modula-
3 runt ime libraries). More important , however, are those interfaces which are inherently pervasive: these
include the current thread, the user-level scheduler, and the minimal kernel. These are still notionally passed
as call arguments, though in practice their use makes them seem more like part of the application's top-level
context. It seems sensible to produce a convention (or a number of different conventions) whereby a well-
defined set of interface references are passed implicitly with every procedure call. The implementat ion of
this can then by optimised, for example by keeping the address of a record of these interfaces in a processor
register. It is impor tan t to note the differences between this optimisation and the da ta segment pointer
approach to text sharing described in section 2.

Firstly, only a small set of interface references are being kept. The use of these interfaces is so ubiquitous
that they would be passed as arguments to every call in any case, or else copies of them would be maintained
in many interface state records. In contrast, the da ta segment register approach keeps pret ty much all the
program state in one place, in a format which is highly application specific.

4 In practice syntactic sugar would be laid over this by ~ preprocessor tool.

53

Secondly, what are being kept are still interfaces: their types are defined in Middl and the complete set of
them available is "written on the wall" in the system for all to see. They represent an abstraction boundary,
rather than being raw data.

Thirdly, they are there for convenience only. The basic philosophy remains the same and modules may
choose to ignore the presence of pervasives. In particular, the low levels of the operating system do not use
them at all and pass all interfaces explicitly.

One useful side effect of this is that standard components of a program can be replaced at runtime. It is
even possible to instantiate a set of modules implementing a program in an entirely "caged" environment,
where even the operating system is being emulated, while other instantiations of the same program sharing
the same text run "native". This has obvious uses for debugging purposes, and is a considerably cleaner
approach than linking with debugging libraries.

8 H i g h e r - l e v e l N a m i n g

Machine addresses provide unique identifiers for interfaces within one machine, but a higher-level naming
scheme is required for several reasons, for instance:

• We want to refer to entities in distributed systems, which have rather different naming requirements.

* On a single machine, programs do not know addresses of other components when they are linked.
These must be determined using other names at load time and run time.

• Human-readable names are required for users, managers configuring the system or examining it re-
motely, and programmers building and debugging it.

The impor tant thing to realise is that these naming issues are completely orthogonal to the idea of a single
address space, and so almost any existing name space scheme can be used. Our approach is currently based
on a directed graph of contexts referred to with pathnames, together with a simplified version of the ANSA
Trader 's constraint language ([ANSA92]) . This allows us a lot of expressive power in the name space
when we need it (and extends naturally to the distributed case), but in well-known contexts with few or :no
constraints name lookup can be extremely fast.

9 C o n c l u s i o n

To take full advantage of a single address space paradigm when building an operating system does not need
any radicMly new ideas, but does require that one steps back from the UNIX/C mentali ty and considers
more carefully what is really going on.

We have presented a system which provides efficient, rich sharing of text and data within a machine and
provides a nice computat ional model which is quite natural to programmers used to an object based style. It
provides type safety and flexible dynamic loading. We are using this as a means of constructing an operating
system designed to support the resource demands of distributed multimedia applications.

R e f e r e n c e s

[ANSA92] Architecture Projects Management Limited, Poseidon House, Castle Park, Cambridge,
CB3 0RD, UK. ANSAware ~.0 Application Programmer's Guide, March 1992. Document
RM.102.00. (pT)

54

[Assenmacher94]

[Bayer79]

[Birrel193]

[Chase92]

[Heiser93]

[Leslie93]

[Liskov81]

[Roscoe94]

[Saltzer79]

[Swinehart86]

[Wilkinson92]

[Wilkinson93]

[Witt66]

H. Assenmacher, T. Breitbach, P. Buhler, V. H/ibsch, and R. Schwarz. The PANDA
System Architecture--A Pico-Kernel Approach. Technical Report, University of Kaiser-
slautern Department of Computer Science, P.O. box 3049, 67653 Kaiserslautern, Ger-
many, 1994. Available via ftp from drei.informatik.uni-kl.de:/pub/panda. (p 1)

R. Bayer, R. M. Graham, and G. Seegmuller, editors. Operating Systems: an Advanced
Course, volmne 60 of LNCS. Springer-Verlag, 1979. (p8)

Andrew Birrell, Greg Nelson, Susan Owicki, and Ted Wobber. Network Objects. Proceed-
ings of the 14th ACM SIGOPS Symposium on Operating Systems Principles, Operating
Systems Review, 27(5):217-230, December 1993. (pl)

Jeffrey S. Chase, Henry M. Levy, Edward D. Lazowska, and Miche Baker-Harvey.
Lightweight Shared Objects in a 64-Bit Operating System. In Proceedings of 7th OOP-
SLA Conference, volume 27 of ACM SIGPLAN Notices, pages 397-413, October 1992.
(p3)

Gernot Heiser, Kevin Elphinstone, Stephen Russell, and Jerry Vochteloo. Mungi: A
Distributed Single Address-Space Operating System. Technical Report 9314, School of
Computer Science and Engineering, The University of New South Wales, November
1993. (p 1)

I. M. Leslie, D. R. McAuley, and S. J. Mullender. Pegasus -- Operating System Support
for Distributed Multimedia Systems. ACM Operating Systems Review, 27(1):69-78,
January 1993. (pl)

Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert
Scheifler, and Alan Snyder. CLU Reference Manual, volume 114 of LNCS. Springer-
Verlag, 1981. (p4)

Timothy Roscoe. The Structure of a Multi-Service Operating System. PhD thesis,
University of Cambridge Computer Laboratory, 1994. In preparation. (p 1)

J. H. Saltzer. Naming and Binding of Objects. In Bayer et al. [Bayer79], chapter 3.A,
pages 100-208. (p 1)

D. Swinehart, P. Zellweger, R. Beach, and R. Hagemann. A Structural View of the Cedar
Programming Environment. Technical Report CSL-86-1, Xerox Corporation, Palo Alto
Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304, June 1986. (p 1)

T. Wilkinson, T. Stiemerling, P. Osmon, A Saulsbury, and P. Kelly. Angel: A proposed
multiprocessor operating system kernel. Technical Report TCU/CS/1992/10, Depart-
ment of Computer Science, City University, London, 1992. (p 1)

Tim Wilkinson, Ashley Saulsbury, Tom Stiemerling, and Kevin Murray. Compiling
for a 64-bit Single Address Space Architecture. Technical Report TCU/SARC/1993/1,
Systems Architecture Research Centre, City University, London, March 1993. (p 2)

B. I. Witt. The Functional Structure of 0S/360 Part II: Job and Task Management.
IBM Systems Journal, 5(1):12-29, 1966. (pl)

55

