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FEM and sparse linear system solving

Introduction

Introduction: Survey on lecture

1. The finite element method

2. Direct solvers for sparse systems

3. Iterative solvers for sparse systems
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FEM and sparse linear system solving

Introduction

Introduction: Extended survey on lecture

I The finite element method
I Introduction, model problems.
I 1D problems. Piecewise polynomials in 1D.
I 2D problems. Triangulations. Piecewise polynomials in 2D.
I Variational formulations. Galerkin finite element method.
I Implementation aspects.

I Direct solvers for sparse systems
I LU and Cholesky decomposition
I Sparse matrices, storage schemes.
I Fill-reducing orderings.
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FEM and sparse linear system solving

Introduction

Introduction: Extended survey on lecture (cont.)
I Iterative solvers for sparse systems

I Stationary iterative methods, preconditioning.
I Preconditioned conjugate gradient algorithm (PCG).
I Krylov space methods for nonsymmetric systems

Generalized Minimal RESidual (GMRES) algorithm.
I Incomplete factorization preconditioning.
I Multigrid preconditioning.
I Indefinite problems (SYMMLQ, MINRES).
I Nonsymmetric Lanczos iteration based methods

Bi-CG, QMR, CGS, BiCGstab.
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FEM and sparse linear system solving

Introduction

Organization

I 13 lectures
I complementary exercises

I to get hands-on experience
I based on Matlab and FreeFem++

I Matlab’s finite element toolbox (≤ 2D)
I FEM used to construct matrices
I Direct / iterative methods uses to solve the resulting systems

of equations

I Examination
I 30’ oral examination
I in exam session
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Strong formulation

Poisson equation

The Poisson problem I

Model problem posed on a simply connected domain Ω:

−∆u(x) := −
d∑

i=1

∂2u(x)

∂x2
i

= f (x), x ∈ Ω,

u(x) = gD(x), x ∈ ΓD = ∂ΩD ,

∂u(x)

∂n
= gN(x), x ∈ ΓN = ∂ΩN .

(M)

Here, ∂Ω = ΓD ∪ ΓN . On ΓD 6= ∅ Dirichlet boundary conditions are
imposed. On ΓN Neumann boundary conditions are imposed.
Mixed or Cauchy or Robin boundary conditions are possible:

αu + β
∂u

∂n
= g .
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Strong formulation

Poisson equation

The Poisson problem II

∂u
∂n = grad u · n

If we assume that ΓD 6= ∅ then (M) has a unique solution.
Remark: If ΓD = ∅ then

−
∫
∂Ω

gN ds = −
∫
∂Ω

∂u

∂n
ds = −

∫
Ω

∆u dx =

∫
Ω

f dx.

is necessary for the existence of a solution.
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FEM and sparse linear system solving

Strong formulation

Origins of the Poisson equation

Origins of the Poisson equation

I Steady state heat conduction (temperature distribution in
homogeneous medium due to heat sources.

I Electrostatics: Electric potential due to charge distribution.

I Astronomy: Gravitational potential due to mass distribution.

I Fluid dynamics: Potential of irrotational (curl-free) flow.

I Deviation from equilibrium state of a membrane due to
external forces.
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Strong formulation

Origins of the Poisson equation

Origins of the Poisson equation (cont.)
I Previous problems assumed homogeneous medium.

I Non-homogeneity due to (e.g.) varying material properties
can be taken into account and do not affect the ideas of the
following analyses, except that they make things more
complicated to write down.

−div (K (x) grad u(x)) = f (x), x ∈ Ω, K (x) positive definite,

u(x) = g(x), x ∈ ΓD ,

∂(Ku(x))

∂n
= gN(x), x ∈ ΓN .
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Strong formulation

Examples

Example 1

Solution for Ω = (−1, 1)2, right hand side f = 1, g = 0 where
ΓD = ∂Ω.

The solution is continuous up to the boundary and has second
derivatives in the interior.
Analytic solution can be obtained by separation of variables.
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Strong formulation

Examples

Example 2 (same problem / different domain)

Solution for Ω = L-shaped membrane, right hand side f = 1,
g = 0 where ΓD = ∂Ω.

The solution is continuous up to the boundary, but its first
derivative is singular at the reentrant corner. There it has the form
u(r , ϑ) = r2/3 sin(2ϑ+ π)/3)
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Strong formulation

Finite differences

Finite differences

The Poisson equation −∆u = f (plus some boundary conditions)
on a domain with axis-parallel boundary is often solved by finite
differences on a rectangular grid.
We define a rectangular grid with grid points that are a distance h
apart. In each grid point the Laplacian of u can be expanded as

−∆u(x1, x2) = − ∂2

∂x2
1

u(x1, x2)− ∂2

∂x2
2

u(x1, x2)

≈ 1

h2
(4u(x1, x2)− u(x1 + h, x2)− u(x1 − h, x2)

−u(x1, x2 + h)− u(x1, x2 − h)) +O(h2)
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Strong formulation

Finite differences

16× 16 grid
grid width h
Ω = (0, 15h)× (0, 15h)

The discretization in every (interior) grid point is given by

4ucenter − uwest − usouth − ueast − unorth = h2 · fcenter
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Strong formulation

Finite differences

Structure of a FD matrix

Matlab spy of a matrix discretization of the Poisson equation
−∆u = f in Ω = (0, 1)2, u = 0 on ∂Ω, with finite differences on a
12× 12 grid.
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FEM and sparse linear system solving

Strong formulation

Finite differences

Conclusion on Finite Differences

I Finite differences are difficult (or cumbersome) to implement
if the shapes of the domains get complicated, i.e., if the
boundary is not aligned with the coordinate axes.

I At this point finite elements come into play.
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FEM and sparse linear system solving

Strong formulation

Finite differences

Complicated domains

Structures that are difficult to discretize by finite differences.
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Piecewise polynomial approximation in 1D

Polynomial spaces

The space of linear polynomials

P1(I ) vector space of linear polynomials on interval I = [x0, x1]

P1(I ) = {v : v(x) = c0 + c1x , x ∈ I , c0, c1 ∈ R} .
{1, x} : the monomial basis for P1(I )

Definition: {x0, x1}: nodal points/nodes

{ϕ0(x), ϕ1(x)} : ϕj(xi ) =

{
1, if i = j

0, if i 6= j
nodal basis for P1(I )

ϕ0(x) =
x1 − x

x1 − x0
, ϕ1(x) =

x − x0

x1 − x0

Any function v in P1(I ) can be expressed as

v(x) = α0ϕ0(x) + α1ϕ1(x)

{α0, α1}: node values α0 = v(x0); α1 = v(x1)
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Piecewise polynomial approximation in 1D

Piecewise polynomial spaces

The space of continuous piecewise linear polynomials

{xi}ni=0: n+1 nodes in interval I :

0 = x0 < x1 < x2 < · · · < xn−1 < xn = L.

Subintervals: Ii = [xi−1, xi ], i = 1, . . . , n. Length: hi = xi − xi−1.
The space of continuous piecewise linear functions Vh

Vh =
{
v : v(x) ∈ C 0(I ), v |Ii ∈ P1(Ii )

}
.

C 0(I ): the space of continuous functions on I
P1(Ii ): the space of linear functions on Ii
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Piecewise polynomial approximation in 1D

Piecewise polynomial spaces

Any function v in Vh can be written as a linear combination of
{ϕi}ni=0: nodal bases (hat functions)
{αi}ni=0: nodal values of v .

v(x) =
n∑

i=0

αi ϕi (x) =
n∑

i=0

v(xi )ϕi (x).

ϕi (x) =


(x − xi−1)/hi , if x ∈ Ii ,

(xi+1 − x)/hi+1, if x ∈ Ii+1,

0, otherwise.
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Piecewise polynomial approximation in 1D

Piecewise polynomial spaces

Piecewise polynomial approximation

We consider two types of approximations of functions:

1. Piecewise (linear) interpolation.

I Here we assume that the function f to be approximated
(interpolated) is continuous.

I What can happen if we try tro interpolate a function that is
not continuous? (See Exercise 1.)

2. Piecewise (linear) best approximation in the least squares or
L2-sense.

I Here we assume that the function f to be approximated is in
L2(I ), i.e.

‖v‖L2(I ) ≡
(∫

I

v2dx

)1/2

<∞.

FEM & sparse linear system solving, Lecture 1, Sept 22, 2017 21/51



FEM and sparse linear system solving

Piecewise polynomial approximation in 1D

Interpolation

Piecewise polynomial approximation technique I

1 Interpolation: Given a continuous function f on I = [0, L],
its continuous piecewise linear interpolant πf is defined by

πf (x) =
n∑

i=0

f (xi )ϕi (x)

The interpolant πf approximates f exactly at the nodes xi .
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Piecewise polynomial approximation in 1D

Interpolation

Interpolation error f − πf

There are many norms to measure the difference f − πf in

1. the infinity norm
‖v‖∞ = max

x∈I
|v(x)|

2. the L2(I ) norm: for any square integrable function v on I

‖v‖L2(I ) =

(∫
I
v2dx

)1/2

Note: L2(I ) norm or any norm obeys the triangle inequality:

‖v + w‖L2(I ) ≤ ‖v‖L2(I ) + ‖w‖L2(I )
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Piecewise polynomial approximation in 1D

Interpolation

Interpolation error e = f − πf in L2(I )-norm

Theorem 1: Linear interpolation in interval I = [x0, x1] of length h.

‖f − πf ‖L2(I ) ≤ C h2‖f ′′‖L2(I )

‖(f − πf )′‖L2(I ) ≤ C h‖f ′′‖L2(I )

Proof: Fundamental thm of calculus → e(y) = e(x0) +
∫ y
x0
e ′dx

Using Cauchy-Schwarz inequality

e(y) =

∫ y

x0

e′dx ≤
∫ y

x0

|e′|dx ≤
(∫

I

1dx

) 1
2
(∫

I

e′
2
dx

) 1
2

= h
1
2

(∫
I

e′
2
dx

) 1
2

‖e‖L2(I ) ≤ h‖e′‖L2(I ), also ‖e′‖L2(I ) ≤ h‖e′′‖L2(I ) ⇒ ‖e‖L2(I ) ≤ h2‖e′′‖L2(I )
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Piecewise polynomial approximation in 1D

Interpolation

Interpolation error e = f − πf in L2(I )-norm (cont.)
Theorem 2: Piecewise linear interpolation in interval I .

‖f − πf ‖2
L2(I ) ≤ C

n∑
i=1

h4
i ‖f ′′‖2

L2(Ii )

‖(f − πf )′‖2
L2(I ) ≤ C

n∑
i=1

h2
i ‖f ′′‖2

L2(Ii )

Proof: Note that

‖f − πf ‖2
L2(I ) =

n∑
i=1

‖f − πf ‖2
L2(Ii )

.

Then use triangle inequality and Theorem 1.
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Piecewise polynomial approximation in 1D

L2 -projection

Piecewise polynomial approximation technique II

2 L2 -projection: The L2-projection Phf of f onto the space Vh

is defined by ∫
I
(f − Phf )vh dx = 0, ∀vh ∈ Vh (∗)

The L2-projection Phf approximates f on average. Phf commonly
over- and undershoots local maxima and minima of f , respectively.
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Piecewise polynomial approximation in 1D

L2 -projection

A priori error estimate

Theorem 3: The L2-projection Phf satisfies the best approximation
property:

‖f − Phf ‖L2(I ) ≤ ‖f − vh‖L2(I ), ∀vh ∈ Vh

Proof: Write ‖f − Phf ‖2
L2(I ) =

∫
I
(f − Phf )(f − vh + vh − Phf ) dx , split

equation, and use Schwarz inequality.

Consequences:

‖f − Phf ‖2
L2(I ) ≤ ‖f − πf ‖

2
L2(I )

‖f − Phf ‖2
L2(I ) ≤ C

n∑
i=1

h4
i ‖f ′′‖2

L2(Ii )
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Piecewise polynomial approximation in 1D

Compute the L2-projection

Compute the L2-projection

From (∗) ∫
I
(f − Phf )ϕi dx = 0, i = 0, 1, . . . , n,

where ϕi are the hat functions. Since Phf belongs to Vh,

Phf =
n∑

j=0

ξjϕj ,

where ξj are the unknown coefficients to be determined.

∫
I
f ϕidx =

∫
I

 n∑
j=0

ξjϕj

ϕidx =
n∑

j=0

ξj

∫
I
ϕjϕidx , i = 0, 1, . . . , n.
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Piecewise polynomial approximation in 1D

Compute the L2-projection

Matrix form

Mass matrix: mij =

∫
I
ϕjϕi dx , i , j = 0, 1, . . . , n.

Load vector: bi =

∫
I
f ϕidx , i = 0, 1, . . . , n.

(n+ 1)× (n+ 1) linear system for the n+ 1 unknown coefficients ξj

bi =
n∑

j=0

mijξj , i = 0, 1, . . . , n.

Solve the linear system of equations Mξ = b.
Properties of M?
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Piecewise polynomial approximation in 1D

Quadrature

Quadrature rules

To compute the L2-projection, compute integrals approximately

J =

∫
I
f (x)dx

I Step 1: Interpolate the integrand f by a polynomial
I Midpoint rule: interpolation by polynomial of degree 0

J ≈ f (m)h where m = (x0 + x1)/2

I Trapezoidal rule: interpolation by polynomial of degree 1

J ≈ f (x0) + f (x1)

2
h where m = (x0 + x1)/2.

I Simpson’s formula: interpolation by polynomial of degree 2

J ≈ f (x0) + 4f (m) + f (x1)

6
h where m = (x0+x1)/2, h = x1−x0.

I Step 2: Integrate the interpolant.
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Piecewise polynomial approximation in 1D

Computer implementation: assembly of the mass matrix

Let’s use Simpson’s formula to integrate mij =
∫
I ϕjϕidx

ϕi =


(x − xi−1)/hi , if x ∈ Ii
(xi+1 − x)/hi+1, if x ∈ Ii+1

0, otherwise

Entries of M: mij = 0 for for |i − j | > 1.

mii =

∫
I
ϕi

2dx =

∫ xi

xi−1

ϕi
2dx +

∫ xi+1

xi

ϕi
2dx

=
0 + 4( 1

2 )2 + 1

6
hi+

1 + 4( 1
2 )2 + 0

6
hi+1 =

hi
3

+
hi+1

3
, i = 1, 2, · · · , n−1

First and last diagonal entries of M are :h1
3 ,

hn
3 respectively

mi i+1 =

∫
I
ϕi+1ϕidx =

∫ xi+1

xi

ϕi+1ϕidx =
hi+1

6

Superdiagonal entries are same as subdiagonal entries.
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Piecewise polynomial approximation in 1D

Computer implementation: assembly of the mass matrix

M =



h1
3

h1
6

h1
6

h1
3 + h2

3
h2
6

h2
6

h2
3 + h3

3
h3
6

. . .
. . .

. . .
hn−1

6
hn−1

3 + hn
3

hn
6

hn
6

hn
3



=



h1
3

h1
6

h1
6

h1
3

+


h2
3

h2
6

h2
6

h2
3

+ · · ·+

 hn
3

hn
6

hn
6

hn
3


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Piecewise polynomial approximation in 1D

Computer implementation: assembly of the mass matrix

=



h1
3

h1
6

h1
6

h1
3

+


h2
3

h2
6

h2
6

h2
3

+ · · ·+

 hn
3

hn
6

hn
6

hn
3


=

n∑
i=1

Ii
hi
6

[
2 1
1 2

]
I∗i

Here, Ii ∈ Rn×2 is a Boolean (0-1) matrix. It maps the local to the
global degrees of freedom:

(Ii )k` =

{
1, k is the global number of the local node `

0, otherwise.
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Piecewise polynomial approximation in 1D

Computer Implementation: Assembly of the Load Vector

Using the Trapezoidal rule:

bi =

∫
I
f ϕidx =

∫ xi+1

xi−1

f ϕidx =

∫ xi

xi−1

f ϕidx +

∫ xi+1

xi

f ϕidx

≈ (f (xi−1)ϕi (xi−1) + f (xi )ϕi (xi ))hi/2

+ (f (xi )ϕi (xi ) + f (xi+1)ϕi (xi+1))hi+1/2

= f (xi )(hi + hi+1)/2

b =



f (x0)h1/2
f (x1)(h1 + h2)/2
f (x2)(h2 + h3)/2

...
f (xn−1)(hn−1 + hn)/2

f (xn)(hn)/2


=

n∑
i=1

Ii
hi
2

[
f (xi−1)
f (xi )

]
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Piecewise polynomial approximation in 1D

Basic algorithm to compute L2-projection

Compute the L2-projection: summary

1. Create mesh with n elements (subintervals) on interval I and
define corresponding space of continuous piecewise linear
functions Vh.

2. Compute the matrix M and the vector b:

mij =

∫
I
ϕjϕidx and bi =

∫
I
f ϕidx .

3. Solve the linear system

M ξ = b

4. Set

Phf =
n∑

j=0

ξjϕj

which is the best approximation of the function f .
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The finite element method in 1D

The finite element method for a model problem

The finite element method in 1D

I The finite element method for a model problem

I Variational formulation

I Finite element approximation

I Derivation of a linear system of equations

I Basic algorithm to compute the finite element solution
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The finite element method in 1D

The finite element method for a model problem

The finite element method for a model problem

Example: A two-point boundary value problem: Find u that
satisfies

−u′′(x) = f (x), x ∈ I = [0, L]

Boundary conditions at interval endpoints: u(0) = u(L) = 0.

Question: How do we find u ?

I If f = 1⇒ u = x(L− x)/2 (analytic solution).

I For general f : difficult or even impossible to find the analytic
solution u.
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The finite element method in 1D

Variational formulation

Variational formulation

To derive the finite element method, we first rewrite the
differential equation as a variational equation. Multiplying
f = −u′′ by a test function v and integrating by parts we get∫ L

0
fv dx = −

∫ L

0
u′′vdx =

∫ L

0
u′v ′dx − u′(L)v(L) + u′(0)v(0).

Requirement: v and v ′ square integrable on I . Space of square-
integrable functions is denoted by L2(I ) =

{
u : I → R|

∫
I
|u(x)|2 <∞

}
.

V0 =
{
v : ||v ||L2(I ) <∞, ||v ′||L2(I ) <∞, v(0) = v(L) = 0

}
.

Variational formulation: Find u ∈ V0 such that∫
I

u′v ′ dx =

∫
I

fv dx , ∀v ∈ V0.
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The finite element method in 1D

Finite element approximation

Finite element approximation

Approximate u by a continuous piecewise linear function.

I Mesh on the interval I consisting of n subintervals

I Corresponding space Vh of all continuous piecewise linears.
Vh,0: subspace of those functions in Vh that satisfy the
homogeneous Dirichlet boundary conditions

Vh,0 = {v ∈ Vh : v(0) = v(L) = 0} .

Find uh ∈ Vh,0 such that∫
I
u′hv
′ dx =

∫
I
fv dx , ∀v ∈ Vh,0.
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The finite element method in 1D

Derivation of a linear system of equations

Derivation of a linear system of equations

ϕi , i = 1, . . . , n − 1, are the hat functions spanning Vh,0∫
I
u′hϕ

′
i dx =

∫
I
f ϕi dx , i = 1, 2, . . . , n − 1.

Since uh belongs to Vh,0,

uh =
n−1∑
j=1

ξjϕj .

Unknown coefficients: ξj , j = 1, 2, . . . , n − 1∫
I
f ϕidx =

∫
I

( n−1∑
j=1

ξjϕ
′
j

)
ϕ′idx =

n−1∑
j=1

ξj

∫
I
ϕ′jϕ

′
idx , i = 1, 2, . . . , n−1
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FEM and sparse linear system solving

The finite element method in 1D

Derivation of a linear system of equations

Matrix form

bi =

∫
I
f ϕi ; aij =

∫
I
ϕ′jϕ

′
i dx , i , j = 1, 2, . . . , n − 1

(n − 1)× (n − 1) linear system for the n-1 unknown coefficients ξj

bi =
n−1∑
j=1

aij ξj , i = 1, 2, . . . , n − 1

A ξ = b.

A : (n − 1)× (n − 1) matrix → stiffness matrix
b : (n − 1)× 1→ load vector
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FEM and sparse linear system solving

The finite element method in 1D

Basic Algorithm to Compute the Finite Element Solution

Basic finite element algorithm

1. Create a mesh with n elements on the interval I and define the
corresponding space of continuous pcw linear functions Vh,0.

2. Compute matrix A ∈ R(n−1)×(n−1) and vector b ∈ R(n−1):

bi =

∫
I
f ϕi , Aij =

∫
I
ϕ′jϕ

′
idx , i , j = 1, 2, . . . , n − 1.

3. Solve linear system
Aξ = b

4. Set

uh =
n−1∑
j=1

ξjϕj
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FEM and sparse linear system solving

The finite element method in 1D

Error Estimate: e = u − uh

A priori error estimate: e = u − uh

Theorem 4 (Galerkin orthogonality): The finite element
approximation uh, satisfies the orthogonality∫

I
(u′ − u′h) v ′h dx = 0, ∀vh ∈ Vh,0

Theorem 5 (Best approximation property) The finite element
solution uh satisfies

‖u′ − u′h‖L2(I ) ≤ ‖u′ − v ′h‖L2(I ) ∀vh ∈ Vh,0.

Proof: Write ‖u′ − u′h‖2
L2(I ) =

∫
I
(u′ − u′h)(u′ − v ′h + v ′h − u′h) dx ,

split equation, and use Schwarz inequality.
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FEM and sparse linear system solving

The finite element method in 1D

Error Estimate: e = u − uh

A priori error estimate: e = u − uh (cont.)
Theorem 6 (A priori error estimate) The finite element solution uh
satisfies the estimate

‖(u − uh)′‖2
L2(I ) ≤ C

n∑
i=1

h2
i ‖u′′‖2

L2(Ii )
∀v ∈ Vh,0

Proof: Use best approximation property with v = πu and
Theorem 2.

Consequences: With h = maxi hi we get

‖u′ − u′h‖L2(I ) ≤ C h ‖u′′‖L2(I ).
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FEM and sparse linear system solving

The finite element method in 1D

A model problem with variable coefficients

A model problem with variable coefficients

Consider the model problem, find u such that

−(au′)′ = f , x ∈ I = [0, L],

au′(0) = κ0(u(0)− g0),

−au′(L) = κL(u(L)− gL).

a(x) > 0, κ0 ≥ 0, κL ≥ 0, g0 and gL are given.
Step 1: Start by rewriting the differential equation as a variational
equation. ∫ L

0
fvdx =

∫ L

0
−(au′)′vdx

Use integration by parts and substitute boundary conditions,∫
I
au′v ′dx+κLu(L)v(L)+κ0u(0)v(0) =

∫
I
fvdx+κLgLv(L)+κ0g0v(0)
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FEM and sparse linear system solving

The finite element method in 1D

A model problem with variable coefficients

Step 2: To obtain the finite element approximation uh ∈ Vh

replace the continuous space V with the discrete space of
continuous piecewise linears Vh in the variational formulation.
Find uh ∈ Vh such that∫
I
au′hv

′dx+κLuh(L)v(L)+κ0uh(0)v(0) =

∫
I
fvdx+κLgLv(L)+κ0g0v(0)

for all v ∈ Vh.
Step 3: In order to compute the finite element approximation uh,
write it as the linear combination of {ϕi}ni=0, hat functions are
basis of Vh. ϕ0 and ϕn: half hats at end points x = 0 and x = L.

uh =
n∑

j=0

ξjϕj

and derive the linear system of equations.
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FEM and sparse linear system solving

The finite element method in 1D

Computer implementation: stiffness matrix A+R and load vector b + r

Step 4: Insert

uh =
n∑

j=0

ξjϕj

into∫
I
au′hv

′dx+κLuh(L)v(L)+κ0uh(0)v(0) =

∫
I
fvdx+κLgLv(L)+κ0g0v(0)

and choose v = ϕi , i = 0, . . . , n,

ϕi =


(x − xi−1)/hi , if x ∈ Ii
(xi+1 − x)/hi+1, if x ∈ Ii+1

0, otherwise

and you will get ...
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FEM and sparse linear system solving

The finite element method in 1D

Computer implementation: stiffness matrix A+R and load vector b + r

Assembly of the Stiffness Matrix and Load Vector

(A + R)ξ = b + r.

Entries of (n + 1)× (n + 1) matrices A, R and of (n + 1) vectors b
and r are:

aij =

∫
I
aϕ′jϕ

′
idx

rij = κLϕj(L)ϕi (L) + κ0ϕj(0)ϕi (0)

bi =

∫
I
f ϕidx

ri = κLgLϕi (L) + κ0g0ϕi (0)
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FEM and sparse linear system solving

The finite element method in 1D

Computer implementation: entries of stiffness matrix A + R and load vector b + r

Entries of A: for |i − j | > 1 : aij = 0.

ai ,i =

∫
I
aϕ′i

2
dx =

∫ xi

xi−1

aϕ′i
2
dx +

∫ xi+1

xi

aϕ′i
2
dx =

ai
hi

+
ai+1

hi+1

First and last diagonal entries of A are : a1
h1
, anhn respectively

ai ,i+1 =

∫
I
aϕ′i+1ϕ

′
idx =

∫ xi+1

xi

aϕ′i+1ϕ
′
idxs = −ai+1

hi+1

Superdiagonal entries are same as subdiagonal entries: A = AT .
Entries of R: rij = κLϕj(L)ϕi (L) + κ0ϕj(0)ϕi (0) are all zero except
i=j=0 or i=j=n.
Entries of b + r: done exactly as shown in the L2 projection,
additional terms r1 = κ0g0ϕi (0) and rn = κLgLϕi (L).
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FEM and sparse linear system solving

The finite element method in 1D

Computer implementation: entries of stiffness matrix A + R and load vector b + r

A+R =



a1

h1
− a1

h1

− a1

h1

a1

h1
+ a2

h2
− a2

h2

− a2

h2

a2

h2
+ a3

h3
− a3

h3

. . .
. . .

. . .

− an−1

hn−1

an−1

hn−1
+ an

hn
− an

hn

− an
hn

− an
hn


+



κ0

. . .

κL



b + r =



f (x0)h1/2
f (x1)(h1 + h2)/2
f (x2)(h2 + h3)/2

...
f (xn−1)(hn−1 + hn)/2

f (xn)(hn)/2


+



κ0g0

0
0
...
0

κLgL


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FEM and sparse linear system solving

The finite element method in 1D

Computer implementation: entries of stiffness matrix A + R and load vector b + r

The global stiffness matrix A + R can be written as

A+R =
a1

h1



1 −1
−1 1

+
a2

h2


1 −1
−1 1

+· · ·+an
hn

 1 −1
−1 1

+



κ0g0

...

κLgL


= AI1 + AI2 + · · ·+ AIn + R

Exercise
http:

//people.inf.ethz.ch/arbenz/FEM17/exercises/ex1.pdf
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