
FEM and sparse linear system solving

FEM and sparse linear system solving
Lecture 12, Dec 8, 2017: Nonsymmetric Lanczos methods

http://people.inf.ethz.ch/arbenz/FEM17

Peter Arbenz
Computer Science Department, ETH Zürich

E-mail: arbenz@inf.ethz.ch

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 1/39

http://people.inf.ethz.ch/arbenz/FEM17

FEM and sparse linear system solving

Survey on lecture

Survey on lecture

I The finite element method

I Direct solvers for sparse systems
I Iterative solvers for sparse systems

I Stationary iterative methods, preconditioning
I Preconditioned conjugate gradient method (PCG)
I Krylov space methods for nonsymmetric systems

GMRES, MINRES
I Preconditioning
I Multigrid (preconditioning)
I Nonsymmetric Lanczos iteration based methods

Bi-CG, QMR, CGS, BiCGstab

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 2/39

FEM and sparse linear system solving

Survey on lecture

Outline of this lecture

1. The non-symmetric Lanczos procedure and Bi-CG

2. The Quasi-Minimal Residual (QMR) algorithm

3. The Conjugate Gradient Squared (CGS) algorithm

4. The BiCGstab algorithm

Literature

I Y. Saad: Iterative Methods for Sparse Linear Systems, SIAM,
2nd edition, 2003.

I H. A. van der Vorst: Iterative Krylov Methods for Large Linear
Systems, Cambridge University Press, 2003.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 3/39

FEM and sparse linear system solving

Krylov spaces

Krylov spaces

Definition
For given A, the m-th Krylov space generated by the vector r is
given by

Km = Km(A, r) := span
{
r ,Ar ,A2r , . . . ,Am−1r

}
.

We can also write

Km(A, r) = {p(A)r | p ∈ Pm−1} ,

where Pd denotes the set of polynomials of degree at most d .

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 4/39

FEM and sparse linear system solving

GMRES

Arnoldi relation

Define the orthonormal basis Vm := [v1, . . . , vm] of Km(A, r0).
Then we get the Arnoldi relation

AVm = VmHm + wme
T
m = Vm+1H̄m.

+=A Vm

Hm

Vm O wm

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 5/39

FEM and sparse linear system solving

GMRES

Arnoldi relation (cont.)
Here,

H̄m =


h11 h12 · · · h1,m
h21 h22 · · · h2,m

h3,2 · · · h3,m
. . .

...
hm+1,m


The square matrix Hm ∈ Rm×m is obtained from H̄m ∈ R(m+1)×m

by deleting the last row.
Notice that

Hm = V T
m AVm.

Therefore, if A is symmetric ⇒ Hm ≡ Tm is tridiagonal!

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 6/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

Galerkin approach for nonsymmetric systems

I Most popular solver for nonsymmetric systems is GMRES.

I GMRES has big disadvantages: work for orthogonalization
O(m2n) flops and memory consumption O(mn) bytes.

I This is due to the long recurrences. In order to compute a new
Arnoldi vector vm+1 the vector Avm must be orthogonalized
against all previous Arnoldi vectors v1, . . . , vm.

I =⇒ Restarting is necessary.

I In the symmetric case we have short recurrences as

(Avk)Tvj = vT
k ATvj

A=AT

= vT
k (Avj)︸ ︷︷ ︸
∈Kj+1

= 0 if j + 1 < k .

I New idea: generate test vectors from a different Krylov space!

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 7/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

Petrov-Galerkin approach for nonsymmetric systems

Let (as earlier) xm ∈ x0 +Km(A, r0). We can compute an arbitrary
(in particular nonorthogonal) basis {v1, . . . , vm} for Km(A, r0)

AVm = Vm+1H̄m, Vm = [v1, . . . , vm].

Let Wm = [w1, . . . ,wm] with W T
m Vm = ∆m diagonal. Then, we

can determine xm by the Petrov-Galerkin condition

0 = W T
m (b − Axm) = W T

m (r0 − AVmym)

= W T
m r0 −W T

m VmHmym

= β e1 −∆mHm ym, β := (wT
1 v1)‖r0‖2.

We try to arrange the wm ∈ Km(AT , r̃0) s.t. ∆mHm is tridiagonal.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 8/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

Nonsymmetric Lanczos algorithm

Let v1, w1 be given with wT
1 v1 = d1 6= 0. Typically, v1 = r0/‖r0‖.

Otherwise w1 is arbitrary. Sometimes, one has to solve a
complementary system AT x̃ = b̃. Then, w1 should be set to
r̃0/‖r̃0‖ where r̃0 = b̃ − AT x̃0.

Now set
h21v2 := Av1 − h11v1.

We can choose h21 arbitrarily but non-zero, e.g., such that
‖v2‖ = 1, or such that v2 = r1.

To determine h11 we require that wT
1 v2 = 0:

wT
1 Av1 − h11w

T
1 v1 = 0 =⇒

w
T
1 v1 6=0

h11 =
wT

1 Av1

wT
1 v1

.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 9/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

Nonsymmetric Lanczos algorithm (cont.)
Let us define

h21w2 := ATw1 − h11w1.

Note that this is the ‘same’ formula as with the definition of v2!

The construction was such that wT
1 v2 = 0. Now we show that

vT
1 w2 = 0. Indeed,

h21v
T
1 w2 = vT

1 ATw1 − h11v
T
1 w1

= (Av1 − h11v1)Tw1 = h21v
T
2 w1 = 0

as vT
2 w1 = wT

1 v2.

(Note that we stick with real arithmetic. Complex arithmetic would
be slightly different.)

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 10/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

Nonsymmetric Lanczos algorithm (cont.)
In general, let v1, . . . , vk be a basis of Kk(A, r0) and w1, . . . ,wk be
a basis of Kk(AT , r̃0) satisfying the biorthogonality relations

vT
j wi =

{
dj 6= 0, i = j ,

0, i 6= j .

Let us set

hk+1,kvk+1 = Avk −
k∑

i=1

hikvi

(hk+1,k arbitrary but non-zero) and determine the coefficients hik
such that wT

j vk+1 = 0, j = 1, . . . , k. Then,

0 = wT
j Avk−

k∑
i=1

hikw
T
j vi = wT

j Avk−hjkwT
j vj =⇒ hjk =

wT
j Avk

wT
j vj

.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 11/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

Nonsymmetric Lanczos algorithm (cont.)
We now define

hk+1,kwk+1 := ATwk −
k∑

i=1

hikwi

and show that vT
j wk+1 = 0, j = 1, . . . , k . In fact, for j < k,

v
T
j AT

wk −
∑k

i=1
hikv

T
j wi = v

T
j AT

wk − hjkv
T
j wj = w

T
k (Avj)− hjkw

T
j vj

= w
T
k

∑j+1

i=1
hijvi − hjkw

T
j vj = hkjw

T
k vk − hjkw

T
j vj

=
∑j+1

i=1
hijw

T
i vk − hjkw

T
j vj

= (AT
wj)

T
vk − hjkw

T
j vj = w

T
j Avk − hjkw

T
j vj = 0

For j = k the statement is ‘trivial’.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 12/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

Nonsymmetric Lanczos algorithm (cont.)
Notice that ATwj ∈ Kj+1(AT ,w1). Thus, for j + 1 < k ,

(ATwj)
Tvk = wT

j Avk = 0 =⇒ hjk = 0.

Therefore,

Avk =
k+1∑
i=1

hikvi = hk+1,kvk+1 + hk,kvk + hk−1,kvk−1

≡ tk+1,kvk+1 + tk,kvk + tk−1,kvk−1.

So, there are only three nontrivial terms in the expression.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 13/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

Nonsymmetric Lanczos algorithm (cont.)
Finally, we arrive at

AVm = VmTm + tm+1,mvm+1e
T
m ,

ATWm = WmTm + tm+1,mwm+1e
T
m ,

with

Tm =


t11 t12
t21 t22 t23

t32 t33
. . .

. . .
. . . tm−1,m

tm,m−1 tmm

 .

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 14/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

Nonsymmetric Lanczos algorithm (cont.)

W T
m AVm = W T

m VmTm ≡ ∆mTm, with ∆m = W T
m Vm = V T

m Wm

V T
m ATWm = V T

m WmTm = ∆mTm,

(From this we see that ∆mTm is symmetric tridiagonal.)

Notice that this algorithm may break down!!

1. We may have wT
j vj = 0. This is called a serious breakdown.

This quantity appears in the denominator of the formula that
define αj and βj+1.

2. The matrix Tm is nonsingular but there is no LU factorization.

3. One of the vectors vj+1 or wj+1 vanish. This means that we
have found an invariant subspace for A or AT . We also have
found a solution for Ax = b or for AT x̃ = b̃.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 15/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCG

The Biconjugate Gradient (BiCG) algorithm

We proceed similar as with CG. Let

xm = x0 + Vmym, rm = b − Axm.

We determine ym by

0 = W T
m rm = W T

m (r0 − AVmym)

= W T
m r0 −W T

m VmTmym

= β e1 −∆mTm ym, β := wT
1 r0.

We can decompose ∆mTm = LmDmL
T
m where Dm is diagonal. We

do not allow pivoting here and hope for the best!

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 16/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCG

The Biconjugate Gradient (BiCG) algorithm (cont.)
The equation xm = x0 + Vmym implies

rm = b − Axm = r0 − AVmym ∈ Km+1(A, r0).

Together with the Galerkin condition we have that

rm ∈ Km+1(A, r0)	Km(AT , r̃0).

Therefore, the rj are aligned with the ‘right’ Lanczos vectors vj+1

(and r̃j is aligned with wj+1). So, we can choose the Lanczos
vectors to be the residuals:

vk = rk−1, wk = r̃k−1 =⇒ (∆m)kk = r̃Tk−1rk−1,

(Tm)k,j =
r̃Tk−1A rj−1

r̃Tk−1rk−1

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 17/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCG

The Biconjugate Gradient (BiCG) algorithm (cont.)
Since Tm is nonsingular we can write

xm = x0 + Vmym = x0 + βVmT
−1
m e1

= x0 + (VmL
−T
m)︸ ︷︷ ︸

Pm

(D−1m L−1m e1β)︸ ︷︷ ︸
am

= x0 + Pmam.

Let P̃m = WmL
−T
m . Then,

P̃T
mAPm = L−1m W T

m AVmL
−T
m = L−1m ∆mTmL

−T
m = Dm.

We now investigate the two equations

Vm = PmL
T
m, LmDmam = βe1,

to establish the short recurrences of BiCG.
FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 18/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCG

The Biconjugate Gradient (BiCG) algorithm (cont.)
From

[v1, . . . , vm] = [p0, . . . ,pm−1]


1 −β1

1 −β2
1

. . .

. . . −βm−1
1


we get {

p0 = v1,

pm = vm+1 + βmpm−1, m > 0.

The p vectors correspond to the search directions in CG.
Note that the p̃ vectors satisfy similar recurrence relations,

p̃m = wm+1 + βmp̃m−1.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 19/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCG

The Biconjugate Gradient (BiCG) algorithm (cont.)
We now set v1 = r0 and vm+1 = rm.

Then the A-orthogonality of pm and p̃m−1 yields

0 = p̃T
m−1Apm = p̃T

m−1Arm + βmp̃
T
m−1Apm−1.

Thus,

βm = −
p̃T
m−1Arm

p̃T
m−1Apm−1

. (1)

We will later need that

r̃Tm pm = r̃Tm rm + βm r̃
T
m pm−1 = r̃Tm rm, (2)

which is true because pm−1 ∈ Km(A, r0).

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 20/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCG

The Biconjugate Gradient (BiCG) algorithm (cont.)
From

(LmDm)am =


δ1
−β1δ1 δ2

−β2δ2 δ3
. . .

. . .

−βmδm δm+1




α0

α1

α3
...
αm

 =


β
0
0
...
0


we get 

α0 = β/δ1,

αk = βkδk
δk−1

αk−1, k > 1.

So, the elements of am can be computed in a recursive manner,
i.e., am = [aTm−1, αm]T .

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 21/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCG

The Biconjugate Gradient (BiCG) algorithm (cont.)
From this we have

xm = x0 + Pm am = x0 + Pm−1 am−1 + pm−1αm

= xm−1 + αm−1 pm−1,

and rm = rm−1 − αm−1 Apm−1,

r̃m = r̃m−1 − αm−1 A
T p̃m−1.

(3)

Multiplying the first equation in (3) by p̃T
m−1 we get

αm =
p̃T
mrm

p̃T
mApm

(2)
=

r̃Tm rm

p̃T
mApm

, m = 0, 1, . . . (4)

(We have incremented the index m − 1 by 1.)

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 22/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCG

The Biconjugate Gradient (BiCG) algorithm (cont.)
Multiplying the second equation in (3) by rTm we get

rTm r̃m = −αm−1 r
T
mA

T p̃m−1.

Using this and (4) we can beautify formula (1) in

βm = −
p̃T
m−1Arm

p̃T
m−1Apm−1

=
1

αm−1

r̃Tm rm

p̃T
m−1Apm−1

(4)
=

r̃Tm rm

r̃Tm−1rm−1
≡ ρm
ρm−1

.

Notice that the derivations of these formulae are very similar to
those of the conjugate gradient (CG) algorithm.

The complete BiCG algorithm is given on the next slide.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 23/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCG

The BiCG algorithm

1: Choose x0. Set r0 = b − Ax0. Choose r̃0 s.t. ρ0 = r̃T0 r0 6= 0.
2: Set p0 = r0, p̃0 = r̃0, q0 = Ap0, q̃0 = AT p̃0.
3: for k = 0, 1, . . . do
4: αk = (rTk r̃k)/(qT

k p̃k).
5: xk+1 = xk + αkpk .
6: rk+1 = rk − αkqk , r̃k+1 = r̃k − αk q̃k .
7: Test for convergence.
8: ρk+1 = rTk+1r̃k+1.
9: If ρk+1 = 0 method fails.

10: βk+1 = ρk+1/ρk .
11: pk+1 = rk+1 + βk+1pk , qk+1 = Apk+1.
12: p̃k+1 = r̃k+1 + βk+1p̃k , r̃k+1 = AT p̃k+1.
13: end for

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 24/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCG

The BiCG algorithm (cont.)

I The big advantage of the nonsymmetric Lanczos/BiCG
algorithm over Arnoldi/GMRES algorithm is its small memory
requirements. Only 7 vectors need to be stored.

This is particularly important in the presence of slow
Arnoldi/GMRES convergence.

I The big disadvantage of the nonsymmetric Lanczos/BiCG
algorithm is the possibility of breakdowns.

I Nonsymmetric Lanczos/BiCG also requires multiplications
with AT .

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 25/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

QMR

The QMR algorithm

The BiCG algorithm can lead to very erratic behavior, in particular,
if Tm is ill-conditioned. The QMR algorithm leads to much
smoother residual norms ‖rj‖. Starting from the extended Lanczos
relation we write

rm = r0 − AVmym

= β v1 − Vm+1Tmym

= Vm+1(β e1 − Tmym).

Clearly, ‖rm‖ = ‖Vm+1(β e1 − Tmym)‖.
Minimizing this w.r.t. ym yields the GMRES solution.
But, here, Vm+1 is not orthogonal. So, minimizing ‖β e1 − Tmym‖
does not yield the GMRES solution.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 26/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

QMR

The QMR algorithm (cont.)
It turns out that minimizing

J(y) ≡ ‖β e1 − Tmym‖

is a reasonable idea. The resulting approximate solution

xm = x0 + Vmym = x0 + βVm(Tm)+e1.

is called the Quasi-Minimal Residual (QMR) approximation.

By construction,
‖rGMRES

m ‖ ≤ ‖rQMR
m ‖.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 27/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

QMR

The QMR algorithm (cont.)
Let ‖rQm ‖ = ‖β e1 − Tmym‖ and let ‖vi‖ = 1 for all i . Then,

‖rQMR
m ‖ = ‖Vm+1 (β e1 − Tmym)︸ ︷︷ ︸

z

‖

=

∥∥∥∥∥
m+1∑
i=1

vizi

∥∥∥∥∥ ≤
(

m+1∑
i=1

‖vi‖2
)1/2(m+1∑

i=1

|zi |2
)1/2

=
√
m + 1‖rQm ‖.

One furthermore can observe that after steps of strong decrease of
‖rQk ‖ the norms of the BiCG and the QMR residuals are close.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 28/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

CGS

The Conjugate Gradient Squared algorithm

The conjugate gradient squared (CGS) algorithm was developed
mainly to avoid using the transpose of A in BiCG. We write the
residual and conjugate direction in BiCG in polynomial form

rj = φj(A)r0, pj = πj(A)r0.

Then, by construction,

r̃j = φj(A
T)r̃0, p̃j = πj(A

T)r̃0,

such that

αj =
rTj r̃j

qT
j p̃j

=
(φj(A)r0)T (φj(A

T)r̃0)

(Aπj(A)r0)T (πj(AT)r̃0)
=

(φ2j (A)r0)T r0

(Aπ2j (A)r0)T r̃0
.

If we can get recursions for the vectors φ2j (A)r0 and π2j (A)r0 then
we can compute αj and, similarly, βj , using these new recursions.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 29/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

CGS

The Conjugate Gradient Squared algorithm (cont.)
We have from the recurrences of the rj and pj

φj+1(t) = φj(t)− αj tπj(t), πj+1(t) = φj+1(t) + βjπj−1(t).

After squaring

φ2j+1(t) = · · · π2j+1(t) = · · ·

and some cumbersome algebraic manipulation one finds that
vectors

rj = φ2j (A)r0, pj = π2j (A)r0, uj = φj−1(A)πj(A)r0, qj = φj(A)πj(A)r0,

are needed in a potential algorithm. They satisfy the recurrences

rj+1 = rj − αjA(uj + qj), pj+1 = uj+1 + βj(qj + βjpj)

uj+1 = rj + βjqj , qj+1 = uj+1 − αj+1Apj+1

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 30/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

CGS

The CGS algorithm

1: Choose x0. Set r0 = b − Ax0. Choose r̃0 s.t. ρ0 = r̃T0 r0 6= 0.
2: Set p0 := u0 := r0.
3: for k = 0, 1, . . . do
4: αk = (rTk r̃0)/((Apk)T p̃0).
5: qk = uk − αkApk .
6: xk+1 = xk + αk(uk + qk), rk+1 = rk − αkA(uk + qk).
7: Test for convergence.
8: ρk+1 = rTk+1r̃0.
9: If ρk+1 = 0 method fails.

10: βk+1 = ρk+1/ρk .
11: uk+1 = rk+1 + βkqk , pk+1 = uk+1 + βk(qk + βkpk).
12: end for

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 31/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCGstab

The BiCGstab algorithm

I The CGS algorithm squares the residual polynomials and
replaces multiplications with AT by multiplications with A.
So, each iteration step requires two multiplications with A.

I The algorithm still leads to the same irregular convergence as
BiCG.

I To improve this situation the stabilized biconjugate gradient
(BiCGstab) algorithm was designed. Notice that the left
Krylov space does not show up in the previous algorithms. We
chose some initial vector r̃0. But Kj(A

T , r̃0) is present only
implicitly. The tridiagonal matrix Tm reflects the way the left
basis vectors wj are constructed.

I In BiCGstab the basis of the left Krylov space is chosen
differently.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 32/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCGstab

The BiCGstab algorithm (cont.)
I In BiCGstab the left residuals are not generated by the same

polynomials as the right residuals but by the very simple rule

r̃j+1 = (I − ωjA) r̃j = ψj+1(A)r̃0

which leads to

ψj+1(t) = (1− ωj t)ψj(t).

As with CGS, vectors have to be found that make possible the
computation of

rj = ψj(A)φj(A)r0.

This can be done similarly as with CGS, see the books of
Saad or van der Vorst.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 33/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCGstab

The BiCGstab algorithm (cont.)
I How is the parameter ωj chosen?

We have

rj = ψj(A)φj(A)r0 = (I −ωjA) ψj−1(A)φj(A)r0︸ ︷︷ ︸
sj

≡ (I −ωjA)sj .

ωj is chosen such that ‖rj‖ = ‖(I − ωjA)sj‖ is minimized.

This is formally steepest descent and leads to

ωj =
(Asj)

T sj

(Asj)TAsj

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 34/39

FEM and sparse linear system solving

Nonsymmetric Lanczos

BiCGstab

The BiCGstab algorithm

1: Choose x0. Set r0 = b − Ax0. Choose r̃0.
2: Set p0 := r0.
3: for k = 0, 1, . . . do
4: αk = (rTk r̃0)/((Apk)T p̃0).
5: sk = rk − αkApk .
6: ωk := ((Ask)T sk)/((Ask)TAsk).
7: xk+1 = xk + αkpk + ωksk .
8: rk+1 = sk − ωkAsk .
9: Test for convergence.

10: ρk+1 = rTk+1r̃0.
11: βk = ρk+1

ρk
· αk+1

ωk
.

12: pk+1 = rk+1 + βk(pk − ωkApk).
13: end for

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 35/39

FEM and sparse linear system solving

Comparison

Comparison

Generate the 30’000×30’000 example

A = gallery('toeppen', 30000, 2 ,3, 8, 3.5, 4.5);

The matrix A is a nonsymmetric banded matrix with band width 5.

The condition of A is small κ(A) ≈ 32.

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 36/39

FEM and sparse linear system solving

Comparison

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 37/39

FEM and sparse linear system solving

Summary

Decision tree

Flow chart from J. Demmel Applied Numerical Linear Algebra

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 38/39

FEM and sparse linear system solving

Summary

Iterative linear solvers in Matlab

Function Matrix Method

bicg General BiConjugate Gradient
bicgstab General BiConjugate Gradient Stabilized
cgs General Conjugate Gradient Squared
gmres General Generalized Minimum Residual
lsqr General Conjugate Gradient (Normal Equations)
minres Hermitian Minimum Residual
pcg Hermitian p.d. Preconditioned Conjugate Gradient
qmr General Quasi-Minimal Residual
symmlq Hermitian Symmetric LQ

Tabelle 1: Iterative linear equation solvers in Matlab

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 39/39

	Survey on lecture
	Krylov spaces
	GMRES
	Nonsymmetric Lanczos
	BiCG
	QMR
	CGS
	BiCGstab

	Comparison
	Summary

