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Abstract 
This is an account of the development of the languages Modula-2 and Oberon. 
Together with their ancestors ALGOL 60 and Pascal they form a family called Algol-
like languages. Pascal (1970) reflected the ideas of Structured Programming, 
Modula-2 (1979) added those of modular system design, and Oberon (1988) catered 
to the object-oriented style. Thus they mirror the essential programming paradigms 
of the past decades. Here the major language properties are outlined, followed by an 
account of the respective implementation efforts. The conditions and the 
environments are elucidated, in which the languages were created. We point out 
that simplicity of design was the most essential, guiding principle. Clarity of 
concepts, economy of features, efficiency and reliability of implementations were 
its consequences. 

1. Background 
In the middle of the 1970s, the computing scene evolved around large computers. 
Programmers predominantly used time-shared “main frames” remotely via low-
bandwidth (1200 b/s) lines and simple (“dumb”) terminals displaying 24 lines of up to 
80 characters. Accordingly, interactivity was severely limited, and program 
development and testing was a time-consuming process. Yet, the power of computers – 
albeit tiny in comparison with modern devices – had grown considerably over the 
decade. Therefore the complexity of tasks, and thus that of programs had grown 
likewise. The notion of parallel processes had become a concern and made 
programming even more difficult. The limit of our intellectual capability seemed 
reached, and a noteworthy conference in 1968 gave birth to the term software crisis [1] 
(see p.120). 

Small wonder, then, that hopes rested on the advent of better tools. They were seen in 
new programming languages, symbolic debuggers, and team management. Dijkstra put 
the emphasis on better education. Already in the mid 1960s he had outlined his 
discipline of Structured Programming [3], and the language Pascal followed his ideas 
and represented an incarnation of a Structured Language [2]. But the dominating 
languages were FORTRAN in scientific circles and COBOL in business data processing. 
IBM’s PL/1 was slowly gaining acceptance. It tried to unite the disparate worlds of 
scientific and business applications. Some further, “esoteric” languages were popular in 
academia, for example Lisp and its extensions, which dominated the AI culture with its 
list processing facilities. 

However, none of the available languages were truly suitable for handling the ever 
growing complexity of computing tasks. FORTRAN and COBOL lacked a pervasive 
concept of data types like that of Pascal; and Pascal lacked a facility for piecewise 
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compilation, and thus of program libraries. PL/1 offered everything to a certain degree. 
Therefore it was bulky and hard to master. The fact remained that none of the available 
languages was truly satisfactory. 

I was fortunate to be able to spend a sabbatical year at the new Xerox Research 
Laboratory in Palo Alto during this time. There, on the personal workstation Alto, I 
encountered the language Mesa, which appeared to be the appropriate language for 
programming large systems. It stemmed from Pascal [2, 38], and hence had adopted a 
strictly static typing scheme. But it also allowed to develop parts of a system – called 
modules – independently, and to bind them through the linking loader into a consistent 
whole. This alone was nothing new. It was new, however, for strongly typed languages, 
guaranteeing type consistency between the linked modules. Therefore, compilation of 
modules was not called independent, but separate compilation. We will return to this 
topic later. 

As Pascal had been Mesa’s ancestor, Mesa served as Modula-2’s guideline. Mesa had 
not only adopted Pascal’s style and concepts, but also most of its facilities, to which 
were added many more, as they all seemed either necessary or convenient for system 
programming. The result was a large language, difficult to fully master, and more so to 
implement. Making a virtue out of necessity, I simplified Mesa, retaining what seemed 
essential, and preserving the appearance of Pascal. The guiding idea was to construct a 
genuine successor of Pascal meeting the requirements of system engineering, yet also to 
satisfy my teacher’s urge to present a systematic, consistent, appealing, and teachable 
framework for professional programming. 

In later years, I was often asked, whether indeed I had designed Pascal and Modula-2 as 
languages for teaching. The answer is “Yes, but not only”. I wanted to teach 
programming rather than a language. A language, however, is needed to express 
programs. Thus, the language must be an appropriate tool, both for formulating 
programs and for expressing the basic concepts. It must be supportive, rather than a 
burden! But I also hasten to add that Pascal and Modula-2 were not intended to remain 
confined to the academic classroom. They were expected to be useful in practice. 
Further comments can be found in [44]. 

To be accurate, I had designed and implemented the predecessor language Modula [7 - 
9] in 1975. It had not been conceived as a general-purpose language, but rather as a 
small, custom-tailored language for experimenting with concurrent processes and 
primitives for their synchronization. Its features were essentially confined to this topic, 
such as process, signal, and monitor [6]. The monitor, representing critical regions with 
mutual exclusion, mutated into modules in Modula-2. Modula-2 was planned to be a 
full-scale language for implementing the entire software for the planned personal 
workstation Lilith [12, 19]. This had to include device drivers and storage allocator, as 
well as applications like document preparation and e-mail systems. 

As it turned out later, Modula-2 was rather too complex. The result of an effort at 
simplification ten years later was Oberon. 

2. The Language Modula-2 
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The defining report of Modula-2 appeared in 1979, a textbook in 1982 [13]. A tutorial 
was published, following a growing popularity of the language, in [17, 18]. In planning 
Modula-2, I saw it as a new version of Pascal, updated to the requirements of the time, 
and I seized the opportunity to correct various mistakes in Pascal’s design, such as, for 
example, the syntactic anomaly of the dangling “else”, the incomplete specification of 
procedure parameters, and others. Apart from relatively minor corrections and additions 
the primary innovation was that of modules. 

2.1. Modules 
ALGOL had introduced the important notions of limited scopes of identifiers and of the 
temporary existence of objects. The limited visibility of an identifier and the limited 
lifetime of an object (variable, procedure), however, were tightly coupled: All existing 
objects were visible, and one that was not visible, did not exist (was not allocated). This 
tight coupling was an obstacle in some situations. We refer to the well-known function 
to generate the next pseudo-random number, where the last one must be stored to 
compute the next, while remaining invisible. ALGOL’s designers noticed this, and 
quickly remedied the shortcoming by introducing the own property, an unlucky idea. 
An appropriate example is a procedure for generating pseudo-random numbers (c1, c2, 
c3 stand for constants): 

real procedure random; 
begin own real x; 
 x := (c1*x + c2) mod c3; random := x 
end 

Here x is invisible outside the procedure. However, its computed value is retained and 
available the next time the procedure is called. Hence x cannot be allocated on a stack 
like ordinary local variables. The inadequacy of the own concept becomes apparent, if 
one considers how an initial value should be given to x. 

Modula’s solution was found in a second scoping structure, the module. In the first, the 
procedure (block in ALGOL), locally declared objects are allocated (on a stack) when 
control reaches the procedure, and de-allocated when the procedure terminates. With 
the second, the module, no allocation is associated; only visibility is affected. The 
module merely constitutes a wall around the local objects, through which only those 
objects are visible that are explicitly specified in an “export” or an “import” list. In 
other words, the wall makes every identifier declared within a module invisible outside, 
unless it occurs in the export list, and it makes every identifier declared in a 
surrounding module invisible inside, unless it occurs in the module’s import list. This 
definition makes sense, if modules are considered as nestable, and it represents the 
concept of information hiding as first postulated by D.L.Parnas in 1972 [4]. 

Visibility being controlled by modules and existence by procedures, the example of the 
pseudo-random number generator now turns out as follows in Modula-2. Local 
variables of modules are allocated when the module is loaded, and remain allocated 
until the module is explicitly discarded. 

module RandomNumbers; 
 export random; 
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 var x: real; 
 procedure random(): real; 
 begin x := c1*x +c2) mod c3; return x 
 end random; 
begin x := c0  (*seed*) 
end RandomNumbers 

The notation for a module was chosen identical to the one of a monitor proposed by 
Hoare in 1974 [6], but is without connotation of mutual exclusion of concurrent 
processes (as in Modula [7]).  

Modula-2’s module can also be regarded as a representation of the concept of abstract 
data type postulated by B. Liskov in 1974 [5]. A module representing an abstract type 
exports the type, typically a record structured type, and the set of procedures and 
functions applicable to it. The type’s structure remains invisible and inaccessible from 
the outside of the module. Such a type is called opaque. This makes it possible to 
postulate module invariants. Probably the most popular example is the stack. (In order 
to exhibit the principle, we refrain from providing the guards s.n < N for push and s.n > 
0 for pop). 

module Stacks; 
 export Stack, push, pop, init; 

 type Stack = record n: integer; (*0 ≤ n < N*) 
     a: array N of real 
  end ; 

 procedure push(var s: Stack; x: real); 
 begin s.a[s.n] := x; inc(s.n) end push; 

 procedure pop(var s: Stack): real; 
 begin dec(s.n); return s.a[s.n] end pop; 

 procedure init(var s: Stack); 
 begin s.n := 0 end init 
end Stacks 

Here, it would be desirable to parameterize the type definition. A stack’s size and 
element type (here N and real) are obvious candidates for type parameters. The 
impossibility to do so makes the limitations of Modula-2’s form of module for this 
purpose apparent. As an aside, we note that in object-oriented languages the concept of 
data type is merged with the module concept and is called a class. The fact remains that 
the two notions have different purposes, namely data structuring and information 
hiding, and they should not be confused, particularly so in languages used for teaching 
programming. 

The basic idea behind Mesa’s module concept was also information hiding, as 
communicated by Ch. Geschke, J. Morris and J. Mitchell in various discussions [10, 
11]. But its emphasis was on decomposing very large systems into relatively large 
components, called modules. Hence, Mesa’s modules were not nestable, but formed 
separate units of programs. Clearly, the key issue was to interface, to connect such 
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modules. However, it was enticing to unify the concepts of information hiding, nested 
modules, monitors, abstract data types, and Mesa system units into a single construct. 
In order to consider a (global) module as a program, we simply need to imagine a 
universe, into which global modules are exported and from which they are imported. 

A slight distinction between inner, nested modules and global modules seemed 
nevertheless advisable from both the conceptual aspect and that of implementation. 
After all, global modules appear as the parts of a large system that are typically 
implemented by different people or teams. The key idea is that such teams design the 
interfaces of their parts together, and then can proceed with the implementations of the 
individual modules in relative isolation. To support this paradigm, Mesa’s module texts 
were split in two parts: The implementation part corresponds to the conventional 
“program”. The definition part is the summary of information about the exported 
objects, the module’s interface, and hence replaces the export list. 

If we consider the example of module Stacks and reformulate it under this aspect, its 
definition part is 

definition Stacks; 
 type Stack; 
 procedure push(var s: Stack; x: real); 
 procedure pop(var s: Stack): real; 
 procedure init(var s: Stack); 
end Stacks 

This, in fact, is exactly the information a user (client) of module Stacks needs to know. 
He must not be aware of the actual representation of stacks, which implementers may 
change even without notifying clients. 25 years ago, this water tight and efficient way 
of type and version consistency checking put Mesa and Modula-2 way ahead of their 
successors, including the popular Java and C++. 

Modula-2 allowed for two forms of specifying imports. In the simple form the 
module’s identifier is included in the import list: 

import M 

In this case all objects exported by M become visible. For example, identifiers push and 
pop declared in Stacks are denoted by Stacks.push and Stacks.pop respectively. When 
using the second form 

from M import x, P 

the unqualified identifiers x and P denote the respective objects declared in M. This 
second form became most frequently used, but in retrospect proved to be rather 
misguided. First, it could lead to clashes, if the same identifier was exported by two 
different (imported) modules. And second it was not immediately visible in a program 
text, where an imported identifier was declared. 

A further point perhaps worth mentioning in this connection is the handling of exported 
enumeration types. The desire to avoid long export lists led to the (exceptional) rule 
that the export of an enumeration type identifier implies the export of all constant 
identifiers of that type. As nice as this may sound for the abbreviation enthusiast, it also 
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has negative consequences, again in the form of identifier clashes. This occurs if two 
enumeration types are imported which happen to have at least one common constant 
identifier. Furthermore, identifiers may now appear that are neither locally declared, 
nor qualified by a module name, nor visible in an import list; an entirely undesirable 
situation in a structured language. 

Whereas the notation for the module concept is a matter of language design, the 
paradigm of system development by teams influenced the implementation technique, 
the way modules are compiled and linked. Actually, the idea of compiling parts of a 
program, such as subroutines, independently was not new; it existed since the time of 
FORTRAN. However, strongly typed languages add a new aspect: Type compatibility of 
variables and operators must not only be guaranteed among statements within a 
module, but also, and in particular between modules. Hence, the term of separate 
compilation was used in contrast to independent compilation without consistency 
checks between modules. With the new technique the definition (interface) of a module 
is compiled first, thereby generating a symbol file. This file is inspected not only upon 
compilation of the module itself, but also each time a client module is compiled. The 
specification of a module name in the import list causes the compiler to load the 
respective symbol file, providing the necessary information about the imported objects. 
A most beneficial consequence is that the inter-module checking occurs at the time of 
compilation rather than each time a module is linked. 

One might object that this method is too complicated, and that the same effect is 
achieved by simply providing the service module’s definition (interface) in source form 
whenever a client is compiled. Indeed, this solution was adopted, for example in Turbo 
Pascal with its include files, and virtually all successors up to Java. But it misses the 
whole point. In system development, modules undergo changes, and they grow. In 
short, new versions emerge. This bears the danger of linking a client with wrong, old 
versions of servers -- with disastrous consequences. A linker must guarantee the correct 
versions are linked, namely the same as were referenced upon compilation. This is 
achieved by letting the compiler provide every symbol file and every object file with a 
version key, and to make compilers and linkers check the compatibility of versions by 
inspecting their keys. This idea went back to Mesa, and it quickly proved to be an 
immense benefit, and soon became indispensable. 

2.2. Procedure Types 
An uncontroversial, fairly straight-forward, and most essential innovation was the 
procedure type, also adopted from Mesa. In a restricted form it had been present also in 
Pascal, even ALGOL, namely in the form of parametric procedures. Hence, the concept 
needed only to be generalized, i.e. made applicable to parameters and variables. In 
respect to Pascal (and ALGOL), the mistake of incomplete parameter specification was 
amended, making the use of procedure types type-safe. This is an apparently minor, but 
in reality most essential point, because a type-consistency checking system is worthless 
if it contains loopholes. 

2.3. The Type CARDINAL 
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The 1970s were the time of the 16-bit minicomputers. Their word length offered an 
address range from 0 to 216-1, and thus a memory size of 64K. Whereas around 1970, 
this was still considered adequate, it later became a severe limitation, as memories 
became larger and cheaper. Unfortunately, computer architects insisted on byte 
addressing, thus covering only 32K words. 

In any case, address arithmetic required unsigned arithmetic. Consequently, signed as 
well as unsigned arithmetic was offered, which effectively differed only in the 
interpretation of the sign bit in comparisons and in multiplication and division. We 
therefore introduced the type CARDINAL (0 ... 216-1) to the set of basic data types, in 
addition to INTEGER (-215 … 215-1). This necessity caused several surprises. As a subtle 
example, the following statement, using a CARDINAL variable x, became unacceptable. 

x := N-1;  while x ≥ 0 do S(x); x := x-1 end 

The correct solution, avoiding a negative value of x, is of course 

x := N;  while x > 0 do x := x-1; S(x) end 

Also, the definitions of division and remainder raised problems. Whereas 
mathematically correct definitions of quotient q and remainder r of integer division x by 
y satisfy the equation 

q×y + r = x,    0 ≤ r < y 

which yields, for example (7 div 3) = 2 and (-7 div 3) = -3, most available computers 
provided a division, where (-x) div y = -(x div y), that is, (-7 div 3) = -2. 

2.4. Low-level Facilities 

Facilities that make it possible to express situations which do not properly fit into the 
set of abstractions constituting the language, but rather mirror properties of the 
computer, are called low-level facilities. Although necessary at the time – for example 
to program device drivers and storage managers - I believe that they were introduced 
too light-heartedly, in the naive assumption that programmers would use them only 
sparingly and as a last resort. In particular, the concept of type transfer function was a 
major mistake. It allows the type identifier T to be used in expressions as a function 
identifier: The value of T(x) is equal to x, whereby x is interpreted as being of type T, 
i.e. x is cast into a T. This interpretation inherently depends on the underlying (binary) 
representation of data types. Therefore, every program making use of this facility is 
inherently implementation-dependent, a clear contradiction of the fundamental goal of 
high-level languages. 

In the same category of easily misused features is the variant record, a feature inherited 
from Pascal (see [13], Chap. 20). The real stumbling block is the variant without tag 
field. The tag field's value is supposed to indicate the structure currently assumed by 
the record. If a tag is missing, no possibility exists to determine the current variant. It is 
exactly this lack which can be misused to access record fields with intentionally 
"wrong" types. 

2.5. What was left out 
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C.A.R. Hoare used to remark that a language is indeed defined by the features it 
includes, but more so even by those which it excludes. My own guide-line was to omit 
features, whose correct semantics and best form were still unknown. Therefore it is 
worth while mentioning what was left out. 

Concurrency was a hot topic, and still is. There was no clear favorite way to express 
and control concurrency, and hence no set of language constructs that clearly offered 
themselves for inclusion. One basic concept was seen in concurrent processes 
synchronized by signals (or conditions), and involving critical regions of mutual 
exclusion in the form of monitors [6]. Yet, it was decided that only the very basic 
notion of coroutines would be included in Modula-2, and that higher abstractions 
should be programmed as modules based on co-routines. This decision was even more 
plausible, because the primitives could well be classified as low-level facilities, and 
their realization encapsulated in a module (see [13], Chap. 30 and 31). 

We also abandoned the belief that interrupt handling should be treated by the same 
mechanism as programmed process switching. Interrupts are typically subject to 
specific real-time conditions. Real-time response is impaired beyond acceptable limits, 
if interrupts are handled by very general, complicated switching and scheduling 
routines. 

Exception Handling was widely considered as a must for any language suitable for 
system programming. The concept originated from the need to react in special ways to 
rare situations, such as arithmetic overflow, index values being beyond a declared 
range, access via nil-pointer, etc., generally conditions of “unforeseen” error. Then the 
concept was extended to let any condition be declarable as an exception requiring 
special treatment. What lent this trend some weight was the fact that the program 
handling the exception might lie in a procedure different from the one in which the 
exception occurred (was raised), or even in a different module. This precluded the 
programming of exception handling by conventional conditional statements. 
Nevertheless, we decided not to include exception handling (with the exception of the 
ultimate exception called Halt). 

Modula-2 features pointers and thereby implies dynamic storage allocation. Allocation 
of a variable x↑ is expressed by the standard procedure Allocate(x), typically taking 
storage from a pool area (heap). A return of storage to the pool is signaled by the 
standard procedure Deallocate(x). This was known to be a highly unsatisfactory 
solution, because it allows to return records (storage) that are still reachable from other, 
valid pointer variables, and therefore constitutes a rich source of disastrous errors. 

The alternative is to postulate a global storage management, which retrieves unused 
storage automatically, that is, a garbage collector. We rejected this for several reasons. 

1. I believed it was better if programmers would devise their own storage managers, 
thus obtaining the most effective use of storage for the case at hand. This was of 
great importance at the time, considering the small memory size, such as 64k bytes 
for the PDP-11, on which Modula-2 was first implemented. 
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2. Garbage collectors could activate themselves at unpredictable times, and hence 
preclude dependable real-time performance, which was considered an important 
domain of applications of Modula-2. 

3. Garbage collectors must rely on incorruptible meta-data about all variables in use. 
Given the many loopholes for breaching the typing system, it was considered 
impossible to devise secure garbage collection with a reasonable effort. The 
flexibility of the language had become its own impediment. Even today, providing a 
garbage collector with an unsafe language is a sure guarantee for occasional 
crashes. 

3. Implementations 
Although a preliminary technical memorandum stating certain goals and concepts of 
the new language was written in 1977, the effective language design took place in 
1978-79. Concurrently, a compiler implementation project was launched. The available 
machinery was a single DEC PDP-11 with a 64K-byte store. The single-pass strategy of 
our Pascal compilers could not be adopted; a multipass approach was unavoidable in 
view of the small memory. It had actually been the Mesa implementation at the Palo 
Alto Research Center (PARC) of Xerox which had proved possible what I had believed 
to be impracticable, namely to build a complete compiler operating on a small 
computer. The first Modula-2 compiler, written by K. van Le in 1977 consisted of 7 
passes, each generating sequential output written onto the 2M-byte disk. This number 
was reduced in a second design by U. Ammann to 5 passes in 1979. The first pass, the 
scanner, generated a token string and a hash table of identifiers. The second pass 
(parser) performed syntax analysis, and the third pass handled the task of type 
checking. Passes 4 and 5 were devoted to code generation. This compiler was 
operational in early 1979. 

In the meantime, a new Modula-2 compiler was designed in 1979-80 by L. Geissmann 
and Ch. Jacobi with the PDP-11 compiler as a guide, but taking advantage of the 
features of the new Lilith computer. Lilith was designed by the author and R. Ohran 
along the guide lines of the Xerox Alto [12, 19, 21]. It was based on the excellent 
Am2901 bit-slice processor of AMD, and it was microprogrammed. The new Modula-2 
compiler consisted of only four passes, code generation being simplified due to the new 
architecture. Development took place on the PDP-11. Concurrently, the operating 
system Medos was implemented by S. Knudsen - a system essentially following in the 
footsteps of batch systems with program load and execute commands entered from the 
keyboard. At the same time, display and window software was designed by Ch. Jacobi. 
It served as the basis of the first application programs, such as a text editor - mostly 
used for program editing - featuring the well-known techniques of multiple windows, a 
cursor/mouse interface, and pop-up menus. 

By 1981, Modula-2 was in daily use and quickly proved its worth as a powerful, 
efficiently implemented language. In December 1980, a pilot series of 20 Liliths, 
manufactured in Utah under the supervision of R. Ohran, had been delivered to ETH 
Zürich. Further software development proceeded with a more than 20-fold hardware 
power at our disposal. A genuine personal workstation environment had successfully 
been established. 
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During 1984, the author designed and implemented yet another compiler for Modula-2. 
It was felt that compilation could be handled more simply and more efficiently, if full 
use were made of the now available larger store which, by today's measures, was still 
very small. Lilith's 64K-word memory and its high code density allowed the realization 
of a single-pass compiler. This resulted in a dramatic reduction in disk operations. 
Indeed, compilation time of the compiler itself was reduced from some 4 minutes to a 
scant 45 seconds. 

The new, much more compact compiler retained the partitioning of tasks. Instead of 
each task constituting a pass - with sequential input from, and output to disk - it 
constituted a module with a procedural interface. Common data structures, such as the 
symbol table, were defined in a data definition module imported by (almost) all other 
modules. These modules represented a scanner, a parser, a code generator, and a 
handler of symbol files. During all these re-implementations, the language remained 
practically unchanged. The only significant change was the deletion of export lists in 
the definition parts of modules. The compilation of imports and exports constituted a 
remarkable challenge under the objective of economy of linking data and under the 
absence of automatic storage management [24]. 

Over the years, it became clear that designers of control and data acquisition systems 
found Modula-2 particularly attractive. This was due to the existence of both low-level 
facilities to control interfaces, and of modules to encapsulate critical, device-specific 
parts. A Modula-2 compiler was offered by two British companies, but Modula-2 never 
experienced the same success as Pascal, and it never became as widely known. The 
primary reason was probably that Pascal had been riding on the back of the micro-
computer wave invading homes and schools, reaching a class of people not infected by 
earlier programming languages and habits. Modula-2, on the other hand, was perceived 
as merely an upgrade on Pascal, hardly worth the effort of a language transition. The 
author, however, naively believed that everyone familiar with Pascal would happily 
welcome the additions and improvements of Modula-2. 

Nevertheless, numerous implementation efforts proceeded at various universities for 
various computers [15, 16, 23]. Significant industrial projects had adopted Modula-2. 
Among them was the control system for a new line of the Paris Metro and the entire 
software for a new Russian satellite navigation system. User’s groups were established, 
and conferences held, with structured programming in general and Pascal and Modula-
2 in particular, as their themes. A series of tri-annual Joint Modular Languages 
Conferences (JMLC) started in 1987 in Bled (Slovenia), followed by events in 
Loughborough (England, 1990), Ulm (Germany, 1994), Linz (Austria, 1997), Zürich 
(Switzerland, 2000), Klagenfurt (Austria, 2003) and Oxford (England, 2006). 
Unavoidably, suggestions for extensions began to appear in the literature [25]. Even a 
direct successor was designed, called Modula-3 [33], namely in cooperation between 
DEC’s Systems Research Center (SRC) and Olivetti’s Research Laboratory in Palo 
Alto. Both had adopted Modula-2 as their principal system implementation language. 

Closer to home, the Modula/Lilith project had a significant impact on our own future 
research and teaching activities. With 20 personal workstations available in late 1980, 
featuring a genuine high-level language, a very fast compiler, an excellent text editor, a 
high resolution display, a mouse, an Ethernet connecting the workstations, a laser 
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printer, and a central file server, we had in 1981 the first modern computing 
environment outside America. This gave us the opportunity to develop modern 
software for future computers fully 5 years ahead of the first such system commercially 
available, the Apple Macintosh, which was a scaled-down version of the Alto of 10 
years before. Of particular value were our projects in modern document preparation and 
font design [20, 22]. 

4. From Modula to Oberon 
Like my sabbatical year at Xerox in 1976/77 had inspired me to design the personal 
workstation Lilith in conjunction with Modula-2, my second stay in 1984/85 provided 
the necessary inspiration and motivation for the language and the operating system 
Oberon [29, 30]. Xerox PARC’s Cedar system for its extremely powerful Dorado 
computer was based on the windows concept developed also at PARC for Smalltalk.  

The Cedar system [14] was – to this author’s knowledge – the first operating system 
that featured a mode of operation completely different from the then conventional batch 
processing mode. In a batch system, a permanent loop accepts command lines from a 
standard input source. Each command causes the loading, execution, and release of a 
program. Cedar, in contrast, allowed many programs to remain allocated at the same 
time. It did not imply (storage) release after execution. Switching the processor from 
one program to another occurred through the invocation of a program’s commands, 
typically represented by buttons or icons in windows (called viewers) belonging to the 
program. This scheme had become feasible through the advent of large main stores (up 
to several hundred kilobytes), high-resolution displays (up to 1000 by 800 pixels), and 
powerful processors (with clock rate up to 25 Megahertz). 

Because I was supposed to teach the main course on system software and operating 
system design after my return from the sabbatical leave, the encounter with the novel 
Cedar experiment appeared as a lucky coincidence. But how could I possibly teach with 
a good conscience  the subject without truly understanding it? Thus the idea was born 
to gain first-hand experience by designing such a modern operating system on my own 
with Cedar as the primary source of ideas. 

Fortunately, my colleague Jürg Gutknecht concurrently spent a sabbatical semester at 
PARC in the summer of 1985. We both were intrigued by this new style of working with 
a computer, but at the same time also appalled by the system’s complexity and lack of a 
clear, conceptual basis. This lack was probably due to the merging of several, 
innovative ideas, and partly also due to a contagious enthusiasm of the pioneers, 
encouraged by an apparently unbounded future reservoir of hardware resources. 

But how could the two of us possibly undertake and successfully complete such a large 
task? Were we not victims of an exuberant overestimation of our capabilities, made 
possible only by a naïve ignorance of the subject? We felt the strong urge to try and 
risk. We believed that a turnaround from the world-wide trend to more and more 
unmanageable complexity was long overdue. We felt that the topic was worthy of 
academic pursuit, and that ultimately teachers, students, and practitioners of computing 
would benefit from it. 
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We both felt challenged to mold the new concepts embodied by Cedar into a scheme 
that was clearly defined and therefore easy to teach and understand. Concentration on 
the essentials, omission of “nice-to-have” features, and careful planning before coding, 
were no well-meant guidelines heard in a classroom, but an absolute necessity 
considering the size of the task. The influence of the Xerox Lab was thus – the reader 
will excuse some oversimplification – twofold: We were inspired by what could be 
done, and shown how not to do it. The essential, conceptual ingredients of our 
intentions are summarized as follows: 

1. Clear separation of the notion of program into the two independent notions of (1) the 
module as the unit of compilable text and of code and data to be loaded into store (and 
discarded from it), and of (2) the procedure as the unit of action invoked by a 
command. 

2. The elimination of the concept of command lines written from the keyboard into a 
special command viewer. Actions would now be invoked by mouse button clicking 
(middle button = command button) on the command name appearing in any arbitrary 
text in any viewer. The form of a command name, M.P, P denoting the procedure, and 
M the module of which P is a part, would allow for a simple search in the lists of 
loaded modules and M’s commands. 

3. The core of execution being a tight loop located at the bottom of the system. In this 
loop the common sources of input (keyboard, mouse, net) are continuously sampled. 
Any input forming a command causes the dispatch of control to the appropriate 
procedure (by an upcall), if needed after the prior loading of the entire module 
containing it (load on demand). Note that this scheme excludes the preemption of 
program execution at arbitrary points. 

4. Storage retrieval by a single, global garbage collector. This is possible only under 
the presence of a watertight, preferably static, type checking concept. De-allocation of 
entire modules (code, global variables) occurs only through commands explicitly issued 
by the user. 

5. Postulation of a simple syntax for (command) texts, paired with an input scanner 
parsing this syntax. 

These five items describe the essence of our transition from batch mode operation to a 
modern, interactive multi-viewer operating environment, manifest by the transition 
from the Modula-2 to the Oberon world [30, 35]. The clearly postulated conceptual 
basis made it possible for two programmers (J. Gutknecht and me) alone to implement 
the entire system, including the compiler and text processing machinery, in our spare 
time during only two years (1977-79). The tiny size of this team had a major influence 
on the conceptual consistency and integrity of the resulting system, and certainly also 
on its economy. 

We emphasize that the mentioned aspects concern the system rather than the language 
Oberon. A language is an abstraction, a formal notation; notions such as command line, 
tight control loop, and garbage collector do not and must not occur in a language 
definition, because they concern the implementation only. Therefore, let us now turn 
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our attention to the language proper. Like for the system, our intention was also for the 
language to strive for conceptual economy, to simplify Modula-2 where possible. 

As a consequence, our strategy was first to decide what should be omitted from 
Modula-2, and thereafter to decide which additions were necessary. 

5. The Language Oberon 
The programming language Oberon was the result of a concentrated effort to increase 
the power of Modula-2 and simultaneously to reduce its complexity. Oberon is the last 
member of a family of “ALGOL-like” languages. It started with ALGOL 60, followed by 
ALGOL-W, Pascal, Modula-2, and ended with Oberon [27, 28]. By “ALGOL-like” is 
meant the procedural paradigm, a rigorously defined syntax, traditional mathematical 
notation for expressions (without esoteric ++, ==, /= symbols), block structure 
providing scopes of identifiers and the concept of locality, the availability of recursion 
for procedures and functions, and a strict, static data typing scheme. 

The principal guideline was to concentrate on features that are basic and essential and 
to omit ephemeral issues. This was certainly sensible in view of the very limited 
manpower available. But it was also driven by the recognition of the cancerous growth 
of complexity in languages that had recently emerged, such as C, C++ and Ada. They 
appeared as even less suitable for teaching than for engineering in industry. Even 
Modula-2 now appeared as overly bulky, containing features that we had rarely used, 
and whose elimination would not cause a sacrifice. To try to crystallize the essential - 
not only the convenient and conventional - features into a small language seemed like a 
worth-while (academic) exercise [28, 43]. 

5.1. Features omitted from Oberon 
A large number of standard data types not only complicates compilers, but also makes 
it more difficult to teach and master a language. Hence, data types were a primary 
target of our simplification zeal. 

An undisputed candidate for elimination was Modula’s variant record. Introduced with 
the laudable intent of providing flexibility in data structuring, it ended up mostly being 
misused to breach the typing concept. The feature allows to interpret a data record in 
various ways according to various overlaid field templates, where one of them is 
marked as valid by the current value of a tag field. The true sin was that this tag could 
be omitted. For more details, the reader is referred to [13], Chap. 20. 

Enumeration types would appear to be an attractive and  innocent enough concept to be 
retained. However, a problem appeared in connection with import and export: Would 
the export of an enumeration type automatically also export the constants’ identifiers, 
which would have to be prefixed with the module’s name? Or could, as in Modula-2, 
these constant identifiers be used unqualified? The first option was unattractive, 
because it produced unduly long names for constants, and the second because 
identifiers would appear without any declaration. As a consequence, the enumeration 
feature was dropped. 

Subrange types were also eliminated. Experience had shown that they were used almost 
exclusively for indexing arrays. Hence, range checks were necessary for indexing rather 
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than for assignment to a variable of subrange type. Lower array bounds were fixed to 0, 
making index checks more efficient and subrange types even less useful. 

Set types had proved to be of limited usefulness in Pascal and Modula-2. Sets 
implemented as bit strings of the length of a “word” were rarely used, even though 
union and intersection could be computed by a single logical operation. In Oberon, we 
replaced general set types by the single, predefined type set, with elements 0 – 31. 

After lengthy discussions, it was decided (in 1988) to merge the definition text of a 
module with its implementation text. This may have been a mistake from the 
pedagogical point of view. The definitions should clearly be designed first as contracts 
between its designer and the module’s clients. Instead, now all exported identifiers 
were simply to be marked in their declaration (by an asterisk). The advantages of this 
solution were that a separate definition text became superfluous, and that the compiler 
was relieved of consistency checking (of procedure signatures) between the two texts. 
An influential argument for the merger was that a separate definition text could 
automatically be generated from the module text. 

The qualified import option of Modula-2 was dropped. Now every occurrence of an 
imported identifier must be preceded by its defining module’s name. This actually 
turned out to be of great benefit when reading programs. The import list now contains 
module names only. This we believe to be a good example for the art of simplification: 
A simplified version of Mesa’s module machinery was further simplified without 
compromising the essential ideas behind the facility: information hiding and type safe, 
separate compilation. 

The number of low-level facilities was sharply reduced, and in particular type transfer 
functions were eliminated. The few remaining low-level functions were encapsulated in 
a pseudo-module, whose name would appear in the prominently visible import list of 
every module making use of such low-level facilities. 

By eliminating all potentially unsafe facilities, the most essential step was finally made 
to obtain a truly high-level language. Watertight type checking, also across modules, 
strict index checking at run-time, nil-pointer checking, and the safe type extension 
concept let the programmer rely on the language rules alone. There is no longer a need 
to know about the underlying computer, or how the language is translated and data are 
represented. The old goal, that a language must be defined without mentioning an 
executing mechanism, had finally been reached. Clean abstraction from machines and 
genuine portability had become a reality. Apart from this, absolute type safety is - an 
often ignored truth - also the undisputable prerequisite for an underlying automatic 
storage management (garbage collector). 

One feature must be mentioned that in hindsight should have been added: finalization. 
It implies the automatic execution of a specified routine when a module is unloaded or 
a record (object) is collected. Inclusion of finalization had been discussed, but its cost 
and implementation effort had been judged too high relative to its benefit. Evidently, its 
importance had been underestimated, particularly that of a module being unloaded. 

5.2. New features introduced in Oberon 
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Effectively there are only two features introduced in Oberon: Type extension and type 
inclusion. This is surprising, considering the large number of eliminations.  

The concept of type inclusion binds all arithmetic types together. Every one of them 
defines a range of values that variables of said type can assume. Oberon features 5 
arithmetic types: 

longreal  ⊇  real  ⊇  longint  ⊇  integer  ⊇  shortint 

The concept implies that values of the included type can be assigned to variables of the 
including type. Hence, given 

var i: integer; k: longint; x: real 

assignments k := i and x := i are legal, whereas i := k and k := x are not. In hindsight, the 
fairly large number of arithmetic types looks like a mistake. The two types integer and 
real might have been sufficient. The decision was taken in view of the high importance 
of storage economy at the time, and because the target processor featured instruction 
sets for all five types. Of course, the language definition did not forbid implementations 
to treat integer, longint, and shortint, or real and longreal as the same. 

The vastly more important new feature was type extension [26, 39]. Together with 
procedure-typed fields of record variables, it constitutes the technical foundation of the 
object-oriented programming style. The concept is better known under the 
anthropomorphic term inheritance. Consider a record type (class) Window (T0) with 
coordinates x, y, width w and height h. It would be declared as 

T0  =  record x, y, w, h: integer end 

T0 may serve as the basis of an extension (subclass) TextWindow (T1), declared as 

T1  =  record (T0) t: Text end 

implying that T1 retain (inherit) all properties, (x, y, w and h) from its base type T0, and 
in addition feature a text field t. It also implies, that all T1s are also T0s, thereby 
allowing to form heterogeneous data structures. For example, the elements of a tree 
may be defined as of type T0. However, individually assigned elements may be of any 
type that is an extension of T0, such as a T1. 

The only new operation required is the type test. Given a variable v of type T0, the 
Boolean expression v is T  is used to determine the effective, current type assigned to v. 
This is a run-time test. 

Type extension alone, in addition to procedure-types, is necessary for programming in 
object-oriented style. An object type (class) is declared as a record containing 
procedure-typed fields, also called methods. For example: 

type viewer = pointer to record x, y, w, h: integer; 
  move: procedure (v: viewer; dx, dy: integer); 
  draw: procedure (v: viewer; mode: integer); 
 end 
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The operation to draw a certain viewer v is then expressed by the call v.draw(v, 0). The 
first v serves to qualify the method draw as belonging to the type viewer, the second v 
designates the specific object to be drawn. 

This reveals that object-oriented programming is effectively a style based on 
(inheriting) conventional, procedural programming. Surprisingly, most people did not 
consider Oberon as supporting object-orientation, simply because it did not use the new 
terminology. In 1990, H. Mössenböck spearheaded an effort to amend this apparent 
shortcoming and to implement a slight extension called Oberon-2 [34]. In Oberon-2 
methods, i.e. procedures bound to a record type, were clearly marked as belonging to a 
record, and they implied a special parameter designating the object to which the method 
was to be applied. As a consequence, such methods were considered as constants and 
therefore required the additional override feature for subclasses. 

6. Implementations 
The first ideas leading to Oberon were drafted in 1985, and the language was fully 
defined in early 1986 in close cooperation with J. Gutknecht. The Report was only 16 
pages long! [28] 

The first compiler was programmed by this author, deriving it from the single-pass 
Modula-2 compiler. It was written in (a subset of) Modula-2 for Lilith with the clear 
intention to translate it into Oberon, and it generated code for our Ceres workstation, 
equipped with the first commercial 32-bit microprocessor NS32032 of the National 
Semiconductor Corporation. The compiled code was downloaded over a 2400 b/s serial 
data line. As was expected, the compiler was considerably simpler than its Modula-2 
counterpart, although code generation for the NS processor was more complex than for 
Lilith’s byte-code. 

With the porting of the compiler completed, the development of the operating 
environment could begin. This system, (regrettably) also called Oberon, consisted of a 
file system, a display management system for windows (called viewers), a text system 
using multiple fonts, and backup to diskettes [30]. The entire system was programmed 
by J. Gutknecht and the author as a spare time activity over more than two years. This 
development process from scratch is described in [31]. The system was released in 
1989, where after a larger number of developers became involved to generate 
applications. These included a network based on a low-cost RS-485 connection 
operating at 230 Kb/s [32], a laser printer, color displays (black and white was still the 
standard at the time), a laser printer, a mail and a file server, and more sophisticated 
document and graphics editors. 

With the availability of a large number of Ceres workstations, Oberon was introduced 
as the language for introductory courses at ETH Zürich in 1990 [35, 36, 42], and also 
for courses in system software and compiler design. Having ourselves designed and 
implemented a complete system down to the last details, we were in a good position to 
teach software design. For many years, it had been our goal to publish a textbook not 
only sketching abstract principles, but rather showing concrete examples. Our efforts 
resulted in a single book containing the complete source text of this compact, yet real, 
useful, and convenient system. It was published in 1992 [37]. 
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Following the earlier suggestion of C.A.R. Hoare to write texts describing master 
sample programs to be studied and followed by students, we had published a text on 
widely useful algorithms and data structures, and now extended the idea to an entire 
operating system. Hoare had claimed that every other branch of engineering is taught 
by its underlying theoretical framework and by textbooks featuring concrete, practical 
examples. However, interest in our demanding text remained disappointingly small. 
This may be explained in part by the custom in Computer Science of learning to write 
programs before reading any. Consequently, literature containing programs worth 
reading is rather scarce. A second reason for the low interest is that languages and 
operating systems are no longer popular topics of research. Also among leading 
educational institutions prevails the widespread feeling that the current commercial 
systems and languages are the end of the topic and here to stay. Their enormity is taken 
as evidence that there is no chance for small research groups to contribute; arguing is 
considered beside the point and providing an alternative without chance of any 
acceptance in practice. 

Nevertheless we believe that the Oberon project was worth the effort, and that its 
educational aspect was considerable. It may still serve as an example of how to strive 
for simplicity and perspicuity in complex situations. Gigantic commercial systems are 
highly inappropriate to study principles and their economic realization. However, 
Oberon should not be considered as merely “a teaching language”. While it is suitable 
for teaching, because it allows starting with a subset without mentioning the rest, it is 
powerful enough to be used for large engineering projects. 

During the years 1990 – 1995, Oberon received much attention, not the least because of 
our efforts to port it to the majority of commercial platforms. Compilers (code 
generators) were developed for the Intel xx86, the Motorola 680x0 (M. Franz), the Sun 
Sparc (J. Templ), the MIPS (R. Crelier) and the IBM Power (M. Brandis) processors 
[40]. The remarkable result of this concerted effort was that Oberon became a truly 
portable platform, allowing programs developed on one processor to compile and run 
on any other processor without adaptation. 

Let us conclude this report with a peculiar story. The author wrote yet another code 
generator, not for a different processor, but rather for the same NS32000. This may 
seem strange and needs further explanation. 

The NS processor had been chosen for Ceres, because of its HLL-oriented instruction 
set, like that of Lilith. Among other features, it contained a large number of addressing 
modes, among which was the external mode. It corresponded to what was needed to 
address variables and call procedures of imported modules, and it allowed a fast linking 
process through the use of link tables. This sophisticated scheme made it possible to 
quickly load and link modules without any modification of the code. Only a simple link 
table had to be constructed, again similar to the case of Lilith. 

The implementers of Oberon for other platforms had no such feature available. 
Nevertheless, they managed to find an acceptable solution. At the end, it turned out less 
complicated than feared, and I started to wonder, how an analogous scheme used in the 
processor of National Semiconductor would perform. To find the answer, I wrote a 
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code generator using regular branch instructions (BSR) in place of the sophisticated 
external calls (CXP), and I developed a linking loader adapted to the new scheme. 

The new linker turned out to be not much more complicated, and hardly any slower. 
But execution speed of the new programs was considerably (up to 50%) higher. Such a 
factor was totally unexpected. It is explained by the development of the NS processor 
over various versions and many years. In place of the 32032 in 1985 we used the 32532 
in 1988 and the 32GX32 in 1990, which had the same instruction set, but were 
internally very different. The new versions were internally organized rather like RISC 
architectures, with the effect that simple, frequent instructions would execute very fast, 
while complex, rarely used instructions, such as our external calls, would perform 
poorly. Simple operations had become extremely fast (due to rising clock rates), 
whereas memory accesses remained relatively slow. On the other hand, memory 
capacity had grown tremendously. The relative importance of speed and code size had 
been changed. Hence, the old goal of high code density had become almost irrelevant. 

The same phenomenon caused us to abandon the use of other “high-level” instructions, 
such as index bound checks and multiply-adds for computing matrix indices. This is a 
striking example of how hardware technology can influence software design 
considerations very profoundly. 

7. Conclusions and Reflections 
My long term goal had been to demonstrate that a systematic design using a supportive 
language leads to lean, efficient, and economic software, requiring a fraction of the 
resources that is usually claimed. This goal has been reached successfully. I firmly 
believe, out of many experiences over many years, that a structured language is 
instrumental in achieving a structured design. In addition, it was demonstrated that a 
clean, compact design of an entire software system can be described and explained in a 
single book [37]. The entire Oberon System, including its compiler, text editor and 
window system occupied less than 200K bytes of main memory, and compiled itself in 
less than 40 seconds on a computer with a clock frequency of 25 MHz. 

In the current year 2007, however, such figures seem to have little significance. When 
the capacity of main memory is measured in hundreds of megabytes, and disk space is 
available in dozens of gigabytes, 200K bytes do not count. When clock frequencies are 
of the order of gigahertz, the speed of compilation is irrelevant. Or, expressed the other 
way round, in order that a computer user will recognize a process as being slow, the 
software must indeed be lousy. The incredible advances in hardware technology have 
exerted a profound influence on software development. Whereas they allowed systems 
to reach phenomenal performance, their influence on the discipline of programming 
have been rather detrimental as a whole. They have permitted software quality and 
performance to drop disastrously, because poor performance could easily be hidden 
behind faster hardware. In teaching, the notions of economizing memory space and 
processor cycles have become a thing apart. In fact, programming is hardly considered 
as a serious topic; it can be learnt by osmosis or, worse, by relying on extant program 
“libraries”. 



 19

This stands in stark contrast to the times of ALGOL and FORTRAN. Languages were to 
be precisely defined, their unambiguity to be proven; they were to be the foundation of 
a logical, consistent framework for proving programs correct, and not only syntactically 
well-formed. Such an ambitious goal can be reached, only if the framework is 
sufficiently small and simple. By contrast, modern languages are constantly growing. 
Their size and complexity is simply beyond anything that might serve as a logical 
foundation. In fact, they elude human grasp. Manuals have reached dimensions that 
effectively discourage any search for enlightenment. As a consequence, programming 
is not learnt from rules and logical derivations, but rather by trial and error. The glory 
of interactivity helps. 

The world at large seems to tolerate this development. Given the staggering hardware 
power, one can usually afford to be wasteful in space and time. The boundaries will be 
hit in other dimensions: usability and reliability. The enormity of current commercial 
systems limits understanding and fosters mistakes, leading to product unreliability. 
Signs that the limits of tolerance are being reached, have begun to appear. Over the past 
few years I heard of a growing number of companies that had adopted Oberon as their 
exclusive programming tool. Their common characteristic was the small size and a 
small number of trusting and faithful clients, requesting software of high quality, 
reliability and ease of use. Creating such software requires that its designers understand 
their products thoroughly. Naturally, this understanding must include the underlying 
operating system and the libraries, on which the designs rest and rely. but the perpetual 
complexification of commercial software has made such understanding impossible. 
These companies have found Oberon to be the viable alternative. 

Not surprisingly, these companies consist of small teams of expert programmers having 
the competence to make courageous decisions and enjoying the trust and confidence of 
a limited group of satisfied customers. It is neither surprising that small systems like 
Oberon are finding acceptance primarily in the field of embedded systems for data 
acquisition and real-time control. Here, not only economy is a foremost concern, but 
even more so are reliability and robustness. 

Still, these clients and applications are the exception. The market favors languages of 
commercial origin, regardless of their technical merits or defects. The market’s inertia 
is enormous, as it is driven by a multitude of vicious circles which reinforce 
themselves. Hence, the value and role of creating new programming languages in 
research is a legitimate question, and it must be posed. 

New ideas for improving the discipline of programming stem from practice. They are to 
be expressed in a notation, eventually forming a concrete language, which is to be 
implemented and tested in the field. Insights thus gained find their ways into new 
versions of widely used, commercial languages, slowly, very slowly over decades. It is 
fair to claim that Pascal, Modula-2, and Oberon have been successful in making such 
contributions over time. 

The most essential of their messages, however, is expressed in the heading of the 
Oberon Report: “Make it as simple as possible …”. This advice has not yet been widely 
understood [41]. It seems that currently commercial interests point in another direction. 
Time will tell. 
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