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Niklaus Wirth,  16. 4. 2008 

Abstract 
We report on the design of a simple board for use in teaching about microcontrollers. The project 
also describes a small language specifically designed for the PIC microcontroller. The project 
showed that hands-on experience is essential in teaching about sensors and controlling devices, 
and that the use of a small, hand-tailored language eases programming considerably. 

1. Introduction 
This work is largely motivated by my (former) teaching activities. In a course explaining the basic 
principles of computers, and then computer architectures, it is a good idea to start small and 
simple. Such simple computers still exist, fortunately, and provide the opportunity to directly offer 
hands-on experiences in a laboratory. This is always much more impressive than simulation or 
emulation. Furthermore, it can be established at very low cost, if the teacher is willing to lay 
hands on by himself. 

Here we present a small board equipped with two microcontrollers PIC fabricated by Microchip 
Inc. On this board are drivers for stepper motors and a 2-phase motor, as well as DA and AD 
converters. This allows to explain and experiment with peripheral devices in a direct way, a topic 
that is often neglected in computer science curricula. The chapter on applications is therefore 
held in a rather tutorial style. 

Microcontrollers are (still) the domain of assembler codes for programming. In fact, there is much 
to say for this, as the instruction sets are simple and the resources quite limited. Specifications of 
conventional languages would have to be accompanied by long lists of restrictions, of do’s and 
don’t do’s. 

Nevertheless, programming with assemblers is tedious and error-prone, and the resulting texts 
are cryptic and long. It was therefore felt to be worth a try to explore a “middle way”, to postulate 
a small language adapted to the needs and limitations of a microcontroller, in this case the PIC. 
The challenge lies in finding a form that offers the advantages of program structure, yet reflects 
the limitations and the underlying architecture in such a way that neither is the programmer 
misled nor does the compiler have to perform complicated and obscuring “optimization”. With this 
in mind, the language PICL was designed. It is described in a separate Report. Its compiler and 
the necessary support tools, such as a program loader, are programmed in Oberon available for 
PCs. Its description is contained in another Memo. 

As a preparation and prerequisite for the subsequently described applications, the following 
chapter provides an overview over the PIC’s structure, reduced to the minimum necessary. Even 
when programming in PICL, it is important for an engineer to be familiar with the PIC’s 
architecture, its resources and limitations. 

2. The PIC Architecture 
The PIC processor is a typical microcontroller insofar, as control unit, arithmetic/logical unit, and 
memory are all placed on a single chip. 

The PIC features a Harvard architecture: The control unit fetches instruction from the instruction 
memory, and the arithmetic unit handles data from a data memory. The two memories are 
separate, the former is implemented as a read-only memory (ROM), and the data memory is a 
regular random-access memory (RAM). Its elements are called registers, which is somewhat 
misleading, because there is one genuine register, the W-register, directly coupled with the 
arithmetic/logic unit (ALU). 
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Also typical for a microcontroller is that its system bus is not accessible from outside the chip. Its 
interface consists of two registers (A and B) consisting of 5 and 8 bits respectively, which can be 
controlled and configured independently. 

What makes this chip (the PIC16C84) particularly appropriate for experimentation, is that the 
program memory is electrically programmable, erasable, and reloadable (EEPROM). 

 
Fig. 1 The PIC architecture 

The PIC’s instruction set is refreshingly small and simple. Instructions consist of 14 bits and are 
divided into 4 classes as shown in Fig.2. The byte-oriented instructions operate on the W-register 
(accumulator) and the addressed byte in memory, and they store the result either in the same 
memory location or in the W-register. They include addition, subtraction, and the basic logical 
operations. The bit-oriented instructions set, clear, or test a single bit addressed by the field adr, 
and numbered by the field b. The literal data instructions are like the byte-oriented instruction, 
except that one operand is the literal contained in the instruction instead of the addressed byte in 
memory. Furthermore, there are a jump and a subroutine call instruction with an 11-bit address 
field. (For further details, we refer to the manual). 

Two of the addressable locations (registers) are the A and B ports, and one is the status register 
S, containing a zero and a carry bit, the conventional condition code. 

 

Fig. 2. PIC instruction formats 
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The main tools used in these experiments are the PICL compiler and the program loader. They 
are available in the form of commands (in any text): 

PICL.Compile @ selects the marked text for compilation 
PICL.Program loads the compiler program into program memory 

In addition, further commands are available in the same module: 

PICL.Verify verifies the preceding loading 
PICL.Reset puts the PIC in reset mode (keeps the reset signal low) 
PCL.Run start execution (removes the reset signal) 
PICL.Erase erases the loaded program 

This tool uses a 5-wire serial connection to the PIC via the PC’s parallel port. The signal 
assignments are as follows: 

Signal PC PIC      . 

Data D0 out / D5 in B7 
Clock D1 out  B6 in 
Data D5 in  A4 out 

Reset’ D2 out  MCR 
Program D3 out  MCR 

Note: MCR is a 3-level signal and therefore connects to 2 binary signals at the parallel port. For 
further details, see Sect. 5. 

4. Applications 

4.1. A serial data link 

For the following applications, in fact for practically all applications, a communication link to the 
host computer is a prerequisite. Therefore we first describe a pair of read/write procedures for the 
PIC, communicating with its corresponding pair on the PC. The latter are described in Oberon, 
the former in PICL. 

The first step in designing such a package is the definition of the data protocol. This protocol is 
determined by the available lines. Here we have 3 lines available. This implies a serial protocol, 
and we choose a byte (8 bits) as unit for transmission. A fairly obvious choice in our case is a 
handshake protocol, because it is timing-independent. This is desirable, particularly if the two 
partners have quite different speeds. 

4.1.1. Serial communication using the handshake protocol 

The underlying principle is that the sender issues a request signal on the request line, and at the 
same time applies the data bit on the data line. After the receiver has noticed the request and 
sensed the data line, it issues an acknowledge signal. After noticing this acknowledgement, the 
sender resets the request and proceeds with the transmission of the next bit. This process is 
shown in Fig. 3. The idle values of req and ack are 1. 

Fig. 3. Handshake protocol 
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The procedures for sending and receiving for the host computer (PC) use auxiliary procedures 
wait(b) for delaying until ack = b, and S(b) for applying b to the data line. 

PROCEDURE wait(b: INTEGER); 
 VAR ch: CHAR; 
BEGIN (*test D5, ack*) 
 REPEAT SYSTEM.PORTIN(in, ch) UNTIL ORD(ch) DIV 20H MOD 2 = b) 
END wait; 
 
PROCEDURE S(d: LONGINT); (*send d*) 
BEGIN SYSTEM.PORTOUT(out, d) 
END S; 
 
PROCEDURE R(VAR b: INTEGER); 
 VAR ch: CHAR; 
BEGIN (*read D6, dat*) SYSTEM.PORTIN(in, ch); b := ORD(ch) DIV 40H MOD 2 
END R; 
 
PROCEDURE Send*(d: LONGINT); 
 VAR i: INTEGER; 
BEGIN  wait(1); 
 FOR i := 0 TO 7 DO 
  S(d MOD 2 + 4); wait(0); 
  S(d MOD 2 + 6); wait(1); 
  d := d DIV 2 
 END ; 
 S(7) 
END Send; 
 
PROCEDURE Receive*(VAR d: LONGINT); 
 VAR x, b, i: INTEGER; 
BEGIN x := 0; 
 FOR i := 0 TO 7 DO 
  wait(0); 
  R(b); x := (x DIV 2) + (b * 80H); S(5); 
  wait(1); S(7) 
 END ; 
 d := x 
END Receive; 

The procedures for sending and receiving for the PIC are straight-forward. Note that in PILC the 
statement !s sets s to 1, !~s sets s to 0, and ?s waits, until s = 1. 

PROCEDURE Rec(): INT; 
 INT i, x; 
BEGIN x := 0; i := 8; 
 REPEAT ?~B.6; ROR x; 
  IF B.7 THEN !x.7 ELSE !~x.7 END ; 
  !~A.4; ?B.6;  !A.4; DEC i 
 UNTIL i = 0; 
 RETURN x 
END Rec;  
  
PROCEDURE Send(INT x); 
 INT i; 
BEGIN ?B.6; !S.5; !~B.7; !~S.5; i := 8; 
 REPEAT 
  IF x.0 THEN !B.7 ELSE !~B.7 END ; 
  !~A.4; ROR x; ?~B.6; !A.4; ?B.6; DEC i 
 UNTIL i = 0; 
 !S.5; !B.7; !~S.5 
END Send; 

This protocol is symmetric with respect to the two partners. The req and ack lines simply 
exchange their roles. However, the data line is always driven by the sender, and therefore needs 
to be bidirectional. Here, the data line is driven by the PC, except when the PIC sends a byte. 
Setting the data line (B.7 is a tri-state pin) to output mode is achieved by the first line of procedure 
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Send. (Bit 5 of the status register S enables the program to access the tri-state control register). 
The transmission rate achieved by this protocol is about 50 Kbit/s, if a  3.68 MHz oscillator is 
used for the PIC. 

4.1.2. Serial communication using an asynchronous protocol 

In this case, all three lines maintain their direction independent of who is sender and who is 
receiver. The clock is always generated by the same partner, which is therefore called the 
master. 

 
Fig. 4a. Asynchronous protocol; master = sender 

 
Fig. 4b. Asynchronous protocol; master = receiver 

The disadvantage of this solution is its dependence on timing. If the master is sender (Fig. 4a), 
then there is no feedback from the receiver as to whether the data were received correctly. And if 
the master is the receiver, there is no certainty that the sender is actually providing data. This 
may seem to be quite unacceptable, but it is often used in practice and works well, provided the 
timing is correct. Sender and receiver in the faster partner must include appropriate delays, and if 
the partner changes, the delays must be adjusted. 

The procedures for the PC, which acts as master, use auxiliary procedures S and R for accessing 
the parallel port, and wait for delaying the process. 

CONST out = 378H; in = 379H;  (*port addresses*) 
 del0 = 2000;  del1 = 1000;   (*processor dependent*) 

PROCEDURE wait(k: LONGINT); 
BEGIN 
 REPEAT DEC(k) UNTIL k = 0 
END wait; 
 
PROCEDURE S(d: LONGINT); 
BEGIN SYSTEM.PORTOUT(out, d) 
END S; 
 
PROCEDURE R(VAR b: INTEGER); 
 VAR ch: CHAR; 
BEGIN (*read D6, dat*) SYSTEM.PORTIN(in, ch); b := ORD(ch) DIV 20H MOD 2 
END R; 
 
PROCEDURE Send*(d: LONGINT); 
 VAR i: INTEGER; 
BEGIN 
 FOR i := 0 TO 7 DO 
  S(d MOD 2 + 4); wait(del0); 
  S(d MOD 2 + 6); wait(del1); 
  d := d DIV 2 
 END ; 
 S(7) 

req 
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req 
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END Send; 
 
PROCEDURE Receive*(VAR d: LONGINT); 
 VAR x, b, i: INTEGER; 
BEGIN x := 0; 
 FOR i := 0 TO 7 DO 
  S(5); wait(del0); 
  S(7); R(b); x := (x DIV 2) + (b * 80H); wait(del1) 
 END ; 
 d := x 
END Receive; 

The routines for the PIC use B7 and A4 for data, and B6 for the clock. B7 and B6 are 
permanently configured for input, A4 is configured for output with idle value 1. 

PROCEDURE Rec(): INT; 
 INT i, d; 
BEGIN d := 0; i := 8; 
 REPEAT ?~B.6; ROR d; 
  IF B.7 THEN !d.7 ELSE !~d.7 END ; 
  ?B.6; DEC i 
 UNTIL i = 0; 
 RETURN d 
END Rec;  
 
PROCEDURE Send(INT x); 
 INT i; 
BEGIN i := 8; 
 REPEAT ?~B.6; 
  IF x.0 THEN !A.4 ELSE !~A.4 END ; 
  ROR x; ?B.6; DEC i 
 UNTIL i = 0 
END Send; 

4.2. A Digital to Analog Converter 

Converting a digital signal encoded as an integer into an analog voltage is fairly straight-forward. 
An integer x is typically represented by n bits such that 

x = xn-12n-1 + … + x121 + x020,  xi = 0 or 1 

A voltage v corresponding (analog) to x is obtained by feeding the sum of currents into a 
differential amplifier, where each current corresponds to a bit of x, which control a current switch 
feeding its current either to the amplifier or to ground. (Given a high-gain amplifier, we can think 
of both its input being at zero potential). The currents are fed through identical resistors (2R) from 
a so-called R-2R ladder (see Fig. 5) This ladder is such that each component halves the voltage, 
i.e. 

Vi = Vref * 2n-I, 

where Vref is a so-called reference voltage. Hence, the output voltage is Vref * (x/2n). The 
disadvantage of this simple circuit is that an inverting amplifier is used which required a negative 
supply voltage. This is inconvenient, as it also produces a negative output. 
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Fig. 5. Current switching R-2R ladder 

A more convenient, and fortunately even simpler solution is to make use of the dual role of voltage 
and current in resistor networks, and to exchange Vref and Vout as input and output of the ladder. 
Fig. 6 shows that this solution does not even require an amplifier. 

Fig. 6. Voltage switching backward R-2R ladder 

Such DA converters are available as single chips. Some accept the input in parallel with n input 
pins, others provide a shift register and accept a single, serial signal and a clock for controlling the 
shifter. The latter are slower, but more convenient in connection with microcontrollers. We select 
the MAX539 device, an 8-pin DIP. It has 3 digital inputs: the serial data (connected to the PIC B.0 
signal), the shift clock (connected to the PIC B.1 signal, and an enable signal (connected to the 
PIC A.0 signal). The input values consist of 12 bits (n = 12) and must be fed with the most 
significant bit first. Our solution feeds 8 bits only, followed by 4 insignificant bits of arbitrary value. 

The PIC driver procedure contains a single repeat statement, shifting the input d onto the data line 
B.0. 

PROCEDURE DAConversion(INT d); 
 INT i, x; 
BEGIN !~B.1; x := d; 
 i := 8; 
 REPEAT !~B.1; 
  IF d.7 THEN !B.0 ELSE !~B.0 END ; 
  !B.1; ROL d; DEC i 
 UNTIL i = 0; 
 i := 4; 
 REPEAT !~B.1; ROL d; !B.1; DEC i 
 UNTIL i = 0; 
 B := x 
END DAConversion 

We have (intentionally) neglected the problems of timing. The clock rate must of course be 
appropriate for the converter. The program above yield a rate of … MHz, whereas the converter’s 
maximum rate is 1 MHz. 

4.3. An Analog to Digital Converter 
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A-to-D conversion is significantly more complicated, and there are several different ways to 
accomplish it. Basic to all solutions is a voltage comparator, i.e. a differential amplifier. It delivers 
a single bit, indication which of the two inputs is higher. 

Sequential ADCs use a single comparator and a series of 2n identical resistors, providing all 
voltages Vk = Vref * (k/2n) for k = 0 … 2n-1. The converter then searches for the Vk closest to Vin by 
performing a binary search. This takes some time, as there are n/2 comparisons to be made. 

Much faster are converters using 2n comparators, so-called flash converters (typically used in 
digital oscilloscopes). The task is then to find the largest k with Vk = 0, which can be 
accomplished by a purely combinational digital circuit. 

Here we use a sequential converter providing a serial output signal, the TLC549, also a 8-pin 
DIP. Its data output is connected to the PIC’s A.3 port bit, the shift clock comes from B.1, and the 
enable signal from A.1. The data is delivered with the most-significant bit first (MSB), as shown in 
Fig. 7. The data must be sampled after the clock rises. 

Fig. 7.  ADC converter signals and timing 

The chip contains a buffer holding the last measurement. This means that fetching a byte delivers 
the data buffered from the preceding sample, and at the same time triggers the next sample (AD 
conversion result). 

PROCEDURE ADConversion(): INT; 
 INT d, i; 
BEGIN !~B.1; d := 0; !~S.0; i := 8; 
 REPEAT !~B.1; ROL d; 
  IF A.3 THEN !d.0 ELSE !~d.0 END ; 
  !B.1; DEC i 
 UNTIL i = 0; 
 RETURN d 
END ADConversion; 

4.4. Controlling a Stepper Motor 

Stepper motors are used to turn the shaft to an exact position. They are typically used in disk 
drives for positioning the read/write heads over the rotating disk. Their principle is explained in 
Fig. 8. The rotor is pulled by a magnetic field applied to one of the windings or poles. By applying 
current to consecutive poles, a movement results. The figure shows an arrangement with 4 poles 
only. In reality there are many poles, typically 400 corresponding to the degrees of a full circle. 
Every fourth pole is placed in the same winding (wire). Hence there are exactly 4 windings, called 
phases, independent of the actual number of poles. Current always flows in the same direction in 
all windings. Therefore this scheme is called unipolar. 
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Fig. 8. Schematic of a 4-pole stepping motor 

The task of the microcontroller is to generate pulses on the 4 wires with appropriate timing. An 
open-collector driver is placed between the PIC and each phase of the motor. We use two 75477 
8-pin DIPs, each containing two drivers with an additional input for enabling or disabling, as 
shown in Fig. 9. A 0 at the PIC’s output represents current flowing and a magnetic field 
generated, a 1 that it is off. 

 

Fig. 9. A 75447 motor driver pair 

 

Fig. 10. The 4 phase signals for a unipolar stepper motor 

The four phase signals are derived from the signal diagram shown in Fig. 10. They are generated 
by the following PIC program. We assume ports B0 – B3 to be the phase signals. n denotes the 
number of steps to be moved, and on and off are delay values determining the pulse width and 
thereby the motor speed. 

PROCEDURE delay(INT k); 
BEGIN 
 REPEAT k := k - 1 UNTIL k = 0 
END delay; 
 
PROCEDURE phase(INT x); 
BEGIN B := x; delay(on); B := 0; delay(off) 
END phase; 
 
PROCEDURE StepForward(INT n); 
BEGIN 
 REPEAT phase(1); phase(3); phase(2); phase(6); phase(4); phase(12); phase(8); phase(9); DEC n 
 UNTIL n = 0 
END StepForward; 
 
PROCEDURE StepBackward(INT n); 
BEGIN 
 REPEAT phase(9); phase(8); phase(12); phase(4); phase(6); phase(2); phase(3); phase(1); DEC n 
 UNTIL n = 0 
END StepBackward; 

It is mandatory to ensure that no current flows, when the motor is idle, and after a reset signal to 
the PIC. The former requires that the 4 phase outputs are set to 1. A reset causes all PIC ports to 
assume a high-impedance state (input). Therefore no current will be drawn. 
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A more modern type of stepper motor is the bipolar motor. We note that in the unipolar type there 
exist always pairs of wires, one wire for each direction of current flow. This can be simplified in 
the interest of economy to a single wire instead of a pair. The disadvantage is that drivers must 
be provided at both ends of the coil that are able to both source and sink currents. Together the 
coil and its two drivers form a bridge as shown in Fig. 11. For our bipolar motor experiment we 
use the SGS L293E chip, which contains two pairs of amplifiers. The schema to the right shows 
the push-pull (totem-pole) configuration of transistor pairs in each amplifier. - The same signals 
can be used for both kinds of motor. 

 

Fig. 11. Bipolar motor driver (one phase only) 

4.5. Running a 2-phase Motor 

Our next experiment concerns the driving of a motor as it is typically used in small equipment 
such as disks or diskettes. Instead of in steps, they proceed continuously. They are organized 
similar to stepping motors, though, but have only 2 phases instead of 4, that is, there is a single 
bidirectional winding (coil) or two unidirectional coils. 

Evidently, current has to be applied alternatively to the 2 phases. As soon as the anchor has 
reached the position to which it was attracted by the magnetic field, the direction of the current is 
switched, and the anchor moves into the other direction. This, then, results in a continuous 
rotation. The switch is called the alternator, and until recent times consisted of two contacts 
mounted on the rotor shaft and two static brushes contacting them, thereby alternating between 
the rotating contacts. 

With the advent of power transistors it became possible to switch also high currents. The 
transistors are controlled by signals obtained by sensors monitoring the rotor’s position. These 
sensors are either optical or magnetic. In this way, a brushless motor is obtained. It operates 
without losses of energy in the brushes, and needs no brush maintenance. 

Here we use two MOSFETs (power transistors) IRF Z40, which are driven directly by the output 
signals of the PIC (B.4 and B.5). The sensor signal from the motor is fed to port A.3 as shown in 
Fig. 12. In the idle state both output must be low to cut the transistors off, and in order to be safe 
in the reset state with high-impedance outputs, weak pull-down resistors (4.7K) should be 
provided (not shown here). 

Fig. 12. 2-phase motor controller circuit 
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those resistors. The modern method is to not vary the value of the current, but the duration of its 
flow, that is, not to apply a permanent current, but rather pulses. The speed is then determined by 
the width of the pulses, and the method is called pulse width modulation (PWM). A micro-
controller is the ideal agent to vary the pulse width. Now that the energy sinking resistors are 
gone, the setup becomes considerably more efficient. 

The evident idea is to turn on the current for a time determined by a given speed parameter, and 
then to turn it off until the sensor signals the start of the next period, at which moment the current 
is turned on again. However, this scheme is unstable. Assume that the turn-on time is fixed by ton, 
and that the time until the next phase is toff. The average current is then imax * ton /(ton + toff). Now 
suppose that this value accelerates the rotor. As ton is fixed, a faster rotation causes toff to 
decrease, and therefore the quotient and the average current and therefore the speed to further 
increase. This continues until the maximum possible speed is reached, independent of the initial 
value of ton. 

The difficulty is solved by letting the speed parameter be toff rather than ton. Each phase therefore 
begins with waiting toff units of time with the current switched off, then turning it on until the sensor 
signal causes the current to be switched off again. Now an increase in speed causes ton to 
become shorter, decreasing the current and counteracting the increase in speed. The resulting 
driver program is straight-forward. It consists of a loop with the two phases. It terminates when a 
byte is received over the communication line, i.e. when its clock signal goes low. 

PROCEDURE TwoPhaseMotor(INT del); 
 INT k; 
BEGIN 
 REPEAT 
  REPEAT k := del; 
   REPEAT delay(50); k := k - 1 UNTIL ~A.3 OR k = 0; 
   IF A.3 THEN !B.4; ?~A.3; !~B.4 END ; 
   k := del; 
   REPEAT delay(50); k  := k - 1 UNTIL A.3 OR k = 0; 
   IF ~A.3 THEN !B.5; ?A.3; !~B.5 END ; 
  UNTIL ~B.6; 
  del := Rec() 
 UNTIL del = 0 
END TwoPhaseMotor; 

4.6. A Temperature Sensor 

As a last experiment we show the use of a temperature sensor. We chose the Dallas 1620, an 8-
pin DIP. It is in fact more complex than needed here, and we restrict our considerations to the 
single task of receiving a value indication the current ambient temperature. In this case. the value 
consists of 9 bits, received sequentially, LSB first. 

The input signal is connected to the PIC port A.3, the clock again to B.1. In he repeat statement, 
A.3 is copied into d.7, which is then shifted right. The 1620 delivers the temperature in half 
degrees centigrade. 

This chip can also serve as alarm, issuing a trigger signal when temperature exceeds or drops 
below a certain value. Commands are provided to load these limiting values into internal 
registers. Also sensing the current temperature therefore requires issuing a command. This is 
done by the auxiliary procedure Tout. It sends an 8-bit value to the 1620 sensor. This routine is 
also used to initialize the sensor correctly when the program is started after loading. As it uses 
the data line A.3 as an output, its port needs to be reconfigured. This is done in the first line of 
procedure Tout by setting A.3 to output. 

PROCEDURE ReadTemp(): INT; 
 INT d, i; 
BEGIN !A.2; TOut($AA); i := 9; 
 REPEAT !~B.1; ROR d; 
  IF A.3 THEN !d.7 ELSE !~d.7 END ; 
  !B.1; DEC i 
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 UNTIL i = 0; 
 !~A.2; ROL d; RETURN d 
END ReadTemp; 

PROCEDURE TOut(INT d); 
 INT i, x; 
BEGIN !~B.1; !S.5; !~A.3; !~S.5; x := d; 
 i := 8; 
 REPEAT !~B.1; 
  IF d.0 THEN !A.3 ELSE !~A.3 END ; 
  !B.1; ROR d; DEC i 
 UNTIL i = 0; 
 !S.5; !A.3; !~S.5 
END TOut; 

5. Integration of Experiments 
5.1. Hardware 

If we wish to integrate all the described experiments on a single board, we must realize that the 
PIC has too few pins to accommodate all devices. Two PICs are required. The signals and their 
chosen pin assignments are summarized as follows for the two PICs: 

Serial data link data in B7 
 data out A4 
 clock out B6 

Digital to analog data out B0 
 clock in B1 
 enable out A0 

Analog to digital data in A3 
 clock out B1 
 enable out A1 

Temperature sensor data in/out B0 
 clock out B1 
 enable out A2 

LEDs data out B0 – B5 

  

Serial data link data in B7 
 data out A4 
 clock out B6 

Stepper motors 4 phases out B0 – B3 
 enable out A0, A1 

2-phase motor 2 phases out B4, B5 
 sensor in A3 

LED data out A2 
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Fig. 13. Block diagram of PIC board 

The connection to the host computer consists of a clock line and a data line in each direction. 
These lines are shared by the two processors. This implies that they would interfere if running at 
the same time. The following scheme is used in order to avoid this situation. When starting (after 
reset), programs must first sense the data line (B.7). Programs on PIC-0 must go into an idle 
loop, if B.7 = 0, and those running on PIC-1 enter an idle loop, if B.7 = 1. The outgoing data line is 
connected to port A.4, which is an open-collector output, thus allowing the two outputs to be tied 
together. A pull-up resistor must be provided. 

And finally, a provision must be made for programming the processors, i.e. for loading programs 
into the EEPROM. Here the specification of the PIC determines that B.6 be the clock line, and B.7 
the data line. (We therefore have chosen the same assignments for the communication in 
general). The exception is the outgoing data line. In programming mode, it is used for verification 
of loaded programs, i.e. as output. This implies that B.7 is used bidirectionally using its tri-state 
facility. If the PC keeps D0 high, the line signal can be read at D6 thanks to a diode. The 
connections are shown in Fig. 14. 

 
Fig. 14. Connections between PC and PICs 

The MCLR (master clear, reset) signal of the PIC accepts three voltage levels, depending on the 
logic levels of PC outputs D2 (reset) and D3 (program): 

D3 (prog) D2 (rst) MCLR       . 

0 0 0V (reset) 
0 1 5V (run) 
1 0 12V (program) 
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5.2. Software 

Integration of the drivers means that there is a common loop accepting commands from the 
communication line and dispatching control to the various drivers. We assume that for every 
command, the first byte determines the driver to be called, and subsequent bytes are parameters. 
The following commands are provided for the processor driving motors: 

code command parameters  

0 mirror receive/send check 
1 activate stepper forward device, no.of steps, ontime, offtime 
2 activate stepper backward device, no.of steps, ontime, offtime 
3 activate 2-phase motor offtime 
4 idle 

The parameters ontime and offtime determine the pulse width and thereby the speed. 
INT cmd, dev, dat, on, off; 

PROCEDURE Idle; 
BEGIN B := $0F; A := $14; 
 REPEAT !A.2; longdelay; !~A.2; longdelay UNTIL ~B.6 
END Idle; 
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BEGIN B := $CF; A := $10; 
 !S.5; B := $C0; A := $08; !~S.5; (*set tri-state control*) 
 IF B.7 THEN 
  REPEAT cmd := Rec(); 
   IF cmd = 0 THEN dat := Rec(); Send(dat) 
   ELSIF cmd = 1 THEN dev := Rec(); dat := Rec(); on := Rec(); off := Rec(); 
    IF dev = 0 THEN !A.0 ELSIF dev = 1 THEN !A.1 ELSIF dev = 2 THEN !A.0; !A.1 END ; 
    StepForward(dat); !~A.0; !~A.1 
   ELSIF cmd = 2 THEN dev := Rec(); dat := Rec(); on := Rec(); off := Rec(); 
    IF dev = 0 THEN !A.0 ELSIF dev = 1 THEN !A.1 ELSIF dev = 2 THEN !A.0; !A.1 END ; 
    StepBackward(dat); !~A.0; !~A.1 
   ELSIF cmd = 3 THEN dat := Rec(); TwoPhaseMotor(dat) 
   ELSIF cmd = 4 THEN Idle 
   END 
  END 
 ELSE 
  REPEAT !A.2; longdelay; !~A.2; longdelay END 
 END 
END 

The program for the PIC driving DAC and ADC has the same structure: an infinite loop accepting 
commands: 

code command parameters  

0 mirror receive/send check 
8 DA conversion data 
9 AD conversion data  (to PC) 
10 sense temperature data  (to PC) 
11 show counter on LEDs - 
12 show shifter on LEDs 
13 multiply x, y 
14 divide x, y 
 

 INT cmd, dat, dat1; 

BEGIN B := $FF; A := $13; 
 !S.5; B := $C0; A := $08; !~S.5; 
 IF ~B.7 THEN 
  !A.2; TOut(3); TOut($EE); !~A.2; 
  REPEAT cmd := Rec(); 
   IF cmd = 0 THEN dat := Rec(); Send(dat); B := dat 
   ELSIF cmd = 8 THEN dat := Rec(); DAConversion(dat) 
   ELSIF cmd = 9 THEN dat := ADConversion(); dat := ADConversion(); Send(dat) 
   ELSIF cmd = 10 THEN dat := ReadTemp(); Send(dat) 
   ELSIF cmd = 11 THEN Count 
   ELSIF cmd = 12 THEN Shift 
   ELSIF cmd = 13 THEN dat := Rec(); dat1 := Rec(); Multiply; Send(dat1); Send(dat) 
   ELSIF cmd = 14 THEN dat := Rec(); dat1 := Rec(); Divide; Send(dat); Send(dat1) 
   END 
  END 
 ELSE 
  REPEAT !B.0; longdelay; !~B.0; longdelay END 
 END 
END  

The partner program on the PC is written in Oberon and provides a very convenient environment 
for experimentation. This is mostly due to the possibility to declare in one and the same module an 
arbitrary number of procedures acting as commands. They can be activated by a mouse click on 
text written anywhere, for example in the window containing the program text. An example is 
shown below. The procedures are contained in two separate modules called Motors and DAC. 

Motors.TestIO 55 Motors.Idle 
Motors.StepForward 0 50 200 50 
Motors.StepBackward 0 50 200 70 
Motors.StepForward 1 100 120 120 
Motors.StepBackward 1 100 70 70 
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Motors.Turn 10 Motors.SetSpeed 1 Motors.SetSpeed 50 Motors.SetSpeed 0 
 
DAC.TestIO 85 DAC.TestIO 170~ 
DAC.DAC 0 DAC.DAC 64 DAC.DAC 128 DAC.DAC 192 
DAC.DAC 255 
DAC.ADC DAC.Count DAC.Shift DAC.Temp 
DAC.Multiply 2 5 DAC.Divide 14 5 

6. Conclusions 

The first point to be emphasized is the importance of physical experimentation and hands-on 
experience when teaching about computers sensing or driving equipment. The presented setup 
demonstrates that with little effort and using inexpensive parts a system can be designed and 
built that shows how computers operate in ways and on problems that are often ignored in CS 
curricula. 

The second point is that experimentation can be vastly enhanced by adequate software 
environments. Here this includes both the system and the language Oberon. They are 
supplemented by the language PICL for the microcontroller PIC. After many years of skepticism 
the author is now convinced that even a very small language can considerably ease the writing of 
programs, even small ones, and free the programmers of the tedious coding with assemblers. An 
additional benefit of the simple language is a very small compiler. 

This project involved language design, compiler construction, familiarity with a microcontroller, 
interface design, even insider’s knowhow about how to get access to the PC’s parallel port. The 
hard lesson was, as always, that the devil hides in the details. It was fun to outwit him! 


