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FEM and sparse linear system solving

LSurvey on lecture

Survey on lecture

» The finite element method

» Direct solvers for sparse systems
> lterative solvers for sparse systems
» Stationary iterative methods, preconditioning
» Preconditioned conjugate gradient method (PCG)
» Krylov space methods for nonsymmetric systems
GMRES, MINRES
» Preconditioning
» Multigrid (preconditioning)
» Nonsymmetric Lanczos iteration based methods
Bi-CG, QMR, CGS, BiCGstab
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FEM and sparse linear system solving

LSurvey on lecture

Outline of this lecture

1. The non-symmetric Lanczos procedure and Bi-CG
2. The Quasi-Minimal Residual (QMR) algorithm

3.

4. The BiCGstab algorithm

The Conjugate Gradient Squared (CGS) algorithm

Literature

» Y. Saad: [terative Methods for Sparse Linear Systems, SIAM,

2nd edition, 2003.

» H. A. van der Vorst: [terative Krylov Methods for Large Linear

Systems, Cambridge University Press, 2003.
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FEM and sparse linear system solving

LKrylov spaces

Krylov spaces
Definition
For given A, the m-th Krylov space generated by the vector r is

given by

Km = Km(A,r) :=span{r, Ar, A%r, ... ,A’"_lr} )

We can also write
Km(A,r)={p(A)r | p € Pm_1},

where Py denotes the set of polynomials of degree at most d.
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FEM and sparse linear system solving
L GMRES

Arnoldi relation

Define the orthonormal basis Vp, 1= [vi, ..., vp] of Kn(A, n).
Then we get the Arnoldi relation

AV = VinHo + Wmel = Vi i1 Ao,

Hp,
N
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FEM and sparse linear system solving
L GMRES

Arnoldi relation (cont.)

Here, ) )
hir hio -+ him
ho1 ho -+ hom

A, = h3o -+ h3nm
L hm+1,m_

The square matrix H,, € R™™ is obtained from H,, € R(m+1)xm

by deleting the last row.

Notice that
Hn = VIAV,,.

Therefore, if A is symmetric = H,, = T, is tridiagonal!
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L Nonsymmetric Lanczos

Galerkin approach for nonsymmetric systems

» Most popular solver for nonsymmetric systems is GMRES.

» GMRES has big disadvantages: work for orthogonalization
O(m?n) flops and memory consumption O(mn) bytes.

» This is due to the long recurrences. In order to compute a new
Arnoldi vector vp,41 the vector Av,, must be orthogonalized
against all previous Arnoldi vectors vy, ..., V.

» —> Restarting is necessary.

> In the symmetric case we have short recurrences as

—AT
(Avi)Tv; = vl ATy = v/ (Av)) =0 ifj+1<k.
——
€K1

» New idea: generate test vectors from a different Krylov space!
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LNonsymmetric Lanczos

Petrov-Galerkin approach for nonsymmetric systems

Let (as earlier) xm, € xo + Km(A, rp). We can compute an arbitrary
(in particular nonorthogonal) basis {v1, ..., vn} for Kn(A, r)

AV = m+1FIm7 Vim = [Vla'-me]-

Let W = [w, ..., wy,] with WV, = A, diagonal. Then, we
can determine xp, by the Petrov-Galerkin condition

0=WT(b— Axp) = W] (ro — AVimym)
= W,Z,—ro - W,;’,- VinHmYm
:ﬁel_AmHm.Yma B = (WlTV1)||r0H2'

We try to arrange the w,,, € Kn(AT, i) s.t. Ay H,y, is tridiagonal.
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- Nonsymmetric Lanczos

Nonsymmetric Lanczos algorithm

Let v1, wi be given with w," v; = d; # 0. Typically, vi = ro/||ro].
Otherwise wj is arbitrary. Some:cimes, one has to solve a
complementary system ATx = b. Then, w; should be set to
Fo/HF()H where Fg =b-— AT)?().

Now set
h21V2 = AV1 — h11V1.

We can choose hp; arbitrarily but non-zero, e.g., such that
|lva]| = 1, or such that v, = ;.

To determine hi; we require that wlTvz =0:

T
w, Av;

W]_TAV1 — h11W1TV1 =0 — hi1 = 1#
w] v1#£0 w; vi
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- Nonsymmetric Lanczos

Nonsymmetric Lanczos algorithm (cont.)

Let us define
h21W2 = ATW1 — h11W1.

Note that this is the ‘same’ formula as with the definition of !

The construction was such that wlTvz = 0. Now we show that

v, wy = 0. Indeed,

T T AT T
h21V1 Wy = v; A w; — hllvl wi

T T
= (AV1 — h11V1) wi = h21V2 w; = 0
as V2TW1 = WlTV2.

(Note that we stick with real arithmetic. Complex arithmetic would
be slightly different.)
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FEM and sparse linear system solving

L Nonsymmetric Lanczos

Nonsymmetric Lanczos algorithm (cont.)

In general, let vq,..., vk be a basis of Kx(A, ro) and wy, ..., wy be
a basis of K (AT, i) satisfying the biorthogonality relations

di#0, i=j
Twi:{17é7 / /5

7 o
0, i #J.
Let us set .
Pir1kViess = Avic = Y hicv;
i=1
(hi+1,k arbitrary but non-zero) and determine the coefficients hjx
such that ijka =0,j=1,...,k. Then,
k TAV
T T T j k
O:ijvk—Zh,-kwj Vi = w; Avy— hkw Vi = hjk—#vj.
i=1 J
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FEM and sparse linear system solving

LNonsymmetric Lanczos

Nonsymmetric Lanczos algorithm (cont.)

We now define .

AT
hiy1 kWi == A" wy — Z hi w;
i—1

and show that v Wk+1 =0,j=1,...,k. Infact, for j < k,

T AT T _  TAT T T
v, A wk—gl_lh,-kv- w; = v, A" wy — hyy; wJ—wk(AvJ) hixw;" v;

Z/ T T
__hijvi—h jk Wj vJ—thwk Vi — hjkwjvj

_Z' wTve — howT v
= i1 h,JW,- Vi hjkMIj Vj

T T T T T
= (A" w;) " vie — hjxw; vj = w;' Ave — hw; v; = 0

For j = k the statement is ‘trivial’.
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LNonsymmetric Lanczos

Nonsymmetric Lanczos algorithm (cont.)
Notice that Aij S ICJ-+1(AT, wi). Thus, for j +1 < k,

(ATWJ')TV/( = WJ-TAVk =0 — hjk =0.

Therefore,
k+1
Avy = Z hicvi = hip1 Vi1 + hieVie + hi—1 k-1
i—1

= b1,k Vh41 + Tk Vi + Te—1 kVi—1-

So, there are only three nontrivial terms in the expression.
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LNonsymmetric Lanczos

Nonsymmetric Lanczos algorithm (cont.)

Finally, we arrive at

AVm = Vm Tm + tm+1,mvm+1efz;7
T T
A" Wi = Wi T + tme1,mWmt1€,

with -~ _
t11  ti2
toy tay 23
Tm= t3p t33
tm—l,m
tm,m—l tmm
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FEM and sparse linear system solving

- Nonsymmetric Lanczos

Nonsymmetric Lanczos algorithm (cont.)

WIAV, =WV, Tn=0nTn  with A, =WV, =VvIw,
V,;’,—ATWm = V,;’,-Wme = Amea

(From this we see that A, T,, is symmetric tridiagonal.)

Notice that this algorithm may break down!!

T

1. We may have w;’ v; = 0. This is called a serious breakdown.

This quantity appears in the denominator of the formula that
define o and Bj41.
2. The matrix T, is nonsingular but there is no LU factorization.

3. One of the vectors v;1 or wj 1 vanish. This means that we
have found an invariant subspace for A or AT. We also have

found a solution for Ax = b or for ATx = b.
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L Nonsymmetric Lanczos
L sice

The Biconjugate Gradient (BiCG) algorithm
We proceed similar as with CG. Let
Xm = X0 + Vm¥m, r,=b— Ax,,.
We determine yp, by

0=W]r,=W(rnh—AVyyn)
= Wn-lr—ro - Wn71-vamym
=0e1—AnTmYm, b= wlTro.

We can decompose A, T, = LmDmL; where Dy, is diagonal. We
do not allow pivoting here and hope for the best!
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- Nonsymmetric Lanczos
L sice

The Biconjugate Gradient (BiCG) algorithm (cont.)
The equation xp,, = xo + Vinym implies
rm=b— Axm =1 — AVaym € Kmi1(A, n).
Together with the Galerkin condition we have that
rm € Kmi1(A, 1) © Km(AT, ).

Therefore, the r; are aligned with the ‘right’ Lanczos vectors v; 1
(and F; is aligned with wj;1). So, we can choose the Lanczos
vectors to be the residuals:
— — 7 A _ =T

Vk = k-1, Wk =1 = (Bm)kk = F_1rk-1,
A
(Tm)kz.l = "T
F_1Tk—1

FEM & sparse linear system solving, Lecture 12, Dec 8, 2017 17/39
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L Nonsymmetric Lanczos
L sice

The Biconjugate Gradient (BiCG) algorithm (cont.)

Since T, is nonsingular we can write

Xm = X0+ VimyYm = Xo + ﬁVan_,lel
=%+ Vil ) (D' Ly €18) = Xo + Pmam.
—_—

Pm am
Let P, = WpL.T. Then,
PTAP, = LIWTAV, LT = [ YA Tl T = Dy,
We now investigate the two equations
Vi = Pl LyDmam = Bey,

to establish the short recurrences of BiCG.
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LNonsymmetric Lanczos
Lsice

The Biconjugate Gradient (BiCG) algorithm (cont.)

From

[V17"'7Vm] = [PO;---apm—l]

we get
pPo = Vi,

1

—b1
1

Pm = Vmy1 + /Bmpm—la

The p vectors correspond to the search directions in CG.
Note that the p vectors satisfy similar recurrence relations,

—f2
1

m > 0.

Pm = Wni1+ BmPm-1.
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LNonsymmetric Lanczos
Lsice

The Biconjugate Gradient (BiCG) algorithm (cont.)

We now set vi = ry and vp11 = .

Then the A-orthogonality of p,, and pp,—1 yields

0= ﬁrLlAPm = ﬁ,LlArm + 5mﬁrz;71Apm—1-

Thus,
ﬁm—lArm
Bm=——F——. (1)
" P,-I,;_lAPm—l
We will later need that
Flpm=Flrm+ BmFl pm1=F 1y, (2)

which is true because p,—1 € Kn(A, o).
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LNonsymmetric Lanczos
Lsice

The Biconjugate Gradient (BiCG) algorithm (cont.)

From
C s T TaoT
—B101 ay
(LmDm)am = —B202 03 az | —
L ~BmOm 6m+1_ | O'm |
we get
o = /01,
Q= g%ak_l, k> 1.

So, the elements of a,, can be computed in a recursive manner,

e, am=I[al ;,am]".
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LNonsymmetric Lanczos
Lsice
;

The Biconjugate Gradient (BiCG) algorithm (cont.)

From this we have

Xm = X0+ Pmam = X0+ Pm—18m—1 + Pm—10m

= Xm—-1+ Om—1Pm-1,

and rm=Frm-1—0m-1 Apm—la (3)

- T ~
rp="Frp1—am_1A" Ppm_1.

Multiplying the first equation in (3) by B ; we get

~T =T
pmrm (E) mrm m:O’]_,... (4)

PLAPm  PLAPM

Am =

(We have incremented the index m — 1 by 1.)
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- Nonsymmetric Lanczos
L sice

The Biconjugate Gradient (BiCG) algorithm (cont.)
Multiplying the second equation in (3) by r] we get

T TAT =
rmrm:_am—lrmA Pm—1-

Using this and (4) we can beautify formula (1) in

B _ ﬁm—]_Arm o 1 F’;,.'—rm
" Pl 1 APm-1  m-1pl [ APm-1
@ Flrm _ pm

F,:,I,—_]_rmfl Pm—1 .
Notice that the derivations of these formulae are very similar to
those of the conjugate gradient (CG) algorithm.

The complete BiCG algorithm is given on the next slide.
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- Nonsymmetric Lanczos
L sice

The BiCG algorithm

1: Choose xg. Set ry = b — Axg. Choose iy s.t. pg = FOTro #0.
2: Set pg = ro, Po = Fo, go = Apo, Go = A7 po.
3: for k=0,1,... do

4 ap=(r] ’k)/(qk P)-

Xi+1 = Xk + Pk

Fp1 = M — oy, Fpr = Fe— Q.
Test for convergence.

Pk+1 = rL1Fk+1-

If Pk+1 = 0 method fails.

10:  Bry1 = Pr+1/ Pk

11 Ppry1 = k1 + Br+1Prs Gkl = APk
120 Pry1 = Fag1 + Bea1Pes Fra1 = AT Pryr.
13: end for

© e N o
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- Nonsymmetric Lanczos
L sice

The BiCG algorithm (cont.)

» The big advantage of the nonsymmetric Lanczos/BiCG
algorithm over Arnoldi/GMRES algorithm is its small memory
requirements. Only 7 vectors need to be stored.

This is particularly important in the presence of slow
Arnoldi/GMRES convergence.

» The big disadvantage of the nonsymmetric Lanczos/BiCG
algorithm is the possibility of breakdowns.

» Nonsymmetric Lanczos/BiCG also requires multiplications
with AT,
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- Nonsymmetric Lanczos

L qmr

The QMR algorithm

The BiCG algorithm can lead to very erratic behavior, in particular,
if T, is ill-conditioned. The QMR algorithm leads to much
smoother residual norms ||r;||. Starting from the extended Lanczos
relation we write

rm=r—AVaYm
=fv — Vm+1Tm.Vm

= m+1(ﬁ ey — Tmym)'

Clearly, [|rm|l = [[Vim+1(5 €1 = Tmym)|-

Minimizing this w.r.t. yp, yields the GMRES solution.

But, here, V11 is not orthogonal. So, minimizing |3 €1 — T mYml|
does not yield the GMRES solution.
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LNonsymmetric Lanczos
L qmRr

The QMR algorithm (cont.)

It turns out that minimizing

J(y) = ”5 € — ?mymH
is a reasonable idea. The resulting approximate solution
Xm = X0 + VimYm = X0 + ﬂVm(Tm)Jrel.

is called the Quasi-Minimal Residual (QMR) approximation.

By construction,
e "RES | < PR,
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- Nonsymmetric Lanczos

L qmr

The QMR algorithm (cont.)
Let [[rQ]| = |3 €1 — Tmyml and let ||v;|]| = 1 for all i. Then,

I3l = [ Vins1 (B €1 = Tmym)|l
—_——

z

m+1

E Viz;
i=1

One furthermore can observe that after steps of strong decrease of
||r,9|| the norms of the BiCG and the QMR residuals are close.

m+1 12 /my1 1/2
= < (ZHWHz) (Z\Zi\z) = Vm+1||rd].
i=1

i=1
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- Nonsymmetric Lanczos
L ces

The Conjugate Gradient Squared algorithm

The conjugate gradient squared (CGS) algorithm was developed
mainly to avoid using the transpose of A in BiCG. We write the
residual and conjugate direction in BiCG in polynomial form

ri=¢j(A)r,  pj=mi(Ar.
Then, by construction,
Fi=0j(ANR, By =m(AT)R,
such that

L (6[AR)(6(ADR) _ (#(A0)r
T g p (Ar(A)r)T(mi(AT)R) (AP (A)ro) TR

If we can get recursions for the vectors qbf(A)ro and WJ?(A)rO then

we can compute «; and, similarly, 3;, using these new recursions.
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- Nonsymmetric Lanczos
L ces

The Conjugate Gradient Squared algorithm (cont.)

We have from the recurrences of the r; and p;
Gi1(t) = ¢j(t) — ajtm;(t), w4 (t) = dj4a(t) + Bmj-1(2)-
After squaring
¢12+1(t) = 7TJ2+1(t) =

and some cumbersome algebraic manipulation one finds that
vectors

rj = & (A, pj=7; (A, U =¢; 1(A)m(A)r, g = ¢j(A)m(A)n,
are needed in a potential algorithm. They satisfy the recurrences

riv1 =1 — ojA(u; + qj), pi1 = up1 + Bi(q; + Bipj)

ui 1 = r+ 5;qj, Gj+1 = Uj41 — Qj11APj41
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- Nonsymmetric Lanczos
L ces

The CGS algorithm

1: Choose xg. Set rp = b — Axo. Choose fg s.t. pg = Fy rg # 0.

2: Set pg := uy := ny.

3: for k=0,1,... do

4 ax = (r][ 1) /((Api)T Po)-

Qi = U, — a Apx.

X1 = Xi + ap(ue + q), g = re— o A(ug + qi).
Test for convergence.

Pkt1 = Ml 1 Fo.

If pxk+1 = 0 method fails.

100 Bry1 = prs1/ P

11 U1 = Merr + BrQr, Pry1 = kg1 + Br(qr + Bipr)-
12: end for

© o N oo
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- Nonsymmetric Lanczos
L BicGstab

The BiCGstab algorithm

» The CGS algorithm squares the residual polynomials and
replaces multiplications with A” by multiplications with A.
So, each iteration step requires two multiplications with A.

» The algorithm still leads to the same irregular convergence as
BiCG.

» To improve this situation the stabilized biconjugate gradient
(BiCGstab) algorithm was designed. Notice that the left
Krylov space does not show up in the previous algorithms. We
chose some initial vector fo. But K;(AT, ) is present only
implicitly. The tridiagonal matrix T, reflects the way the left
basis vectors w; are constructed.

» In BiCGstab the basis of the left Krylov space is chosen
differently.
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- Nonsymmetric Lanczos
L BicGstab

The BiCGstab algorithm (cont.)

> In BiCGstab the left residuals are not generated by the same
polynomials as the right residuals but by the very simple rule

i1 = (I = wjA) Fj = ¥j (A
which leads to

Yir1(t) = (1 — wjt) ¢y(t).

As with CGS, vectors have to be found that make possible the
computation of

r; = 1j(A)g;(A)ro.

This can be done similarly as with CGS, see the books of
Saad or van der Vorst.
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L BicGstab

The BiCGstab algorithm (cont.)

» How is the parameter w; chosen?

We have
r; = j(A)gj(A)r = (I — w;jA) Yj—1(A)dj(A)r = (I —wjA)s;.
———
5
wj is chosen such that ||rj|| = ||(/ — w;A)s;|| is minimized.

This is formally steepest descent and leads to

L. (As)Ts
T (As)TAs;
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- Nonsymmetric Lanczos
L BicGstab

The BiCGstab algorithm

1: Choose xg. Set rp = b — Axg. Choose £y.
2: Set pg .= ny.
3: for k=0,1,... do
4. ok = (r][R)/((Api)" Po)-
S = r — ozkApk.
Wk = ((Ask)Tsk)/((Ask)TAsk).
Xk+1 = Xk + QpPk + WiSk.
rgr1 = Sk — kaSk.
Test for convergence.
10: Pk+1 = rILrIFO'
11: By = Bl Q1
Pk Wk
12 pry1 = N1 + Bi(Pe — wiApx).
13: end for

© o N a
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L Comparison

Comparison
Generate the 30'000x30'000 example

A = gallery('toeppen', 30000, 2 ,3, 8, 3.5, 4.5);

The matrix A is a nonsymmetric banded matrix with band width 5.
The condition of A is small k(A) ~ 32.
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- Comparison

BiCG o OMR
10 10
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LSummary

Decision tree

A symmetric?

" No Yes
- —
AT available? A definite?
) ~No Yes “No Yes\"-\
£ T ; P F A i
Is storage Is A well- Is A well- Largest and smallest
expensive? conditioned? conditioned? eigenvalues known?
No  Yes No Yes Yes No No Yes
1 L] 2
’l Try GMRESJ Try CGS or ITry QMR Ty CGon || Try MINRES || Try €G| | Try €G with
Bi-CGSuab or normal equations | | oramethod for | Chebyshev Accel.
I GMRES(k) | nonsymmetric A E—

Flow chart from J. Demmel Applied Numerical Linear Algebra
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LSummary

[terative linear solvers in MATLAB

Function Matrix Method

bicg General BiConjugate Gradient

bicgstab | General BiConjugate Gradient Stabilized

cgs General Conjugate Gradient Squared

gmres General Generalized Minimum Residual

lsqr General Conjugate Gradient (Normal Equations)
minres Hermitian Minimum Residual

pcg Hermitian p.d. | Preconditioned Conjugate Gradient
qmr General Quasi-Minimal Residual

symmlq Hermitian Symmetric LQ

Tabelle 1: Iterative linear equation solvers in MATLAB
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