Transaction-based Charging in Mnemosyne: a
Peer-to-Peer Steganographic Storage System

Timothy Roscoe! and Steven Hand?

! Intel Research, 2150 Shattuck Ave Suite 1300, Berkeley, CA 94704, USA
troscoe@intel-research.net
? University of Cambridge Computer Laboratory, Cambridge, CB3 0FD, UK

steven.hand@cl.cam.ac.uk

Abstract. Mnemosyne is a peer-to-peer steganographic storage system:
one in which the existence of a user’s files cannot be verified without
a key. This paper applies the techniques used in Mnemosyne—erasure
codes and anonymous block writing—to move most of the administrative
overhead of a commercial storage service over to the client, resulting in
cost savings for the service provider.

The contribution of this paper is to present a radically alternative way of
charging for storage services. In place of renting some amount of space
for some period of time, systems like Mnemosyne allow more flexible
billing models closer to those proposed for network bandwidth, includ-
ing versions of congestion pricing. We show how a reliable, commercial
storage service using is feasible, and examine the details of the tradeoff
it offers compared with conventional storage services.

1 Introduction

This paper describes a novel paradigm for a distributed storage service built over
a peer-to-peer network. The benefits of the approach are extreme simplicity of
operation with compared with traditional storage services.

Several current research efforts are building Internet-scale object storage sys-
tems by addressing the problem of distributing the functionality of an object
store over a peer-to-peer network. This results in self-organising distributed ob-
ject storage that provides high availability in the face of node failure or network
partition. However, such systems share with traditional, more centralised storage
systems the complexity that comes from keeping track of large numbers of users
and multiplexing storage space among them. Billing for storage adds even more
complexity (and administrative overhead) to the system.

The original goal for Mnemosyne?, described in [1], was to provide extremely
high levels of privacy for low-volume, high-value data. As part of this, instead of
maintaining space allocation at the server, Mnemosyne holds no information at
the servers as to which blocks are in use or by whom, and instead relies solely
on erasure codes to prevent each user’s data being destroyed by the others’
activities.

3 Pronounced ne moz’ne.

In this paper, we investigate the feasibility of this approach applied to general
distributed storage. In particular we are interested in the costs and benefits of
the Mnemosyne approach over traditional storage service models. We show that
Mnemosyne in combination with charging for write transactions, rather than
storage space per se, moves most of the complexity of storage service into the
client software, resulting in extreme simplicity (and therefore low administrative
overhead) for service providers.

The rest of this paper is structured as follows. In section 2 we briefly review
the peer-to-peer application space and position Mnemosyne in this space, both as
a highly secure system and as the commercial storage and messaging service we
describe here. This latter application of Mnemosyne sidesteps a number of serious
design challenges that have recently come to light with peer-to-peer systems.

In section 3 we give a functional overview of Mnemosyne, including a brief
description of the current implementation.

In section 4 we use simulation to investigate what kinds of integrity guaran-
tees Mnemosyne is capable of delivering, and what this integrity costs in extra
disk storage over conventional systems. In particular, we derive a measure of the
“effective capacity” of a Mnemosyne system, which we use to motivate the next
section.

Section 5 explores the implications of the findings in section 4 for running a
commercial peer-to-peer storage service based on Mnemosyne. We give several
different models of charging, and show how what calculations clients must make
to use the system, and how service providers decide how much to provision their
system for a given effective capacity.

Finally, section 6 concludes with a summary of the tradeoff that Mnemosyne
offers.

2 Context & Related Work

Perhaps the defining characteristic of peer-to-peer systems is their ability to self-
organize — new nodes can join and leave the network without disruption or the
need for central coordination or control.

This self-organisation and absence of central control has been exploited to
produce systems with strong properties of anonymity and resistance to censor-
ship, such as Freenet [2], FreeHaven [3], and Publius [4].

Research peer-to-peer systems have also appeared which address the scala-
bility problems with early file sharing networks like Gnutella [5]. Projects like
Tapestry [6], CAN [7], Chord [8] and Pastry [9] aim to provide robust and highly
available generic distributed hash table (DHT) functionality; that is, they logi-
cally provide an operation lookup(key) which maps from an opaque bit string
to a node address. In practice, most implementations provide “route message to
key” functionality which can then be used to build a variety of applications, for
example Oceanstore [10], Bayeux [11], CFS [12], PAST [13], and SCRIBE [14].

The original motivation for Mnemosyne involved a combination of privacy
and storage service. Mnemosyne is a distributed steganographic file system. A

steganographic file system [15] has the property that it gives a user strong pro-
tection against being compelled to disclose (all) its contents. Whereas in a cryp-
tographic file system, attackers not in possession of the secret are unable to
acquire the contents of files, in a steganographic system they cannot even gain
information about whether a given file is present or not. Mnemosyne achieves
this property by spreading data pseudo-randomly throughout a peer-to-peer net-
work.

Recently, a combination of deployment experience and research has pointed
out a number of vulnerabilities of peer-to-peer systems, both the adversarial
attacks and pathological (but common) traffic and usage patterns. For example:

— Load Skew: most P2P schemes assume all participants are equal (i.e. peers)
yet studies have shown that node capabilities and user behaviour vary greatly
[16,17]. This negates the basic design assumptions and requires new, non-
uniform solutions, such as supernodes in Gnutella [18].

— Untrustworthy Peers: since anyone can join at any time, these schemes are
vulnerable to certain denial of service attacks: a ‘bad’ peer can interfere
with the lookup or search processes yet typically cannot easily be identified
or avoided. Recent schemes acknowledge this problem and hope to address
it by using byzantine fault-tolerant schemes.

— ‘Sybil’” Attacks: identity replication attacks [19] illustrate that even byzantine
fault-tolerant protocols cannot adequately operate in a completely free-for-
all environment.

We observe that these problems can be avoided by limiting those who may
participate in the peer-to-peer network, either by limiting the system to a closed
environment (such as Google’s search engine implementation) or by system de-
sign (such as Farsite [19] or Oceanstore’s inner ring [10]).

This paper discusses the issues in using Mnemosyne to provide a commercial
distributed storage service, for both long-term applications (such as archival stor-
age) and short-term storage needs (such as secure messaging applications). For
this scenario, we consider Mnemosyne nodes to be “servers” and under the con-
trol of either one service provider, or a group of reputable, federated providers (as
is the case with BGP peers in the Internet, for example). In contrast, Mnemosyne
“clients” are users of the system and do not participate in the peer-to-peer net-
work.

This division is useful for many reasons: servers are readily identifiable (e.g.
via a certificate) and so Sybil attacks are avoided; servers are at least somewhat
trusted, and so byzantine fault tolerance techniques can be applied, and servers
are stable and can be dimensioned so that load skew and server “churn” is not
an issue.

Clients are still part of the overall system, and may use the same or similar
protocols as servers. In general, clients contact any server and ask it to perform
the relevant operation (lookup, routing, etc) as its proxy. The results, if any,
are returned by the same server. Clients do not directly communicate with each
other.

This generalised many-clients/many-servers model also allows us to draw a
clear trust boundary within the system: the point of client-server interaction.
As we discuss in section 5, it is where one can use micropayment schemes (e.g.
Chaumian digital cash [20]) to not only pay for the service on a per-transaction
basis but also mitigate denial of service attacks (by making them expensive).

3 A Functional Overview of Mnemosyne

Mnemosyne [1] is a peer-to-peer steganographic storage system built at Sprint
Labs. The principle of steganographic storage, proposed in [15], is that users of
the system who do not have the required key not only are unable to read the
contents of files stored under that key (as with a conventional encrypting file
system), but furthermore are unable to determine the existence of files stored
under that key.

In a multiuser distributed system such as Mnemosyne, this leads to an in-
teresting property: since users cannot know anything about the location of file
blocks stored by other users, it is always possible for them to unwittingly over-
write them; the existence of a file allocation table or list of in-use blocks defeats
the steganographic properties of the system. Instead, Mnemosyne uses redun-
dancy in the form of erasure codes to prevent file data being lost due to the
write activity of other users.

The process by which a user of Mnemosyne stores a vector of bytes in the
system can be broken down into four phases: dispersal, encryption, location, and
distribution, which we describe in turn.

Dispersal: In the dispersal phase, the data is encoded to make it robust in the
face of losses of blocks. Our implementation uses Rabin’s Information Dispersal
Algorithm [21] in the field GF(2'%) to transform n blocks of data into m > n
blocks, any n of which suffice to recover the original data. In our implementation,
m is typically 5n for file data (as opposed to directories and inodes), the block
size is 1000 bytes, and n is no greater than 32. Files of larger than 32,000 bytes
are handled by chunking. We discuss choices of m and n later on in this paper.

Encryption: The dispersed blocks from the previous step are now encrypted
under the user’s key K. The purpose of this is twofold: firstly for security and
privacy, but secondly for authenticity. This is especially important in a system
like Mnemosyne where we expect significant numbers of blocks to be overwritten
by other users in normal usage. Thus we need a mechanism by which a user can
determine whether a block subsequently retrieved from the network is really
the one originally written. Since this check must be made before the data is
reconstituted by reversing the dispersal step, encryption is done after dispersal.

Mnemosyne as currently implemented uses the AES algorithm in Offset Code
Book (OCB) mode [22] to provide security and a 16-byte Message Authentica-
tion Check in one step. An alternative would be two-pass generic composition

approaches, but OCB makes for easier key management. AES-OCB encryption
of the (padded) dispersed blocks adds 16 bytes of MAC to the message for a
total of 1024 bytes per block.

Location: Mnemosyne achieves its security properties by storing encrypted
data blocks in pseudo-random (and to an adversary, unpredictable) places in
a large virtual network store, which is then mapped onto distributed physical
storage devices. The locations of the encrypted blocks making up a data set
are determined by a sequence of 256-bit values obtained by successively hashing
(using SHA256 in the current implementation) an initial value hg.

The initial value hy depends ultimately on the user’s key K. For file data
itself, hg is generated randomly and stored in an inode; for inodes and directory
blocks, hg is computed by encrypting the pathname or directory name with the
key K and hashing the result.

Distribution: The sequence of 256-bit location identifiers from the previous
step is finally mapped onto physical storage using a peer-to-peer network of
storage nodes, each of which holds a fixed-size physical block store.

For each block to be stored, both the node identifier and the block offset
within the block store are derived from the corresponding location identifier. In
the current implementation of Mnemosyne, the top 160 bits of this identifier are
used to as a node identifier in a Tapestry [6] network. A block to be written
is sent to a randomly selected Tapestry node, which routes the block to the
“surrogate” node for the 160-bit node identifier. The next 20 bits of the location
id are then used as a block number in a 1GB block store.

The node location component of distribution is relatively independent of
the underlying peer-to-peer lookup service employed; while Mnemosyne cur-
rently uses Tapestry [6], any of [7-9] would work just as well. Indeed, since the
Mnemosyne client is not itself a Tapestry node, but communicates with a ran-
domly chosen node using a simple UDP-based protocol, a client could conceivably
use several P2P networks from different storage providers simultaneously. What
we require of the P2P network is deterministic routing of messages tagged with
arbitrary n-bit identifiers to nodes.

The block store at each peer-to-peer node supports only the following two
operations:

— putBlock(blockid, data)
— getBlock(blockid) — data

Note that the block storage nodes themselves need perform no authentication,
encryption, access checking, or block allocation to ensure correct functioning of
the system, though they might for billing purposes. Indeed, a block store may
ignore the above operations entirely: as long as sufficiently many block stores
implement the operations faithfully, users’ data can be recovered.

Retrieval: Data is retrieved from Mnemosyne by the reverse process: given
an initial hash value for the data, a user computes the sequence of location
identifiers and uses it to retrieve at least n “good” blocks (i.e. blocks which pass
the MAC check). Given these, the original data can be recovered by inverting the
IDA. Requests for blocks can proceed in parallel to reduce the effects of network
latency.

3.1 Filing system structures

In [1] we describe one implementation of a per-user filing system over the data
storage and retrieval procedures described above. The filing system uses directo-
ries and inodes to simplify the management of keys and initial hash values, and
also handles versioning of files, a necessity since it data is never actually deleted
from Mnemosyne, but rather decays over time. When retrieving blocks for a file
it is essential that the blocks retrieved all correspond to the latest version of the
file.

3.2 Implementation

A working implementation of Mnemosyne for Linux exists. The client is written
in C and C++, using freely available reference implementations of SHA-256 and
AES-OCB. It provides a command-line interface with operations for key man-
agement, creating and listing directories, and copying files between Mnemosyne
and the Unix file system. A simple block protocol over UDP is used for com-
munication with block servers. The block server is implemented in Java and
runs on Tapestry [6] nodes. Performance is plausible - we can copy files into
Mnemosyne at 80 kilobytes per second, and read them at 160 kilobytes per
second. A principal limiting factor in both cases is our (unoptimised) GF(2'9)
arithmetic implementation.

We hope to make the source code for our implementation available in the
near future.

4 Experimental results: measuring file resiliency

In this section we use simulation to investigate the feasibility of Mnemosyne as a
serious storage service. While analytical results are obtainable for most of what
follows, the simulation results are more useful for giving a feel of how the system
works. Since Mnemosyne relies on extensive redundancy in data encoding, and
overwrites of blocks are part of the normal operation of the system, we define
here two quantities which are of obvious interest when considering whether the
system is practical: efficiency and life expectancy.

4.1 Asymptotic Efficiency and Capacity

We define capacity of a Mnemosyne system as the quantity of (undispersed)
data that can be stored. The efficiency is this capacity, expressed as a fraction

of the total raw disk space available in the system. Since we are dealing with a
multiuser system in which users are generally unaware of each others’ activities,
efficiency is primarily of interest to service providers as part of their provisioning
process: it gives them a handle on how much raw disk space they need to provide.

We first present a naive but intuitive notion of efficiency that we call asymp-
totic efficiency E,4ym. Figure 1 shows the results of repeatedly writing fixed-size
files into a store under different coding schemes. In this, as in all the other re-
sults in this section, files are 5 blocks in size before dispersal and the total size
of the store is 4,000,000 blocks. The simulation keeps track of which files are still
recoverable from the store, that is, those files that still have 5 blocks of their
original data in the store.

45 ; : : .

40 + l
? o ——
‘» 35 |
Q)
£ 30 i
s |
o\o 25 |)‘/ i
~ /
9 y
c 20 N
©
@
5 15+ |
>
Q
= 10 - 1
¢ (10,5) code

Sr (20,5) code

(30,5) code -
0 s . , (40,5) code -
0 200000 400000 600000 800000 1le+06

Time (file writes)

Fig. 1. Writing files into a simulated 4Mblock store.

Figure 1 shows the total number of accessible files, starting with an empty
store. As more files are written, the system reaches a steady state in which writing
each new file, on average, renders one existing file unreadable (by overwriting
one of the five remaining blocks of the victim file). The total amount of data in
accessible files at this limit is the asymptotic capacity Cosymof the store. The
asymptotic efficiency Egeym is this divided by the capacity of the store (4M
blocks).

We can see that Egsym varies with the redundancy used: for a redundancy
factor of 2—a (10,5) code—we can store data equal in size to about 42% of the

store. As we increase the redundancy of the coding, this figure drops to about
27% for a redundancy factor of 8 with a (40,5) code.

50 T T T T T T

S P T
» 40 + T -
o T,
% + ++++++
ks N +++++
9\?/30_ ++++++_
2
k3]
S
g 20 + i
o
Q
9
g
S 10 r b
0
<

0 1 1 1 1 1 1

5 10 15 20 25 30 35 40

Coding (x,5)

Fig. 2. Asymptotic efficiency Egsym of a simulated 4Mblock store.

Figure 2 shows how E,,y,, varies with a larger number of coding schemes.
While there is a maximum at around (12,5), a more important result is that
for redundancy factors between 3 and 8, the asymptotic efficiency of the store
remains at over 25%, a remarkably high figure. This suggests that we have, from
an efficiency standpoint, a fair degree of freedom in choosing our coding scheme.

While E,gym is relatively intuitive measure of store utilisation, it doesn’t
capture anything about how long files can be expected to survive after being
initially written. More precisely, it contains no notion of the distribution of file
lifetimes.

4.2 Life Expectancy

Figure 3 shows the cumulative distribution of file lifetimes. We run the exper-
iment as before, but now each time a file becomes inaccessible, we record the
number of files written between the time when the victim file was first writ-
ten, and the time it is lost. This distribution of file lifetimes is important to
Mnemosyne users because it gives them realistic expectations of how long their
data is likely to be around if it isn’t “refreshed” (rewritten to the store).

0.8 |
>
(&)
c
(]
g 06| |
o
o
=
©
s 04 ¢ |
IS
>
N (5,5) code
02T (10,5) code - A
(20,5) code -
(30,5) code
0 P , (40,5) code ------
0 200000 400000 600000 800000

Lifetime of dead file (in file writes)

Fig. 3. File lifetimes in a simulated 4Mblock store.

For comparison, we have included the (5,5) code in this graph, that is, the
results of writing files with no redundancy at all. This clearly doesn’t constitute
a useful file service: a significant number of files written under this scheme are
completely lost within a small number of subsequent file writes.

For redundant coding schemes, the median file lifetime decreases as the re-
dundancy of the coding increases - the halfway point of the curve moves left
towards the origin. However, the variation in file lifetimes also decreases.

Of primary concern to a client of Mnemosyne is the region of these curves
very close to the z-axis, which is the region where the proportion of files lost is
very low. Figure 4 shows the region between 0 and 0.01% of files. We can see
that for (25,5) and (35,5) coding schemes, the chance that a file will have been
lost from this store after 80,000 other files have been written is less than 0.00001.
In other words, the chances that a file is accessible after 80,000 other files have
been written is better than 99.999%.

Recall that in this simulation we used a store with 4 million blocks, and files
were all 5 blocks in size. 80,000 files therefore corresponds to 400,000 blocks, or
10% of the store size in undispersed data.

It’s clear that this figure of 10% in blocks (rather than files) is valid for other
file sizes and store sizes, as long as files are much smaller than the total store
size (a reasonable assumption in a distributed storage system of this kind). The
implication is that, using a redundancy factor of 5, users can retrieve their files

with 99.999% certainty provided they do it before 10% of the total store capacity
in raw data has been written by other users.

This probability is likely to be better than the probability of disks or machines
failing during a reasonable period, and is unlikely to be a dominant factor in
determining the resilience of a storage service. We discuss below some options
for allowing users to determine how long it takes for 10% of the store size in real
data to be written or, in this case, 50% of the store size in dispersed data to be
overwritten. This latter measure is more significant since this is independent of
any client’s coding scheme, can be directly observed by a service provider, and
also estimated by a 3rd party using sampling techniques, as we discuss below.

0.0001 . . | |
(10,5) code
(15,5) code —---
(25,5) code -
8e.05 | (35.5) code | |
>
(&]
c
(]
3 6e-05 |
g
©
2
©
= 4e-05 |
E !
>
@)
2e-05 |
0 . L R
0 20000 40000 60000 80000 100000

Lifetime of dead file (in file writes)

Fig. 4. Enlarged area of figure 3.

4.3 Effective Capacity and Efficiency

The preceding observations lead to more useful corresponding measures of ca-
pacity and efficiency. For a particular probability of retrieval (say 99.999%), a
file must be retrieved before some amount of the store k blocks of the store have
been has been written to (in our example, 50% of it or 2M blocks). For long
term storage, a given file will need to be rewritten (“refreshed”) each time this
point is reached.

If we consider a store of fixed size where no files are ever discarded, it is clear
that no more than k blocks may be used to store data—when k have been used,
all further writes must be to refresh existing files in the store.

This gives us the notions of effective capacity and efficiency: for a given
redundancy of encoding and retrieval probability, the effective capacity Ceg is
the maximum quantity of raw data that can be written to the store before all
subsequent writes must be refreshes. Ccg is equal to k divided by the redundancy
of the coding scheme used (5 in our example).

The effective efficiency E.g of the store is the ratio of Ceg to the total store
size. On the basis of our simulations, we can say that the effective efficiency of
a Mnemosyne store with 5:1 redundancy and retrieval probability of 99.999% is
about 10%. Our current work includes reproducing this result analytically.

10% effective efficiency (i.e. we need 10 times as much disk as the amount of
data to be stored) is a plausible degree of overprovisioning. Whether this makes
economic sense in practice depends on the ever-changing cost tradeoffs between
disk drives, network bandwidth, maintenance, etc. However, in the next section
we formulate arguments as to why this extra cost in disk space might be more
than compensated for by cost savings in areas like administrative complexity
and billing infrastructure.

5 Economics of Steganographic Storage

In this section, we discuss charging for steganographic storage (understood now
as storage where clients write blocks arbitrarily in a large distributed store).
Mnemosyne as described has a number of important characteristics in this re-
gard.

In Mnemosyne, all filing system structures and policy have been moved into
the client. While our inode-based filing system works well in practice, each user
is free to implement whatever structure they like over the basic block store.
Furthermore, tradeoffs involved in how to encode a file, how often to refresh it,
etc. are decided by the client and not the server. The server in fact doesn’t really
know how much capacity a client is using.

The upside of this is that all the complexity associated with traditional stor-
age services (whether network-attached storage systems providing CIFS and
NFS, or storage-area networks providing raw SCSI logical units, or object-based
storage like Oceanstore) is removed from the server and transferred to the client.
Steganographic storage providers only need to be concerned about overall ca-
pacity planning.

However, charging for such a service cannot therefore be done on the basis of
space used, or time periods over which such space is used, since the servers do
not have access to this information. It is ultimately unreasonable in Mnemosyne
to charge based on the presence of a user’s data block on the system, since no
guarantees are made as to the life expectancy of a single block.

Instead, the natural charging model for Mnemosyne and other steganographic
storage services is to charge individually per write transaction (and, possibly,

read transactions as well). This several additional advantages: there is no longer
any need for a centrally coordinated accounting system to be involved in individ-
ual writes: since each transaction can be treated independently, billing records
can be aggregated and processed later, off-line.

Indeed, note that in Mnemosyne the service provider has no direct need to
know the identity of any client executing a write, as long as their money is good.
Consequently, a digital cash scheme such as [20] not only has potentially desirable
anonymity properties, but can also result in even lower billing overhead.

5.1 The Mnemosyne tradeoff

Of course, it is hard to obtain accurate information for how much of the cost
of running a storage service is due to maintaining file system metadata, user
account details, enforcing space quotas, and billing. This will also vary between
different providers and the different types of storage service offered, and will also
change over time as technology and demand evolve.

However, there does seem to be agreement that this complexity is a significant
cost factor, and this overhead increases if we consider large numbers of users with
(relatively) small storage requirements, rather than the large, corporate-wide
data warehousing applications that current storage providers target.

This is the crucial tradeoff that Mnemosyne offers: additional requirements in
raw disk space, in return for extreme operational simplicity. Whether a Mnemosyne
service makes commercial sense depends on the nature of this tradeoff in each
particular instance. Our contribution in this paper is to present the Mnemosyne
model as a radical alternative to traditional approaches to storage service.

We observe that RAID as a technology for increasing reliability and perfor-
mance offer very little benefit in our case, since Mnemosyne is already spreading
load and redundant data over a much larger set of disks. Using raw disks without
RAID controllers will, on a large scale, offer better global optimisation of both
performance and reliability.

As an additional comment, we would point out that in scenarios where much
disk space would normally be unused (for example, due to static allocation be-
tween users), the tradeoff tips more in Mnemosyne’s favour.

5.2 The Time Constant of a Store

For clients to be able to make effective use of a Mnemosyne store, they need to
know the rate (over time) at which writes to the store happen, expressed as a
fraction of the total size of the store. This allows them to calculate, for their
own desired encoding scheme and retrieval probability, the refresh interval they
need to work to. Providers also need this value in order to perform provisioning,
discussed below.

This value is the time constant, T of the store. It can be understood intuitively
as the time period over which 1/e of the store is written to. In reality 7 is not
constant over time, but changes both as load on the store changes and capacity
is added.

Given this notion of a time constant, we can now discuss how storage providers
and clients make decisions over the service.

5.3 The Provider’s Standpoint

How does a provider of steganographic storage provision and charge for their
storage capacity? The problem is somewhat flexible due to the extra variable of
write rate: if the capacity is small, clients will need to refresh their files more
often, which increases the write rate, which increases the cost to clients of storing
data for long periods. This of course assumes in turn that clients know the rate
of block writes expressed as a fraction of the store capacity.

It will become clear that there are parallels between this problem, and that
of charging and traffic engineering in data networks. We point out some of these
connections below. Several approaches suggest themselves. We outline three
(non-exclusive) options here; they are the subject of ongoing research:

Fixed advertised time constant: The provider advertises a particular time
constant 7'. This 7' then becomes the basis of the contract (explicit or
implied) between clients and provider. The provider needs to ensure that
enough disk space is added to the system to ensure that the “real” time
constant 7 is always greater than 7/. While very simple, this approach has
some parallels with how IP backbone capacity is provisioned today.

Measurement-based provisioning: 3rd-party measurement services can ver-
ify or discover the time constant of a particular storage provider. They would
do this by writing known data into a randomly chosen collection of blocks,
and then observing how rapidly this data becomes overwritten. This market-
based approach allows clients to select storage providers with appropriate
capacity and also encourages storage providers to provision adequately to
remain competitive. Naturally such a scheme requires that unscrupulous
providers cannot or do not give preferential treatment to measurement ser-
vices in an attempt to appear to have better time constants than they really
do. A similar issue exists today with web latency measurement services like
Keynote and content distribution networks.

Congestion pricing for storage: Rather than a fixed charge per transaction,
a provider might charge for a write transaction based on the current instan-
taneous write rate seen by that provider. This has obvious parallels with
the congestion pricing approach to network provisioning [23]. Most of the
proposals related to congestion pricing (such as 3rd party aggregators who
charge a premium in return for carrying the risk of price fluctuations) carry
over to storage in this case.

5.4 The Client’s Standpoint

A client using a Mnemosyne service is interested in ensuring a particular level
of resilience for their data while minimising cost. The time constant 7 of the
store gives, for any encoding scheme, the longest period after which data must

be refreshed to be retrievable with the appropriate probability. Assuming a fixed
transaction cost, the client should then pick an encoding scheme which minimises
the number of writes over a long period within these constraints.

If there are multiple storage services to choose from, the situation becomes a
little more complex. Each will have different time constants and charges, and so
the client should perform the optimisation described above for each service and
pick the cheapest.

6 Conclusions

We have presented Mnemosyne, a distributed storage system based on a peer-
to-peer lookup service. The system holds no metadata whatsoever at storage
nodes (including information about users). Mnemosyne therefore presents a novel
tradeoff: simplicity of operations, maintenance and management in exchange
for disk space. Mnemosyne has been implemented and demonstrated using the
Tapestry routing layer as its lookup service.

This paper has examined the practical considerations for both service providers
and users: service providers must provision their service and charge for it, clients
must implement their desired resiliency tradeoffs, minimise their costs, and cal-
culate when to periodically refresh files. We have shown that for both players,
optimal behaviour depends on the time constant of the store: a measure of how
quickly new data is written to it.

References

1. Steven Hand and Timothy Roscoe. Mnemosyne: Peer-to-Peer Steganographic Stor-
age. In Proceedings of the 1st International Workshop on Peer-to-Peer Systems,
Boston, MA, March 2002.

2. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A
Distributed Anonymous Information Storage and Retrieval System. In Workshop
on Design Issues in Anonymity and Unobservability, pages 46—66, July 2000.

3. Roger Dingledine, Michael J. Freedman, and David Molnar. The Free Haven
Project: Distributed Anonymous Storage Service. In Workshop on Design Issues
in Anonymity and Unobservability, pages 67-95, July 2000.

4. Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor. Publius: A robust,
tamper-evident, censorship-resistant, web publishing system. In Proceeding of the
9th USENIX Security Symposium, pages 59-72, August 2000.

5. F.S. Annexstein, K.A. Berman, and M. Jovanovic. Latency Effects on Reachability
in Large-scale Peer-to-Peer Networks. In Proceedings Thirteenth ACM Symposium
on Parallel Algorithms and Architectures (SPAA), 2001.

6. Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An In-
frastructure for Fault-tolerant Wide-area Location and Routing. Technical Report
UCB//CSD-01-1141, U. C. Berkeley, April 2000.

7. S Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-
Addressable Network. In Proceedings of ACM SIGCOMM 2001, San Diego, Cali-
fornia, USA., August 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In Proceedings of
ACM SIGCOMM 2001, San Diego, California, USA., August 2001.

Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object lo-
cation and routing for large-scale peer-to-peer systems. In Proceedings of the 18th
IFIP/ACM Internation Conference on Distributed Systems Platforms (Middleware
2001), Heidelberg, Germany, November 2001.

John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao. OceanStore: An Architecture for Global-Scale
Persistent Storage. In Proceedings of the Ninth international Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS
2000), November 2000.

S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An Architec-
ture for Scalable and Fault-tolerant Wide-area Data Dissemination. In Proceedings
of the Eleventh International Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV 2001), June 2001.

F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area coopera-
tive storage with CFS. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles, Banff, Canada., October 2001.

Anthony Rowstron and Peter Druschel. Storage management and caching in PAST,
a large scale persistent peer-to-peer storage utility. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles, Banff, Canada., October 2001.
Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel.
SCRIBE: The design of a large-scale event notification infrastructure. In Proceed-
ings of the Third International Workshop on Networked Group Communications
(NGC2001), London, UK, November 2001.

Ross Anderson, Roger Needham, and Adi Shamir. The Steganographic File System.
In IWIH: International Workshop on Information Hiding, 1998.

Matei Ripeanu and Ian Foster. Mapping the Gnutella Network: Macroscopic Prop-
erties of Large-Scale Peer-to-Peer Systems. In Proceedings of the 1st International
Workshop on Peer-to-Peer Systems, Boston, MA, March 2002.

Bryce Wilcox-O’Hearn. Experiences Deploying a Large-Scale Emergent Network.
In Proceedings of the 1st International Workshop on Peer-to-Peer Systems, Boston,
MA, March 2002.

Qin Lv, Sylvia Ratnasamy, and Scott Shenker. Can Heterogeneity Make Gnutella
Scalable? In Proceedings of the 1st International Workshop on Peer-to-Peer Sys-
tems, Boston, MA, March 2002.

John R. Douceur. The Sybil Attack. In Proceedings of the 1st International Work-
shop on Peer-to-Peer Systems, Boston, MA, March 2002.

D. Chaum, A. Fiat, and M. Naor. Untraceable Electronic Cash. In Advances in
Cryptology - CRYPTO ’88 Proceedings, pages 319-327, 1989.

M. Rabin. Efficient dispersal of information for security, load balancing, and fault
tolerance. Communications of the ACM, 36(2):335-348, April 1989.

Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A Block-
Cipher Mode of Operation for Efficient Authenticated Encryption. In Eighth ACM
Conference on Computer and Communications Security (CCS-8). ACM Press, Au-
gust 2001.

Peter Key. Service differentiation: Congestion pricing, brokers and bandwidth
futures. In Proceedings of the Ninth International Workshop on Network and Op-
erating System Support for Digital Audio and Video (NOSSDAV 1999), June 1999.

