
An Update of the RISC5 Implementation

Niklaus Wirth, 15.6.2018

1. Introduction
This note describes an update of the implementation of the RISC5 processor, described in Verilog and
implemented on an FPGA.: https://www.inf.ethz.ch/personal/wirth/FPGA-relatedWork/RISC.pdf

The core of the new concept is that memory is treated, as is customary today, as an external device. This
implies that circuitry concerned with memory access is moved from the processor module RISC5 to the
environment module RISC5Top, where also all other connections to peripheral devices reside. Thereby the
ROM containing the startup code (boot loader) also resides in the Top module.

A facility for interrupts has been added. This required the addition of the parameter irq to the interface of
RISC5. The top module supplies this signal with a tick, resulting in an interrupt every millisecond. Apart from
this, RISC5 uses the same auxiliary modules as the old RISC5. The instruction set remains unchanged, and
therefore no changes in the software are necessary.

Several further details have been cleaned up or simplified. An example is byte selection for byte-wise
access to memory.

2. Memory access
Memory access for code and data are clearly separated in the interface of RISC5. Input of program code is
handled by codebus, input and output of data by inbus, and outbus. The signals rd and wr indicate reading
and writing of data, and ben determines byte selection.

module RISC6(
 input clk, rst, irq, stallX,
 input [31:0] inbus, codebus,
 output [21:0] adr,
 output rd, wr,
 output [3:0] ben,
 output [31:0] outbus);

In a von Neumann architecture, program code and data are stored in the same memory. Therefore, a
memory access requires two clock cycles, and the processor must be stalled for one cycle. A stall effectively
keeps the state of the processor unchanged (PC, IR, registers). In the first cycle the address is computed
and the data are fetched or stored. In the second cycle, the next instruction is fetched.

PC <= stall ? PC : pcmux;
IR <= stall ? IR : codebus;

Apart from the parameter irq there are no changes in RISC5Top. RISC5 is instantiated by the statement

RISC5 riscx(.clk(clk), .rst(rst), .irq(limit),
 .rd(rd), .wr(wr), .ben(ben), .stallX(stallX),
 .adr(adr), .codebus(codebus), .inbus(inbus), .outbus(outbus));

The ROM for holding the initial program (typically the boot loader) has been moved from module RISC5 to
RISC5Top. Writing to the SRAM occurs in the second cycle of a memory instruction.

PROM PM(.adr(adr[10:2]), .data(romout), .clk(~clk));
assign codebus = (adr[21:12] == 10'h3FF) ? romout : inbus;

assign SRadr = vidreq ? vidadr : adr[19:2];

3. Registers
In order to separate the handling of registers from other concerns, like the ALU,, a new module Registers has
been introduced. It features 1 input and 3 output ports selected by respective register numbers

Module Registers(
 input clk,wr,
 input [3:0] rno0, rno1, rno2,
 input [31:0] din,

https://www.inf.ethz.ch/personal/wirth/FPGA-relatedWork/RISC.pdf

 output [31:0] dout0, dout1, dout2);

reg [31:0] R[15:0];
assign dout0 = R[rno0];
assign dout1 = R[rno1];
assign dout2 = R[rno2];
always @ (posedge clk) R[rno0] <= wr ? din : R[rno0];
endmodule

Module Regsters is instantiated by the statement
Registers regs (.clk(clk), .wr(regwr), .rno0(ira0), .rno1(irb), .rno2(irc),

 .din(regmux), .dout0(A), .dout1(B), .dout2(C0));

4. Interrupts

Additions due to the interrupt facility are all within the processor module RISC5. Two new
instructions have been added, one for returning from an interruptr procedure, and one for enabling
or disabling interrupts. Both are encoded as BR instructions.

New variables are

wire intAck;
reg irq1, intEnb, intPnd, intMd;
reg [25:0] SPC; // saved PC on interrupt

When a rising edge of the interrupt signal irq is present and the processor is not yet handling an earlier
interrupt, then intPnd is asserted. The interrupt is then pending until acknowledged by signal intAck Then
the processor enters interrupt mode (intMd) and the processor jumps to location 4 (interrupt vector). The
current PC and the condition bits are saved in register SPC. No register values are saved, because every
interrupt handler is assumed to save (at least) registers R0 and R1. During interrupt mode, no further
interrupt is accepted.

intPnd <= rst & ~intAck & ((~irq1 & irq) | intPnd);
assign intAck = intPnd & intEnb & ~intMd & ~stallr;
intMd <= rst & ~RTI & (intAck | intMd);
SPC <= intAck ? {nn, zz, cx, vv, pcmux0} : SPC;

assign pcmux0 = stall ? PC :
 RTI ? SPC[21:0] :
 (BR & cond) ? (u? nxpc + disp : C0[23:2]) : nxpc;
assign pcmux = ~rst ? StartAdr : intAck ? 1 : pcmux0;;

Interrupt handlers are supposed to end with an RTI instruction (return from interrupt) instead of a regular
return instruction. An RTI instruction (BR with bit 4 set) causes the next instruction address to be taken back
from SPC[21:0] and the condition bits from SPC[25:22]. Also, the processor leaves the interrupt mode.

RTI = p & q & ~u & IR[4];

The Oberon compiler recognizes an interrupt handler through an asterisk after the symbol PROCEDURE.
Variable intEnb is set and reset by a register branch instruction with bit 5 set. It copies bit 0 to intEnb. The
Oberon compiler accomplishes this through the LDPSR procedure, a branch register instruction with bit 5
set

intEnb <= ~rst ? 0 : (p & q & ~u & ~v & IR[5]) ? IR[0] : intEnb;.

The following is an example of an interrupt test module. Its handler causes the LEDs to toggle at intervals of
500 ms.

MODULE TestInt;
 IMPORT SYSTEM;
 VAR led, cnt: INTEGER;

 PROCEDURE* Int; (*interrupt handler called every millisecond*)
 BEGIN INC(cnt);
 IF cnt = 500 THEN led := 3 - led; LED(led); cnt := 0 END
 END Int;

PROCEDURE On*;
BEGIN SYSTEM.LDPSR(1)
END On;

PROCEDURE Off*;
BEGIN SYSTEM.LDPSR(0)
END Off;

BEGIN led := 1; cnt := 0; (*install Int at address 4*)
 SYSTEM.PUT(4, 0E7000000H + SYSTEM.ADR(Int) DIV 4 - 2)
END TestInt.

irq

intAck

intMd

RTI

restore PCsave PC

intPnd

