
High Throughput Hardware Accelerated CoreSight
Trace Decoding

Matthew Edwin Weingarten
Systems Group, D-INFK,

ETH Zurich
Zurich, Switzerland

matthew.weingarten@inf.ethz.ch

Nora Hossle
Systems Group, D-INFK,

ETH Zurich
Zurich, Switzerland

nora.hossle@inf.ethz.ch

Timothy Roscoe
Systems Group, D-INFK,

ETH Zurich
Zurich, Switzerland
troscoe@inf.ethz.ch

Abstract—A single tracing component embedded into a high-
frequency processor may produce up to 1 GB/s of trace data or
more. These data are vital in debugging, monitoring, verification,
and performance analysis in System-on-chip and heterogeneous
system development. Hardware trace decoders and analyzers
have emerged to support online processing of trace data for
real-time applications. However, the existing hardware trace
decoders designed for the Embedded Trace Macrocell version 4
(ETMv4), a standard feature in most modern ARM processors,
can only process trace data at a maximum rate of 250 MB/s.
This paper proposes an optimized and parallelized trace decoder
for the ETMv4 specification implemented on a Xilinx Ultrascale+
processing up to 1 GB/s of trace data from a single ETM.

Index Terms—Tracing, Coresight, ETM, Decoding, FPGA

I. INTRODUCTION

Runtime traces collected from dedicated hardware compo-
nents are an extremely detailed form of profile data. Such
traces are used for non-invasive debugging to find non-
deterministic bugs [12], verify runtime properties of safety-
critical applications in real-time [14, 7, 6, 10], automated
software testing with native on-device fuzzing [11], and opti-
mize or monitor applications with detailed performance met-
rics [13]. Traces are further integrated into compiler toolchains
to enable optimizations [5, 3]. Given the high volume of
trace data produced by dedicated hardware, usually upwards
of hundreds of MB/s, real-time trace decoders implemented
on FPGAs have emerged to support processing traces online
instead of accruing data in buffers and performing analysis
offline [17, 16, 10].

ARM’s CoreSight subsystem exposes a family of tracing and
debugging components, most prominently the Embedded Trace
Macrocell (ETM) [1], that is tightly coupled to a Processing
Unit (PU) to produce zero-overhead traces. Current real-time
trace decoders either do not support ETMv4 [10, 16] or are
unable to handle the upper range of trace data bandwidth
of high-frequency CPUs [18]. ETMv4 encompasses a major
overhaul of the trace specification over previous versions
and requires a complete redesign of the decoder. The newer
specification also seems to have become the de facto standard
among CPUs since ARM-V8, including the likes of the Cortex-
A, Cortex-R, Cortex-M, the ThunderX-1, and Neoverse series.
As such, a decoder for ETMv4 covers a wide range of ARM
CPUs on the market. However, to the best of our knowledge,

Fig. 1: Volume of trace data produced by an ETM tracing a single Cortex-
A53@1.3 GHz core running different benchmark and ETM configurations.
Simple-loop is a busy-looping application, whereas Complex-loop performs
expensive operations each iteration, loosely representing upper and lower
bounds. Finagle-chirper, lusearch, luindex and mnemonics are part of the
renaissance server-grade benchmark suite representing a set of typical ap-
plications [9].

the highest throughput ETMv4 decoder can handle a minimum
of 125 MB/s and up to 250 MB/s depending on the type of
trace data packets [18]. Critically, this throughput is too low to
cover all use cases and valuable information may be discarded
— even a Cortex-A53 with a modest frequency of 1.3 GHz
can produce 1 GB/s of trace data per core, varying based on
the ETM configurations and the running application (Fig. 1).
Internally, this problem is exacerbated when tracing server-
grade processors such as the ThunderX-1 running at around
2.5 GHz on the Enzian heterogeneous platform [4]. A high-
throughput decoder is necessary to enable rack-scale tracing
for runtime verification [10], or detailed performance profiling
and optimization [15].

Achieving high decoding throughput is non-trivial since
trace data are typically heavily compressed to minimize
bandwidth. As a result, parallelizing the decoding process is
difficult, a fact reflected in prior work where most decoders
can only handle a single trace element per cycle in common
scenarios, heavily throttling the effective throughput.

In this work, we introduce a novel ETMv4 instruction
trace decoder to address the lack of throughput, allowing
for more detailed real-time trace analysis with more ETM

features enabled on high-frequency CPUs. We apply a
trace stream unrolling technique that allows the decoder to
unconditionally process multiple trace elements in the same
clock cycle, no matter the inter-element dependencies caused
by compression. This paper makes the following contributions:

– A novel decoder design for the ETMv4 instruction trace
specification that can handle multiple bytes of trace data
in parallel every cycle at high frequencies. (Section IV)

– An implementation of the decoder on a Xilinx Ultrascale+
xczu5ev-sfvc784-2-i able to process 1 GB/s (4 bytes
each cycle) of trace data with an operating frequency
of 250 MHz while using around 8.4% of the device
resources. (Section V-A)

– A correctness validation of the implementation against
open CoreSight Decoding library (OpenCSD) [8]. (Sec-
tion V-B)

II. RELATED WORK

The initial work on hardware trace decoding for the ETM
and Program Trace Macrocell (PTM) protocol was presented
by Weiss & Lange [16]. Later real-time trace decoders follow a
similar concept as well [10]. This approach involves collecting
trace data in a buffer and employing an evaluation window
to mark the boundaries of trace elements, referred to as
trace packets, within the window. To enhance throughput,
multiple overlapping windows are used (Fig. 2-a). Once the
trace stream is divided into packets, a decoder can begin
decompressing and extracting trace information, starting at a
synchronization packet. Additional decoders can be added to
increase throughput, each starting at a separate synchronization
packet (Fig. 2-b). Weiss & Lange’s decoder is tailored to the
ETMv1 - ETMv3 or the PTM specifications and is not suitable
for ETMv4. Trace packets in the ETMv4 specification may
be of unbounded size and a finite evaluation window cannot
guarantee that a full trace element is contained by the window.
Furthermore, using numerous parallel decoders incurs higher
resource utilization and requires additional trace data to be
stored in buffers while also straining the trace port interface
with extra synchronization packets.

W0

W1

1 2 3 4 5
1 2 3 4 5

Sync
1 2

Sync

d0 d1

(a) (b)
Fig. 2: Multiple overlapping evaluation windows Wi speculatively determine
all trace packet boundaries within each window. Subsequently, decoding units
di start decoding at a synchronization element in parallel.

Zeinolabedin, Partzsch & Mayr introduce a new decoder to
support ETMv4 [18], mainly adding support for dealing with
unbounded packet sizes and decoding the increased number
of packet types in ETMv4. Instead of an evaluation window,
they use a Control Core that analyzes the trace data held
within a small buffer. If two single-byte trace packets appear
in succession, the Control Core decodes them in parallel.
However, if a trace packet is comprised of more than one

Funnels & Buffers

Processing Unit

ETM PMU

Processing Unit

ETM PMU

T
PI

U

BIN BIN

TRC

DEC

Processing Subsystem DecoderTarget Binary

Verifier/Debugger/

Compiler/Monitor

Decoded
Trace Output

Fig. 3: CoreSight component overview and typical trace workflow: Trace data
are produced at a trace source (ETM) and driven to the TPIU through the
trace bus. A trace analyzer processes data from the TPIU in either hardware
or software and integrates the results into a surrounding toolchain.

byte, each payload byte is processed sequentially, making it
impossible to achieve the desired high throughputs.

The decoder introduced in this work can support any trace
packet type or length with consistent parallelization, allowing
for higher throughputs when decoding the ETMv4 specifica-
tion. Multiple decoders can be used in parallel as the decoder
by Weiss & Lange for even further throughput increases to
support bandwidths higher than 1 GB/s, with the tradeoff of
incurring additional resource utilization and buffer space.

III. CORESIGHT TRACING SUBSYSTEM

The CoreSight subsystem is a network of components that
enable the tracing of a system without interfering with the
running application [2]. Typically, each PU has a tightly
coupled tracing unit, in our case, an ETM. The tracing unit
is further connected to other CoreSight components, such as
a Performance Monitoring Unit (PMU) to optionally embed
hardware events like cache misses into the trace stream.

Further components — Fig. 3 illustrates a simplified block-
diagram — like buffers, funnels, and replicators, are present
in the subsystem and are responsible for driving trace data to
a trace sink, commonly a Trace Port Interface Unit (TPIU)
for real-time applications. The TPIU also interleaves source
identifiers and raw trace data into frames to multiplex the
interconnect. A first-layer decoder (L1 decoder) is needed
to extract raw trace streams from frames before a second-
layer decoder (L2 decoder) can decode a raw stream from a
single source individually. This work exclusively discusses L2
decoder design since the L1 decoder is never the bottleneck
and can handle multiple GB/s [18].

A. ETMv4 Instruction Trace Stream Protocol

An ETM instruction trace is a compressed and packet-
based stream. Each packet in the trace stream consists of a
sequence of full bytes and comprises a header followed by a
variable and unbounded number of payload bytes. The ETM
specification has around 45 unique headers [1] and over 400
packet subtypes [18]. The purpose of the trace data is to convey
the sequence of virtual addresses of the instructions executed
on a processor to a trace analyzer. The ETMv4 specification
optionally includes additional details like tracing accurate
processor cycle counts between basic blocks, tracing context

1: 0xFF0000

2: 0xFF0040
3: 0xFF0044
4: 0xFF0048
5: 0xFF004C

6: 0xFF0080
7: 0xFF0084

0xFF0040 -B → 0xFF0040

Atom E

Inst Addr Instruction Trace Addr Registers

CMP
BEQ → 0xFF00C0
ADD
B → 0xFF0080

MV
B → 0xFF0040

Atom N

0xFF0080 0xFF0040

- -

Long Addr

Short Addr

Atom E

Match Addr

Atom E

0xFF0040 0xFF0080

Fig. 4: A sequence of traced instructions alongside their virtual memory
addresses and the corresponding ETM packets. Line 5 will only produce a
Short Address packet with one byte of address data 0x80 and the address
values held in the registers are shifted by one. Similarly, line 7 generates an
Exact Match Address packet since the second address register already
holds the branch target address.

and virtual machine identifiers to associate each instruction
with its execution context, and tracing PMU events.

A trace decoder must decompress the trace data, reconstruct
the program flow, and associate it with any additional infor-
mation encoded by raw traces. For this reason, understanding
the compression scheme and the details of the ETMv4 spec-
ification is critical to designing a high-throughput decoder.
For reasons of brevity, we limit the description of the trace
decoding process in this work to reconstructing the program
flow, but our decoder supports the full specification.

Together, Atom packets and Address packets encode the
program flow. The Atom packet acts as a signpost and is
emitted whenever a program flow-changing instruction (P0
element), is executed. The information carried in an Atom
packet only signals whether a P0 instruction was taken (E)
or not taken (N). The branch target address is sent over the
trace stream separately in the form of an Address packet,
illustrated in Fig. 4. Emitting full addresses over the trace
stream is redundant, therefore the ETM has three internal
address registers storing the last three branch target addresses.
If the address of a jump target shares the most significant
bits with the address already held in the first address register,
the following Address packet will contain only the disparate
least significant bits. When the jump target address matches
one of the addresses in the registers, no address bits are
required, but instead, a single-byte packet pointing to one of
the registers is sent.
Address packets only appear in the stream if the decoder

cannot infer the jump target. We note that the ETM specifi-
cation intends for the trace data to be decoded alongside the
binary, as is typical in debugging environments. With access
to the binary, a decoder can resolve all direct branch targets
without the Address packets. For example, the branch target
of the instruction on line 1 in Fig. 4 is unnecessary since
the address is encoded in the instruction. However, real-time
trace decoders in hardware do not necessarily have access to
the target binary. ETMs have a branch-broadcasting feature
that sends Address packets for every P0 element, allowing

for decoding without the binary at the cost of higher trace
volume. Our current ETM decoder supports only decoding
with the branch-broadcasting feature enabled. Extending the
decoder to work with a copy of the binary in hardware is left
as future work.

The precise output format of a processed stream of trace data
depends on both the ETM configuration and the surrounding
toolchain. Regardless of the configuration,

TABLE I: Decoded trace example
Type Cycle Value
Br 0x004 0xFF0040
Evt 0x010 L1D_CACHE_REFILL
Evt 0x050 Br_MIS_PRED
Br 0x055 0xFF0080
Evt 0x0455 L2D_CACHE_REFILL
Br 0x0460 0xFF0040

this typically includes
a stream of resolved
branch target addresses.
Table I illustrates an
example output stream.
This stream is generated
by the same sequence of
instructions as in Fig. 4,
with cycle-counting and event tracing enabled.1

IV. DECODING THE ETMV4 SPECIFICATION

Decoding the ETMv4 trace can be broken down into two
main tasks: First determining packet boundaries, and second,
decompressing the information encoded in these packets. To
achieve a decoding throughput in the GB range at FPGA
frequencies, multiple bytes of trace data must be decoded in
parallel. However, this directly clashes with the existence of
two types of dependencies inherent to the ETM specification:
Inter-packet and intra-packet dependencies:

a) Packetization: Packets can be either variable-sized,
fixed-sized, or header-only packets. For example, the Short
Address packet p3 in Fig. 5 is a variable-sized packet,
meaning each payload byte contains a continuation bit to
denote whether the current byte is the final byte of the payload.
To determine if byte b9 should be interpreted as a header byte
of a new packet or an additional payload byte of the Short
Address packet, byte b8 must be, at least partially, processed.
Accordingly, bytes b1 ... bn must be decoded sequentially.

b) Compression: A similar scenario presents itself at the
packet level. Observe the Atom packet p2 in Fig. 5. This
packet encodes a jump to a target address. The target address
is determined by the value in the first address register and,
therefore, by a previous packet. Before the Atom packet is
decoded, the address registers of the trace source must be
properly mirrored. As a result, p1 ... pn must be decoded
sequentially.

A. Overview & Key Idea

Considering these dependencies, our approach to achieving
high-throughputs is to decode at the byte level, forego full
repacketization, and mirror the ETM registers after each byte.
The decoder then produces an output once a complete packet is
processed. To achieve high throughput, the bytewise decoding
function is optimized and pipelined such that the decoding
circuit can be applied multiple times every cycle. The key

1Cycle-counting and PMU are encoded into additional packets not shown
in Fig. 4.

Atom E Match Addr Atom E Short Addr80

b6b7

Continuation bit

Atom N Atom E
p3

FF 00 40 Long Addr

b3 b2 b1 b0

p0

Fixed sized packet

A1: 0xFF0040

Variable sized packet

b4b5b8b9b10

p6 p5 p4 p2 p1

Fig. 5: Byte stream b0 . . . b10 representation of packets p0 . . . p6 produced in Fig. 4. The Short Address packet has a continuation bit to mark the last
payload byte, while the Long Address packet has a fixed size known as soon as the header is resolved. The first address register A1 after packet p0, must
be updated before decoding packet p1.

idea is that the trace stream is unrolled, such that the decoding
function can be simultaneously applied to multiple incoming
bytes of the trace stream.

We begin with a brief overview of the byte-wise decoding
function, where we introduce two state components, the stream
state for packet context (repacketization) and the trace state,
in other words, the mirrored ETM registers required for
decompression. Packet boundaries can only be determined in
the context of the stream state, and addresses can only be
determined in the context of the trace state. We continue with
unrolling the trace stream to parallelize the decoding function
and later describe our optimization approach with pipelining
and speculative preprocessing.

B. Decoding function

More formally, a decoding function D consumes a byte from
the trace stream alongside a stream state S and trace state T
to produce an updated trace and stream state S′, T ′:

D(b, S, T)→ S′, T ′ (1)
From this follows that decoding a full trace, a stream of n
bytes, is a successive chaining of the decoding function:

D(bnD(bn−1, . . .D(b0, S, T))) (2)
This naive decoder can handle one byte per cycle. Imple-

menting a decoding function that takes more than one byte
with combinational logic is infeasible due to the number of
packet types in the specification. Instead, the stream of bytes
from the trace stream is unrolled2 with an unroll factor u, such
that u bytes are input to the decoding unit that processes these
bytes with throughput equal to u bytes

cycle . The decoding function
D is used as a subcomponent for the unrolled decoder, and D
is chained based on the position of the unrolled byte:

Si+1, T i+1 ← D(b0, Si, T i)

Si+2, T i+2 ← D(b1,D(b0, Si, T i))
...

Si+u, T i+u ← D(bu−1 . . .D(b1,D(b0, Si, T i))) (3)
We refer to a full unrolled decoder with unroll factor u as Du.

C. Pipelining & Optimizing

The unroll factor provides flexibility in the number of bytes
per cycle the decoder can process and determines the degree
of parallelization. The key to achieving high throughput is
optimizing the decoding function. The critical path is the last

2Reminiscient of loop unrolling without vectorization, hence the name.

line in Equation (3), as the decoding function must be applied
u times in a single clock cycle.

The critical path is broken down into four pipeline stages:
Header preprocessing, stream state processing, action pre-
processing, and trace state processing, visualized in Fig. 6.
Importantly, the computation to update the stream state or trace
state cannot be further broken down, as full updates to both
states must be made within a single cycle to make progress.
Furthermore, any computation that can be precomputed with-
out state context is speculatively executed in a preprocessing
stage. For example, the header preprocessing stage looks up
the header type of an incoming byte. This process is done
speculatively and for every byte, regardless of whether the byte
should be interpreted as a header. If the byte really should be
interpreted as a header, the additional level of logic required to
compare bits has already been performed outside of the critical
path.

The stream state and trace state units are further elaborated
upon in simplified Algorithms 1 and 2, respectively. The SSU
is responsible for computing packet boundaries and setting
current indices and header types. The logic is kept to a
minimum; checking if a byte is the last byte in a payload
requires at most 3-bit comparisons due to one-hot encoding of
payload indices and stream mode types. The decoded header
directly determines the expected payload size and the current
stream mode.

The TSU is correspondingly optimized but has the lux-
ury of more preprocessing in the form of action codes
that encode an update to the trace state. For example,
byte b0 (Long Address header) from Fig. 5 generates a

Algorithm 1: Stream State Unit (SSU)
Input : Data byte b, Resolved header h, Stream State S
Output : Updated Stream State S’
Record Stream State is

mode ∈ {Header, PldFixedSize, PldContinuous};
header;
index; /*Reverse one-hot payload index*/

Process Stream State is
switch S.mode do

case Header
S’.mode ←mode(h)
S’.index ←size(h)

case PayloadFixedSize
S’.mode ←Header if S.index[0] is 1
else S’.index ←S.index >> 1

case PayloadContinuous
S’ ←Header if index[0] is 1 or b[0] is 0
else S’.index ←S.index >> 1

Header Preprocessing Stream State Processing Trace State Processing

HU

HU

SSU

SSU

AU

AU TSU

TSUb1

b0

Action Preprocessing

a0

b0 b0 b0

b1 b1 b1

h1 h1

h0 h0

a1

S1

S0 S0S0

S1

T0

T1

S1

cycle 1 cycle 2 cycle 3 cycle 4

Fig. 6: Fully pipelined unrolled decoder D2 with HU=Header preprocessing Unit, SSU=Stream State processing Unit, AU=Action preprocessing Unit, and
TSU=Trace State processing Unit. D2 two bytes b0 and b1 to produce updated state S0, S1, T0 and T1. Both the SSU and the TSU must be applied twice in
one cycle to support the dependencies of the trace stream.

shift_address_registers code, as the address reg-
isters must be shifted to prepare for the incoming address
values. All action codes can be resolved from the stream
state. Using the payload index value and current header value,
the action code can be generated on what bits to overwrite
in the address registers with the incoming bytes, as with
an update_address_8_2 code for index 0 in a Short
Address packet. Intuitively, every possible update to the trace
state is encoded by a single action and updating the trace state
(having a sequential dependency) is performed for u different
actions in succession within a cycle.

We note that, for brevity, many state components are omitted
from Algorithm 1 and action codes are omitted from Algo-
rithm 2. One example of such an omission from the stream
state is the lookahead states required to handle more com-
plex packets with optional subpackets or composite packets.
Reference [15] provides additional details on handling more
complex packet types.

Algorithm 2: Trace State Unit (TSU)
Input : Data byte b, Stream State S at b, Resolved action

code a
Output : Updated Trace State T’
Record Trace State is

address_regs[2];...
Process Trace State is

switch a do
case shift_address_registers

address regs[1]← address regs[0]
address regs[2]← address regs[1]

case update_address_8_2
address reg[0][8 : 2]← b[6 : 0]

case update_address_15_9...

V. IMPLEMENTATION RESULTS

Our evaluation of the proposed decoder is twofold — a
performance and resource utilization breakdown of the imple-
mented design in Table II, and a correctness validation against
the openCSD [8], a library to decode collected CoreSight
traces in software.

A. Performance & Resource Utilization
The performance and resource utilization of the unrolled

decoder with different unroll factors are compared in Table II

to a baseline implementation of Zeinolabedin, Partzsch &
Mayr [18], which, to the best of our knowledge, is the only
other reported implementation of an ETMv4 decoder. We
emphasize that the decoders are implemented on different,
albeit similar, FPGA devices. Experiments on the same device
are not possible, as their decoder is not public, and all metrics
are taken directly from reference [18]. The direct comparison
is not exact, as the maximum operating frequency and device
utilization depend on device characteristics. Nevertheless, we
believe a comparison is still warranted and shows a significant
increase in performance due to unrolling and guaranteeing that
multiple bytes are processed every cycle.

The throughput of the decoders is determined by the bytes
per cycle it can process and the maximum operating frequency
f . The maximum operating frequency of the unrolled decoder
is inversely correlated with the unroll factor, as the required
logic to be performed within a single cycle increases with the
unroll factor. The highest throughput is achieved with an unroll
factor of 4 running at 250 MHz.

The unrolled decoder Du can handle more throughput, up to
8× more in the case of D4, than the decoder by Zeinolabedin,
Partzsch & Mayr in the worst case. The improvement is in part
due to handling multiple bytes per cycle and higher operating
frequencies, although without taking into consideration the
different FPGA devices.
B. Correctness

To ensure correctness, the design was both simulated and
run on a Zynq Ultrascale+ device with a tracing session active
on a single Cortex-A53 core. The latter process is visualized
in Fig. 7. OpenCSD is used as an oracle to match the outputs
of the implemented decoder. We chose to compare our outputs
to openCSD, as this is the only decoder available for public use
and is actively maintained by ARM developers. The openCSD
is designed for decoding a trace alongside the target binary
and provides more details than is contained by the trace itself.
To directly compare against the trace output produced by our
decoder, we added a translation step to transform openCSD
output to the same format as produced by the decoder (Table I).
The input stimulus for openCSD is collected from real tracing
sessions on the Cortex-A53, where raw frames are collected
directly from the TPIU and made accessible to the PS through
AXI-DMA.

TABLE II: Performance and resource utilization: = Xilinx Virtex xc6vcx75t-2ff784 = Xilinx Ultrascale+ xczu5ev- sfvc784-2-i.
The values for the decoder by Zeinolabedin, Partzsch & Mayr (Baseline) are directly taken from the L2 decoder performance/utilization reports [18]. The
maximum operating frequency is determined by Vivado timing analysis, and device utilization reports are exported from Vivado. Throughput is experimentally
validated (Fig. 7).

Performance Resource Utilization
min(bytes

cycle) max(bytes
cycle) max(f) Throughput LUT Reg BRAM CLB/Slice

Baseline [18] 1 2 125 MHz 125 -250 MB/s 3160(6%) 1006(1%) 8(5%) 1028(8%)
Unroll factor 1 (D1) 1 1 550 MHz 550 MB/s 521(0.44%) 631(0.25%) 0(0%) 368(2.51%)
Unroll factor 2 (D2) 2 2 400 MHz 800 MB/s 1701(1.44%) 953(0.40%) 0(0%) 689(4.71%)
Unroll factor 3 (D3) 3 3 300 MHz 900 MB/s 2375(2.03%) 1324(0.57%) 0(0%) 967(6.61%)
Unroll factor 4 (D4) 4 4 250 MHz 1000 MB/s 3075(2.62%) 1614(0.69%) 0(0%) 1227(8.38%)
Unroll factor 5 (D5) 5 5 180 MHz 900 MB/s 5702(4.87%) 1965(0.84%) 0(0%) 1998(13.64%)
Unroll factor 6 (D6) 6 6 130 MHz 780 MB/s 5727(4.88%) 2282(0.98%) 0(0%) 2128(14.53%)

For the simulation test bench, the raw frames were also used
as a test vector. Using the TPIU and AXI-DMA, we can collect
much larger test vectors than with reading only from internal
trace buffers of the CoreSight subsystem, giving us multi-GB
datasets.

The same principle is used to validate the decoder running
on a device. Fig. 7 shows how both raw frames and the decoded
trace is collected in parallel and validated as soon as the target
tracing session is complete. The presented decoder has been
successfully validated in both simulations, and verification runs
on the implemented design.

PS

decoder
(UUT)

DMA

DMA

T
PI

U

UUT output

test oracle

==
trans
late

open
CSD

AXI Interfaces

L1 decoder

A
X

I
Pe

rf
or

m
an

ce
M

on
ito

r

Fig. 7: Setup of throughput measurement and validation. Raw trace data and
decoded trace data are collected simultaneously. OpenCSD is run on the
raw trace data and compared to the decoder output. Performance and trace
bandwidth metrics are measured by an AXI performance monitoring unit.

VI. CONCLUSION

We have presented a high-throughput decoder for the
ETMv4 instruction trace specification. Our design ensures
that multiple bytes are processed every cycle regardless of
packet boundaries and despite the inter-byte dependencies,
achieved by unrolling the trace stream and employing an
optimized bytewise decoding function. We have implemented
the decoder on a Xilinx xczu5ev-sfvc784-2-i, where it can
handle up to 1 GB/s of trace data produced by a single
trace source. This is enough to decode at the maximum data
rate of the TPIU on a Zynq Ultrascale+ and supports all
high-bandwidth features of an ETM coupled to a Cortex-
A53@1.3 GHz with cycle-counting, branch-broadcasting, and
event tracing simultaneously, making it ideal for runtime
verification, feedback-directed optimization, monitoring, and
other real-time applications. In addition, we have outlined
a framework for decoding any CoreSight-compliant stream.

For future work, we intend to support decoding the trace
alongside a compressed form of the trace target binary to
reconstruct every executed instruction, also eliminating the
reliance on branch-broadcasting. Furthermore, our decoder can
be extended to support the ETM data trace specification and
we aim to add stages to synchronize the ETM instruction trace
with both an ITM/STM trace and the separate ETM data trace.

REFERENCES

[1] ARM Ltd. Embedded Trace Macrocell Architecture Specification ETMv4.0 to
ETM4.6 ARM IHI0064H. 2020.

[2] ARM Ltd. ARM® CoreSight™ SoC-400 DDI0480G. 2015.
[3] Dehao Chen, David Xinliang Li, and Tipp Moseley. “AutoFDO: Automatic

feedback-directed optimization for warehouse-scale applications”. In: Proceed-
ings of the 2016 International Symposium on Code Generation and Optimiza-
tion. 2016, pp. 12–23.

[4] David Cock et al. “Enzian: an open, general, CPU/FPGA platform for systems
software research”. In: Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems.
2022, pp. 434–451.

[5] Coresight AutoFDO Collect ETM data for AutoFDO. https : / / android .
googlesource . com / platform / system / extras / + / master / simpleperf / doc /
collect etm data for autofdo.md. Accessed: 2023-4-4.

[6] Normann Decker et al. “Rapidly adjustable non-intrusive online monitoring for
multi-core systems”. In: Formal Methods: Foundations and Applications: 20th
Brazilian Symposium, SBMF 2017, Recife, Brazil, November 29—December 1,
2017, Proceedings 20. Springer. 2017, pp. 179–196.

[7] Hannes Kallwies et al. “TeSSLa–an ecosystem for runtime verification”. In:
International Conference on Runtime Verification. Springer. 2022, pp. 314–324.

[8] Linaro. Linaro/opencsd: Coresight Trace Stream decoder developed openly.
URL: https://github.com/Linaro/OpenCSD.

[9] Aleksandar Prokopec et al. “Renaissance: Benchmarking suite for parallel ap-
plications on the jvm”. In: Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 2019, pp. 31–47.

[10] Pirmin Schmid. “Runtime verification with tessla on enzian”. MA thesis. ETH
Zurich, 2019.

[11] Haoqi Shan et al. “CROWBAR: Natively Fuzzing Trusted Applications Using
ARM CoreSight”. In: Journal of Hardware and Systems Security (2023), pp. 1–
11.

[12] Alan P Su et al. “Multi-core software/hardware co-debug platform with ARM
CoreSight™, on-chip test architecture and AXI/AHB bus monitor”. In: Pro-
ceedings of 2011 International Symposium on VLSI Design, Automation and
Test. IEEE. 2011, pp. 1–6.

[13] Adrien Vergé, Naser Ezzati-Jivan, and Michel R Dagenais. “Hardware-assisted
software event tracing”. In: Concurrency and Computation: Practice and
Experience 29.10 (2017), e4069.

[14] Conal Watterson and Donal Heffernan. “Runtime verification and monitoring
of embedded systems”. In: IET software 1.5 (2007), pp. 172–179.

[15] Matthew Edwin Weingarten. “Hardware Accelerated Trace Analysis for Com-
piler Optimizations”. MA thesis. ETH Zurich, 2023.

[16] Alexander Weiss and Alexander Lange. Trace-data processing and profiling
device. US Patent 9,286,186. Mar. 2016.

[17] Seyed Mohammad Ali Zeinolabedin, PartzschJohannes, and Christian Mayr.
“Analyzing ARM CoreSight ETMv4. x Data Trace Stream with a Real-
time Hardware Accelerator”. In: 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2021, pp. 1606–1609.

[18] Seyed Mohammad Ali Zeinolabedin, PartzschJohannes, and Christian Mayr.
“Real-time hardware implementation of arm coresight trace decoder”. In: IEEE
Design & Test 38.1 (2020), pp. 69–77.

