

FEM and sparse linear system solving Lecture 11, Dec 1, 2017: Multigrid http://people.inf.ethz.ch/arbenz/FEM16

Peter Arbenz Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch

Survey on lecture

Survey on lecture

- The finite element method
- Direct solvers for sparse systems
- Iterative solvers for sparse systems
 - Stationary iterative methods, preconditioning
 - Preconditioned conjugate gradient method (PCG)
 - Krylov space methods for nonsymmetric systems GMRES, MINRES
 - Preconditioning
 - Multigrid (preconditioning)
 - Nonsymmetric Lanczos iteration based methods Bi-CG, QMR, CGS, BiCGstab

-Survey on lecture

Outline of this lecture

- 1. Geometric multigrid preconditioning
 - Multigrid restricted to rectangular grid. Here: square grid.
 - Restricted to SPD matrices

Literature

- Y. Saad: Iterative methods for sparse linear systems (2nd ed.). SIAM, 2003.
- ► J. Demmel: Applied Numerical Linear Algebra. SIAM, 1997.
- H. Elman, D. Silvester, & A. Wathen. Finite elements and fast iterative solvers. Oxford University Press, 2005. Chapter 2.

- Preconditioned conjugate gradient algorithm

Preconditioned conjugate gradients

Given a system of equations

$$A\mathbf{x} = \mathbf{b}, \qquad A \in \mathbb{R}^{n \times n} \text{ is SPD.}$$
(1)

- *n* is related to mesh width *h* in FE or FD, $\kappa(A) = O(1/h^2)$.
- ► For large systems, we need to precondition (1) to get reasonable iteration counts.
- Simple and popular preconditioners are Jacobi (diagonal), Gauss-Seidel (GS), or IC(0) preconditioners.
- These methods tend to be slow as problem size *n* increases.
- But, both Jacobi and GS preconditioners are good smoothers: they effectively damp the high-frequency modes of the errors.
- Coarse grid correction takes care about low-frequency modes.

1D Poisson problem

1D Poisson problem

The FE/FD discretization of

$$-u''(x) = f(x), \qquad u(0) = u(1) = 0,$$

leads to a linear system with the system matrix as below. Using the trigonometric identity

$$\sin(j-1)\vartheta + \sin(j+1)\vartheta = 2\sin j\vartheta \cos \vartheta$$

gives

$$\begin{bmatrix} 2-1 & & \\ -1 & 2-1 & & \\ & -1 & 2-1 & \\ & -1 & 2-1 & \\ & & -1 & 2-1 & \\ & & & -1 & 2-1 & \\ & & & & -1 & 2-1 & \\ & & & & & -1 & 2 & -1 \\ & & & & & & -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} \sin \vartheta \\ \sin 2\vartheta \\ \sin 3\vartheta \\ \sin 4\vartheta \\ \sin 5\vartheta \\ \sin 6\vartheta \\ \sin 7\vartheta \end{bmatrix} = \underbrace{2(1-\cos \vartheta)}_{4\sin^2 \frac{\vartheta}{2}} \begin{bmatrix} \sin \vartheta \\ \sin 2\vartheta \\ \sin 3\vartheta \\ \sin 4\vartheta \\ \sin 5\vartheta \\ \sin 6\vartheta \\ \sin 7\vartheta \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \sin 8\vartheta \end{bmatrix}$$

1D Poisson problem

1D Poisson problem (cont.)

If ϑ is such that $\sin(n+1)\vartheta = 0$ (here n = 7) then we have found an eigenvalue $\lambda = 2(1 - \cos \vartheta)$ and a corresponding eigenvector. Clearly,

$$\vartheta_k = \frac{k\pi}{n+1} \Longrightarrow \sin \vartheta_k = 0 \Longrightarrow \lambda_k = 2(1 - \cos \vartheta_k) = 4\sin^2 \frac{\vartheta_k}{2}$$

The corresponding eigenvectors (of $T_n \mathbf{x} = \lambda \mathbf{x}$) are

$$\boldsymbol{q}_k = (\sin \vartheta_k, \sin 2\vartheta_k, \dots, \sin n\vartheta_k)^T.$$

The smallest/largest eigenvalues are

$$\lambda_1 = 4\sin^2 \frac{\pi}{2(n+1)} = \mathcal{O}(h^2), \qquad \lambda_n = 4\sin^2 \frac{n\pi}{2(n+1)} = 4 - \mathcal{O}(h^2) \approx 4.$$

2D Poisson problem

2D Poisson problem

The FE/FD discretization of

$$-\Delta u(x)=f(x)$$
 in $\Omega=(0,1)^2,\qquad u=0$ on $\partial\Omega$

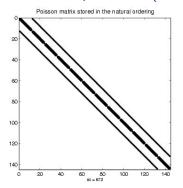
on a grid with n-by-n (interior) gridpoints leads to a matrix of the structure given on the next slide.

```
16 \times 16 grid
(including boundary points)
n = 14
grid width h = 1/15 = 1/(n+1)
\Omega = (0, 1)^2 = (0, 15h)^2
```

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠			٠				٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	-		٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•	٠	٠	٠	•	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

2D Poisson problem

2D Poisson problem (cont.)



 $A_{n \times n} = T_n \otimes I_n + I_n \otimes T_n$ Kronecker product

The discretization in every (interior) grid point is given by

 $4u_{\text{center}} - u_{\text{west}} - u_{\text{south}} - u_{\text{east}} - u_{\text{north}} = h^2 \cdot f_{\text{center}}$

2D Poisson problem

2D Poisson problem (cont.)

The eigenvalues and eigenvectors are given by

$$\lambda_{k,\ell} = \lambda_k^{(1D)} + \lambda_\ell^{(1D)} = 4\left(\sin^2\frac{\vartheta_k}{2} + \sin^2\frac{\vartheta_\ell}{2}\right), \qquad 1 \le k, \ell \le n.$$

The corresponding eigenvectors are obtained by a tensor product of the 1D-eigenvectors,

$$\mathbf{x}_{k,\ell} = \operatorname{Vec}\left(\mathbf{x}_{k}^{(1D)}\left(\mathbf{x}_{\ell}^{(1D)}
ight)^{T}
ight), \qquad 1 \leq k, \ell \leq n.$$

Remark: Vec makes a vector from a matrix by stacking column on top of each other.

In MATLAB this is obtained by the colon operator: a = A(:);

-Smoothing

Damped Jacobi iteration

Damped Jacobi iteration is given by

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \omega D^{-1} \mathbf{r}_k = \mathbf{x}_k + \omega D^{-1} (\mathbf{b} - A\mathbf{x}_k)$$

where D = diag(A). So far we considered $\omega = 1$. The eigenvalues μ_k of the iteration matrix $I - \omega D^{-1}A$ for the 1D Poisson matrix are (D = 2I)

$$\mu_k = 1 - \frac{\omega}{2}\lambda_k = 1 - 2\omega\sin^2\frac{\vartheta_k}{2}, \quad 1 \le k \le n,$$

One sees that we must have $0 < \omega \leq 1$ to have convergence at all. If we want a maximal reduction of the high-order modes \boldsymbol{q}_k , $k = \frac{n}{2}, \ldots, n$, then we choose $\mu_{\frac{n}{2}} = -\mu_n$ whence $\omega = 2/3$.

Smoothing

Damped Jacobi iteration (cont.)

In the 2D case, the eigenvalues $\mu_{k,\ell}$ of the iteration matrix $I - \omega D^{-1}A$ are (D = 4I)

$$\mu_{k,\ell} = 1 - \frac{\omega}{4} \lambda_{k,\ell} = 1 - \omega \left(\sin^2 \frac{\vartheta_k}{2} + \sin^2 \frac{\vartheta_\ell}{2} \right), \quad 1 \le k, \ell \le n.$$

Again, $0 < \omega \leq 1$ is required to have convergence.

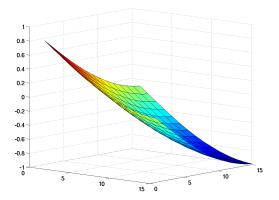
Here, the high-order modes are those with eigenvalue $\lambda_{k,\ell}$ with $k \geq \frac{n}{2}$ or $\ell \geq \frac{n}{2}$.

Therefore, we require that $\mu_{\frac{n}{2},0}(=\mu_{0,\frac{n}{2}})=|\mu_{n,n}|=-\mu_{n,n}$ or $1-\frac{\omega}{2}=-(1-2\omega)$ whence $\omega=4/5$.

Note: In 3D we request that $\mu_{\frac{n}{2},0,0} = -\mu_{n,n,n}$. Thus $\omega = 6/7$.

Smoothing

2D case: plot of $\mu_{k,\ell}$ for $\omega = 1$

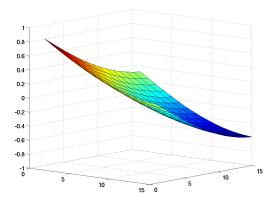


The eigenvalues are between ± 1 . The eigenvalues closest to 1 (in modulus) correspond to very smooth ($k \approx \ell \approx 0$) and very "rough" ($k \approx \ell \approx n$) eigenfunctions. (Here, n = 15.) FEM & sparse linear system solving, Lecture 11, Dec 1, 2017

12/38

Smoothing

2D case: plot of $\mu_{k,\ell}$ for $\omega = 4/5$



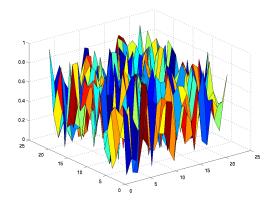
Eigenvalues closest to 1 (in modulus) correspond to very smooth $(k \approx \ell \approx 0)$. The rough eigenvalues are around $1 - 2\omega = -3/5$. In fact, $|\mu_{k,\ell}| \leq 3/5$ for all $k \geq n/2$ or $\ell \geq n/2$

FEM & sparse linear system solving, Lecture 11, Dec 1, 2017

13/38

Smoothing

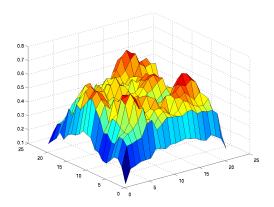
Illustration of smoothing with symmetric Gauss-Seidel



> 2D Poisson equation, 21×21 mesh. Random initial condition.

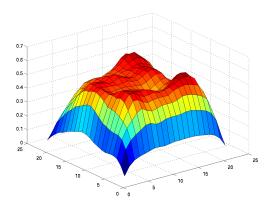
- Smoothing

Sym. Gauss-Seidel: error after 1 step



-Smoothing

Sym. Gauss-Seidel: error after 2 steps



- Smoothing

Sym. Gauss-Seidel: error after 3 steps



- Notice slow overall convergence!
- ► Can represent smoother error on *coarser* grid ⇒ multigrid.

Two-grid idea

 From convergence analysis for stationary iterative solvers we know that error and residual are reduced similarly,

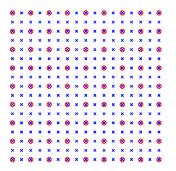
$$e_{k+1} = (I - M^{-1}A)e_k, \quad r_{k+1} = (I - AM^{-1})r_k.$$

- A well-designed smoother reduces high-frequency components of errors/residuals.
- We try to reduce the smooth low-frequency error components by means of a coarse grid.

- Coarse grid correction

Two-grids

We stick with our square $n \times n$ grid. We assume n to be odd and set N + 1 = (n + 1)/2.



Here n = 15 and N = 7. (We do not count the grid points on the boundary. We denote the fine grid by Ω_h and the coarse grid by Ω_H .

Note that here we also display boundary points.

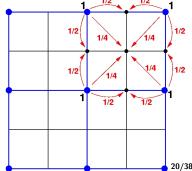
Prolongation

 The prolongation takes a vector from Ω_H and defines an analogous vector on Ω_h,

$$I_{H}^{h}:\Omega_{H}\longrightarrow\Omega_{h}.$$

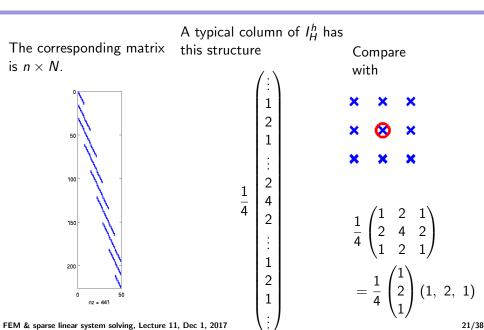
The simplest way to define a prolongation operator is by linear interpolation

The values at those fine grid points that are also coarse grid points are taken over from the coarse grid points.



FEM & sparse linear system solving, Lecture 11, Dec 1, 2017

Coarse grid correction

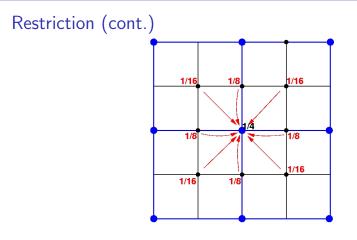


Restriction

- The restriction operation is the reverse of the prolongation. It takes a vector from the fine grid Ω_h and defines a vector on the coarse grid Ω_h.
- The injection operator is the simplest variant,

$$v_{i,j}^{2h}=v_{2i,2j}^h.$$

 Another common restriction operator, called full weighting (FW), defines v^{2h}_{i,j} to be a weighted average of all neighboring points.



With these definitions the restriction becomes

$$I_h^H = rac{1}{4} \left(I_H^h
ight)^T$$
 .

Coarse grid problem

At the highest level, i.e., on the finest grid, a mesh size h is used and the problem to solve has the form

$$A_h \mathbf{x}_h = \mathbf{f}_h.$$

- One of the requirements of MG techniques is that a system similar to the one above should be solved on the coarser levels.
- One may discretize the same, e.g. PDE, on the coarser grid.
- An alternative is to directly define the coarse linear system by a *Galerkin projection*, where the coarse problem is defined by

$$A_H = I_h^H A_h I_H^h, \qquad \mathbf{f}_H = I_h^H \mathbf{f}_h.$$

Two-grid cycle

Two-grid cycle

$\mathbf{x}^{h} = 2$ -grid cycle $(A_{h}, \mathbf{x}_{0}^{h}, \mathbf{f}^{h})$	^h)
1. Presmooth:	$m{x}^h := extsf{smooth}^{ u_1}(A_h,m{x}^h_0,m{f}^h)$
2. Get residual:	$r^h = f^h - A_h x^h$
3. Coarsen:	$\mathbf{r}^H = I_h^H \mathbf{r}^h$
4. Solve:	$A_H \boldsymbol{d}^H = \boldsymbol{r}^H$
5. Correct:	$m{x}^h = m{x}^h + I^h_H m{d}^H$
6. Postsmooth:	$m{x}^h := ext{smooth}^{ u_2}(m{A}_h,m{x}^h,m{f}^h)$
7. Return x ^h	

This two-grid cycle can be written in the form

$$\boldsymbol{x}_{\text{new}}^h = M_h \boldsymbol{x}_0^h + \boldsymbol{g}_{M_h}.$$

What is the iteration matrix M_h of the two-grid cycle? (We do not care about g_{M_h} .)

Two-grid cycle

Let us first look at smoothing, that we write as

$$m{x}^h_
u = ext{smooth}^
u(A_h,m{x}^h_0,m{f}^h).$$

One step of the ν (stationary) iterations has the form

$$\mathbf{x}_{j+1}^{h} = \mathbf{x}_{j}^{h} + B_{h}(\mathbf{f}^{h} - A_{h}\mathbf{x}_{j}^{h}) = \mathbf{x}_{j}^{h} - B_{h}A_{h}\mathbf{x}_{j}^{h} + B_{h}\mathbf{f}^{h}$$
$$= \underbrace{(I - B_{h}A_{h})}_{S_{h}}\mathbf{x}_{j}^{h} + \underbrace{B_{h}\mathbf{f}^{h}}_{\mathbf{g}^{h}}, \qquad B_{h} = (I - S_{h})A_{h}^{-1}.$$

The effect of ν smoothing steps on the *error* is

$$oldsymbol{d}_{j+1}^h = S_h^
u \; oldsymbol{d}_0^h$$

Trick: We get the iteration matrix S_h if we set $f^h = 0$.

-Two-grid cycle

We apply the same trick to the two-grid cycle to get

$$M_{h} = S_{h}^{\nu_{2}} [I - I_{H}^{h} A_{H}^{-1} I_{h}^{H} A_{h}] S_{h}^{\nu_{1}} \equiv S_{h}^{\nu_{2}} T_{h}^{H} S_{h}^{\nu_{1}}$$

The matrix in brackets,

$$T_h^H = I - I_H^h A_H^{-1} I_h^H A_h,$$

is called coarse grid correction.

Remark: Evidently, $T_h^H I_H^h = O$

 T_h^H is A_h -orthogonal projector on $\mathcal{R}(I_H^h)^{\perp}$

For an analysis of a multigrid method we have to investigate (1) how the smooth error components are suppressed by T_h^H , and (2) how the 'rough' error components are smoothed by S_h .

Two-grid cycle

Two-grid example: 1D Poisson equation

```
n=33; N=(n-1)/2;
A=(p_1d(n)); I=eye(n); D=diag(diag(A));
AC = (p_1d(N)) / 4;
R=abs(A(:,2:2:n-1));
%J=[2:2:n-1]';
% R=R(:,J); P=R;
P=R/2; R=R'/4; % Prolongation, restriction
omega=2/3;
GS=(I-omega*(D\setminus A));
                    % Iteration matrix for smoother
GCG=I-P*(AC\setminus(R*A));
                    % Iteration matrix for
                      00
                            coarse grid correction
G2G=GS*GCG*GS;
                      % Iteration matrix for complete
                      00
                            2-grid preconditioning
```

- Multigrid

$\mathsf{Recursion} \longrightarrow \mathsf{Multigrid}: \mathsf{Algorithm} \ \mathsf{V}\text{-cycle}$

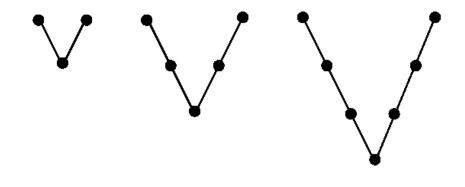
$\mathbf{x}^h = V-C_{Y}$	$\operatorname{vcle}(A_h, \mathbf{x}_0^h, \mathbf{f}^h)$	
1. Presm	ooth:	$\mathbf{x}^h := \texttt{smooth}^{\nu_1}(A_h, \mathbf{x}^h_0, \mathbf{f}^h)$
2. Get re	sidual:	$\mathbf{r}^h = \mathbf{f}^h - A_h \mathbf{x}^h$
3. Coarse	en:	$\mathbf{r}^H = I_h^H \mathbf{r}^h$
4. If (<i>H</i> :	$== h_0)$	
5.	Solve:	$A_H \boldsymbol{d}^H = \boldsymbol{r}^H$
6. Else		
7.	Recursion:	$\boldsymbol{d}^{H} = V ext{-}Cycle(A_{H}, \boldsymbol{0}, \boldsymbol{r}^{H})$
8. Endif		
9. Correc	ct:	$\mathbf{x}^h = \mathbf{x}^h + I^h_H \mathbf{d}^H$
10. Posts	smooth:	$\boldsymbol{x}^h := \texttt{smooth}^{\nu_2}(A_h, \boldsymbol{x}^h, \boldsymbol{f}^h)$
11. Retu	rn x ^h	

Multigrid idea

- Smooth error on finest grid Highly oscillating error components (upper half of spectrum) are strongly damped.
- Project smoothed error on next coarser grid. slowly oscillating error components (lower half of spectrum) are now treated.
- 3. In the recursive approach: these error components are split in two sets again:
 - 3.1 Highly oscillating error components (on this level) Smooth these.
 - 3.2 Slowly oscillating error components (on this level) Correct these on an again coarser grid.
- 4. Postsmooth after coarse grid correction.

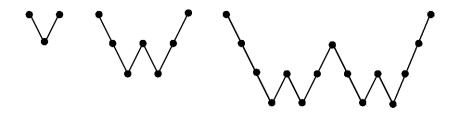
FEM and sparse linear system solving └─ Multigrid

V-cycles of varying depth (# of levels)



W-cycles of varying depth (# of levels)

In contrast to V-cycles, in W-cycles the coarse-grid correction is called twice in a row. Step 7 of the V-cycle algorithm is executed twice.



Some analysis

Let us assume that the following two properties are satisfied: Smoothing property:

$$\|\boldsymbol{S}_{\boldsymbol{h}}\boldsymbol{e}^{\boldsymbol{h}}\|_{A_{\boldsymbol{h}}}^{2} \leq \|\boldsymbol{e}^{\boldsymbol{h}}\|_{A_{\boldsymbol{h}}}^{2} - \alpha \|\boldsymbol{A}_{\boldsymbol{h}}\boldsymbol{e}^{\boldsymbol{h}}\|_{D^{-1}}^{2} \quad \forall \boldsymbol{e}^{\boldsymbol{h}} \in \Omega_{\boldsymbol{h}}.$$

Approximation property:

$$\min_{\boldsymbol{e}_{H}\in\Omega_{H}}\|\boldsymbol{e}^{h}-\boldsymbol{I}_{H}^{h}\boldsymbol{e}^{H}\|_{D}^{2}\leq\beta\|\boldsymbol{e}^{h}\|_{\mathcal{A}_{h}}^{2}$$

where both $\alpha > 0$ and $\beta > 0$ do not depend on the mesh size *h*.

The smoothing property means that high frequency errors are dampened much. ($||A_h e^h|| \approx 0$ for smooth errors) The approximation property means that smooth errors are approximated well by the coarse grid space. FEM & sparse linear system solving, Lecture 11, Dec 1, 2017

33/38

-Some analysis

Some analysis (cont.)

Theorem : Let the smoothing and approximation properties be satisfied with $\alpha > 0$ and $\beta > 0$. Then $\alpha \leq \beta$, the two-level iteration converges, and the norm of the iteration matrix is bounded by

$$\|S_h T_h^H\|_{A_h} \leq \sqrt{1 - \frac{\alpha}{\beta}}.$$

Proof: See Saad: *Iterative methods for sparse linear systems* (2nd ed.), SIAM, 2003, p. 436.

— Some analysis

Jacobi example

- In Jacobi smoothing we have $S(\omega) = I \omega D^{-1} A$.
- We have convergence if $0 < \omega < 2/\rho(D^{-1}A)$.
- Now, (index h is omitted here)

$$\begin{split} \|S(\omega)\boldsymbol{e}\|_{A}^{2} &= (A(I - \omega D^{-1}A)\boldsymbol{e}, (I - \omega D^{-1}A)\boldsymbol{e}) \\ &= (A\boldsymbol{e}, \boldsymbol{e}) - 2\omega(AD^{-1}A\boldsymbol{e}, \boldsymbol{e}) + \omega^{2}(AD^{-1}A\boldsymbol{e}, D^{-1}A\boldsymbol{e}) \\ &= (A\boldsymbol{e}, \boldsymbol{e}) - 2\omega(D^{-1/2}A\boldsymbol{e}, D^{-1/2}A\boldsymbol{e}) \\ &+ \omega^{2}((D^{-1/2}AD^{-1/2})D^{-1/2}A\boldsymbol{e}, D^{-1/2}A\boldsymbol{e}) \\ &= (A\boldsymbol{e}, \boldsymbol{e}) - ([\omega(2I - \omega D^{-1/2}AD^{-1/2})]D^{-1/2}A\boldsymbol{e}, D^{-1/2}A\boldsymbol{e}) \\ &\leq \|\boldsymbol{e}\|_{A}^{2} - \lambda_{\min}[\omega(2I - \omega D^{-1/2}AD^{-1/2})]\|A\boldsymbol{e}\|_{D^{-1}}. \end{split}$$

Let $\rho = \rho(D^{-1/2}AD^{-1/2}) = \rho(D^{-1}A).$ Then $2 - \omega\rho > 0.$
So, we can set $\alpha = \omega(2 - \omega\rho).$

Some analysis

Full weighting example

In 1D, the *n*-by-*n* Poisson matrix is the (-1,2,-1) - matrix on Slide 5 with eigenvectors

$$\mathbf{x}_k = (\sin \vartheta_k, \sin 2\vartheta_k, \dots, \sin n\vartheta_k)^T, \quad \vartheta_k = \frac{\kappa \pi}{n+1} \quad k = 1, \dots, n.$$

To estimate β in the approximation property

$$\min_{\boldsymbol{e}_{H}\in\Omega_{H}}\|\boldsymbol{e}^{h}-\boldsymbol{I}_{H}^{h}\boldsymbol{e}^{H}\|_{D}^{2}\leq\beta\|\boldsymbol{e}^{h}\|_{A_{h}}^{2}$$

We set $e^h = x_k$ and e^H is the vector that interpolates e^h at all even-numbered nodes. At the odd-numbered nodes the difference is

$$e_j^h - \frac{1}{2}(e_{j-1}^h + e_{j+1}^h) = \sin j\vartheta_k - \frac{1}{2}(\sin(j-1)\vartheta_k + \sin(j+1)\vartheta_k)$$
$$= (1 - \cos\vartheta_k)\sin j\vartheta_k = 2\sin^2\frac{\vartheta_k}{2}\sin j\vartheta_k$$

It is an exercise to show that $\beta \leq 1/2$.

Numerical example

We solve $-\Delta u = f$ with homogeneous boundary conditions on the square by the Finite Difference method on a $m \times m$ grid, m = 31, m = 101.

First, we solve with PCG where the preconditioner are Jacobi, block-Jacobi, symmetric Gauss-Seidel and IC(0).

	Jacobi	Block Jacobi	Sym. GS	ICCG(0)
m = 31	0.084 (76)	0.071 (57)	0.050 (33)	0.042 (28)
m = 101	0.99 (234)	0.86 (166)	0.47 (84)	0.50 (73)

Execution times (iteration count)

-Numerics

Numerical example (cont.)

Now we solve with PCG where the preconditioner is a two-grid solver. The smoother is either Jacobi or Gauss-Seidel. The smoothing parameter of Jacobi is $\omega = 1$ and $\omega = 4/5$. We also tried two ($\nu_1 = \nu_2 = 2$) steps of Jacobi(4/5) as the smoother.

	Jacobi(1)	Jacobi(4/5)	$2 \times \text{Jacobi}(4/5)$	GS
m = 31	0.036 (33)	0.0088 (7)	0.0077 (5)	0.0075 (5)
m = 101	0.91 (63)	0.10 (7)	0.083 (5)	0.083 (5)

Execution times (iteration count)