

FEM and Sparse Linear System Solving Lecture 2, Sept 29, 2017: Triangulations in 2D http://people.inf.ethz.ch/arbenz/FEM17

Peter Arbenz Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch

1/25

- The finite element method
 - Introduction, model problems.
 - ▶ 1D problems. Piecewise polynomials in 1D.
 - ▶ 2D problems. Triangulations. Piecewise polynomials in 2D.
 - Variational formulations. Galerkin finite element method.
 - Implementation aspects.
- Direct solvers for sparse systems
 - LU and Cholesky decomposition
 - Sparse matrices
 - Fill-reducing orderings
- Iterative solvers for sparse systems
 - Stationary iterative methods, preconditioning
 - Preconditioned conjugate gradient method (PCG)
 - Incomplete factorization preconditioning
 - Multigrid preconditioning
 - Nonsymmetric problems (GMRES, BiCGstab)
 - Indefinite problems (SYMMLQ, MINRES)

Motivation

- We extend the concept of piecewise polynomial approximation to two dimensions (2D).
- Basic idea: construct spaces of piecewise polynomial functions that are easy to represent in a computer and
- that can be used to approximate more general functions.
- Difficulty: domain must be partitioned into elements, such as triangles, which may be nontrivial if the domain has complex shape.

<ロ> (四) (四) (三) (三) (三)

Piecewise polynomial approximation in 2D

Triangulation

Triangulations

- For simplicity, we assume that Ω ⊂ ℝ² is a bounded domain with smooth or polygonal boundary ∂Ω.
- Set of triangles $\{K\}$ defines a triangulation \mathcal{K} of Ω such that
 - $\blacktriangleright \cup_{K\in\mathcal{K}}\overline{K}=\overline{\Omega},$
 - the intersection K
 ₁ ∩ K
 ₂ of two triangles K₁, K₂ ∈ K, K₁ ≠ K₂, is either an edge, a corner, or empty.
 (Hanging vertices are not allowed.)
- ► The points where triangle vertices meet are called *nodes*.
- We number the nodes from 1 to *n*.
- Surrounding any node is a *patch* of triangles that each have that node as a vertex.

Piecewise polynomial approximation in 2D

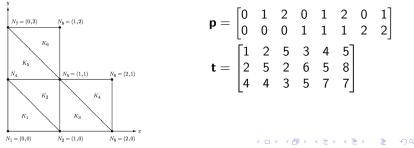
- Triangulation

Data structures for triangulations in MATLAB

Represention of triangular mesh with n_p nodes and n_t elements by two matrices:

- ▶ Point matrix $\mathbf{p} \in \mathbb{R}^{2 \times n_p}$: column *j* contains coordinates of node N_j .
- ► connectivity matrix $\mathbf{t} \in \mathbb{R}^{3 \times n_t}$: column *j* contains numbers of the three nodes in triangle K_j

Very coarse triangulation of the L-shaped domain



FEM & sparse system solving, Lecture 2, Sept 29, 2017

Piecewise polynomial approximation in 2D

Triangulation

Tetrahedral meshes in 3D

Tetrahedral meshes are (can be) used to partition domains in three dimensions. The way of representing a tetrahedral mesh is similar as with triangular meshes in 2D.

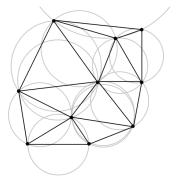
- **p**, point matrix, has 3 rows for the three node coordinates
- t, connectivity matrix, has 4 rows containing the four nodes of a tetrahedron

Piecewise polynomial approximation in 2D

- Triangulation

Mesh generation

- In 2D there are efficient algorithms for creating a mesh on quite general domains. Delaunay triangulations ensure that for a set of points the circumcircle associated with each triangle contains no other point in its interior.
 - Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the triangulation.
 - PDE-Toolbox in Matlab includes a high quality Delaunay mesh generator for creating high quality triangulations of 2D geometries.



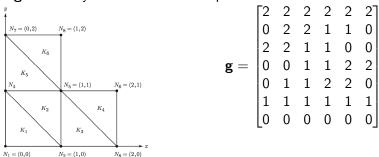
Picture from Wikipedia.

Piecewise polynomial approximation in 2D

Triangulation

Mesh generation (cont.)

g: Geometry matrix for the L-shaped domain in Matlab



Row 1 in **g**: '2' for linear boundary segment; row 2,4 (3,5): coordinates of initial (final) endpoint. Row 6 (7): number of geometry piece to left (right) of segment. For more info see MATLAB docu.

FEM & sparse system solving, Lecture 2, Sept 29, 2017

- ▲ 同 ▶ - ▲ 回 ▶

∃ >

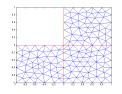
Piecewise polynomial approximation in 2D

Triangulation

Generate a mesh of the domain g

- Built-in geometries in PDE-Toolbox:
 - lshapeg, L-shaped domain
 - squareg, square $[-1,1]^2$.
 - cicrcleg, the unit radius circle centered at origin.
- More general geometries can be drawn in the PDE-Toolbox GUI. It is initialized by typing pdetool at the MATLAB prompt.
- g: geometry matrix;
 g: point matrix;
 g: edge matrix;
 g: t: triangle matrix.

```
g = 'lshapeg';
[p,e,t]=initmesh(g,'hmax',0.1);
pdemesh(p,e,t); % plots
axis square
```

-Piecewise polynomial approximation in 2D

L The space of linear polynomials

The space of linear polynomials

Meshing a domain allows for a simple construction of piecewise polynomial function spaces.

Let K be a triangle and $\mathbb{P}_1(K)$ space of linear functions on K:

$$\mathbb{P}_1(K) = \{ v : v = c_0 + c_1 x_1 + c_2 x_2, (x_1, x_2) \in K, c_0, c_1, c_2 \in \mathbb{R} \}$$

Any function v in $\mathbb{P}_1(K)$ can be determined by its

 $\{\alpha_0, \alpha_1, \alpha_2\}$: nodal values $\alpha_i = v(N_i); N_i = (x_1^{(i)}, x_2^{(i)})$

$$\mathbf{v}(\mathbf{x}) = \alpha_0 \lambda_0 + \alpha_1 \lambda_1 + \alpha_2 \lambda_2$$
$$\lambda_j(N_i) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

On reference triangle \overline{K} with nodes (0,0), (1,0) and (0,1), the nodal basis function for $\mathbb{P}_1(\overline{K})$ are $\lambda_1 = 1 - x_1 - x_2$, $\lambda_2 = x_1, \lambda_3 = x_2$.

Piecewise polynomial approximation in 2D

The space of continuous piecewise linear polynomials

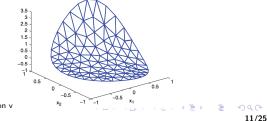
The space of continuous piecewise linear polynomials

The construction of piecewise linear functions on a mesh $\mathcal{K} = \{\mathcal{K}\}$: On each triangle \mathcal{K} any such function v is simply required to belong to $\mathbb{P}_1(\mathcal{K})$

The space of continuous piecewise linear polynomials V_h

$$V_h = \left\{ v : v \in C^0(\Omega), \ v|_{\mathcal{K}} \in \mathbb{P}_1(\mathcal{K}), \ \forall \mathcal{K} \in \mathcal{K}
ight\}.$$

 $C^{0}(\Omega)$: the space of continuous functions on Ω $\mathbb{P}_{1}(K)$: the space of linear polynomials on K



A continuous piecewise linear function v

Piecewise polynomial approximation in 2D

The space of continuous piecewise linear polynomials

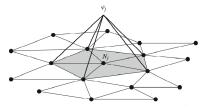
Any function v in V_h can be written as a linear combination of $\{\varphi_i\}_{i=1}^{n_p} \subset V_h$ nodal basis (hat) functions

$$\mathbf{v}(\mathbf{x}) = \sum_{i=1}^{n_p} \alpha_i \varphi_i(\mathbf{x}), \qquad \alpha_i = \mathbf{v}(N_i),$$

with

$$\varphi_j(N_i) = \delta_{ij} \equiv \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j, \end{cases} \quad i, j = 1, 2, \dots, n_p.$$

A two-dimensional hat function φ_j on a general triangle mesh



FEM & sparse system solving, Lecture 2, Sept 29, 2017

FEM and Sparse Linear System Solving └─ Piecewise polynomial approximation technique └─ L²-projection

L^2 -projection

Definition: The L^2 -projection $P_h f$ of $f \in L^2(\Omega)$ onto the space V_h is defined by

$$\int_{\Omega} (f - P_h f) v_h \, dx = 0, \quad \forall v_h \in V_h. \tag{(*)}$$

The definition is equivalent to

$$\int_{\Omega} (f - P_h f) \varphi_i dx = 0, \quad i = 1, 2, \dots, n_p.$$

where the φ_i are the basis functions of V_h . Since $P_h f \in V_h$,

$$P_h f = \sum_{j=1}^{n_p} \xi_j \varphi_j$$

 ξ_j : the unknown coefficients to be determined.

FEM & sparse system solving, Lecture 2, Sept 29, 2017

Piecewise polynomial approximation technique

 L^2 -projection

$$\int_{\Omega} f\varphi_i dx = \int_{\Omega} \underbrace{\left(\sum_{j=1}^{n_p} \xi_j \varphi_j\right)}_{P_i dx} \varphi_i dx = \sum_{j=1}^{n_p} \xi_j \int_{\Omega} \varphi_j \varphi_i dx, \quad i = 1, \dots, n_p.$$

Using the notations:

Mass matrix:
$$m_{ij} = \int_{\Omega} \varphi_j \varphi_i \, dx$$
, $i, j = 1, \dots, n_p$.
Load vector: $b_i = \int_{\Omega} f \varphi_i dx$, $i = 1, \dots, n_p$.

The linear system for the unknown coefficients ξ_j is

$$\mathbf{M}\xi = \mathbf{b} \quad \Longleftrightarrow \quad \sum_{j=1}^{n_p} m_{ij}\xi_j = b_i, \quad i = 1, \dots, n_p.$$

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ─ 圖 □

14/25

The $n_p \times n_p$ matrix **M** is SPD.

FEM and Sparse Linear System Solving └─ Piecewise polynomial approximation technique └─ L²-projection

Properties of the mass matrix

Theorem: **M** is SPD.
Proof:
$$\xi^T \mathbf{M} \xi = \sum_{i,j=1}^{n_p} m_{ij} \xi_i \xi_j$$

 $= \sum_{i,j=1}^{n_p} \left(\int_{\Omega} \varphi_j \varphi_i \, dx \right) \xi_i \xi_j$
 $= \int_{\Omega} \left(\sum_{i=1}^{n_p} \xi_i \varphi_i \right) \left(\sum_{j=1}^{n_p} \xi_j \varphi_j \right) \, dx$
 $= \left\| \sum_{i=1}^{n_p} \xi_i \varphi_i \right\|^2 > 0 \quad \text{if } \xi \neq \mathbf{0},$

since the φ_j are linearly independent by construction. \Box

15/25

Piecewise polynomial approximation technique

-Quadrature and numerical integration

Quadrature rules

The integral is approximated by a sum of weights times the values of the integrand at a set of carefully selected quadrature points.

$$\int_{K} f dx \approx \sum_{j} w_{j} f(q_{j}).$$

 $\{q_i\}$: set of quadrature points in triangle \bar{K} .

 $\{w_j\}$: quadrature weights

Simple quadrature formulas for integrating a continuous function f over a general triangle K with nodes (vertices) N_1 , N_2 , and N_3 are:

- 1. Center of gravity rule
- 2. Trapezoidal rule (aka. corner quadrature formula)
- 3. A better quadrature formula is 2D mid-point rule

Piecewise polynomial approximation technique

-Quadrature and numerical integration

1. The simplest quadrature formula is center of gravity rule:

$$\int_{K} f dx \approx f\left(\frac{N_1 + N_2 + N_3}{3}\right) |K|$$

|K|: the area of K. (Variant of 2D mid-point rule)2. Trapezoidal rule

$$\int_{\mathcal{K}} f dx \approx \sum_{i=1}^{3} f(N_i) \frac{|\mathcal{K}|}{3}$$

3. 2D mid-point rule

$$\int_{\mathcal{K}} f dx \approx \sum_{1 \leq i < j \leq 3}^{3} f\left(\frac{N_i + N_j}{2}\right) \frac{|\mathcal{K}|}{3}$$

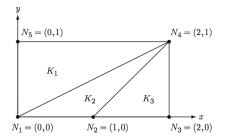
 $(N_i + N_j)/2$: the mid-point of the edge between node number i and j.

17/25

Piecewise polynomial approximation technique

- Computer implementation: assembly of the mass matrix

Let's consider the small mesh of the rectangle $\Omega = [0, 2] \times [0, 1]$



We want to compute the mass matrix M

$$M = \int_{\Omega} \begin{bmatrix} \varphi_1 \varphi_1 & \varphi_2 \varphi_1 & \varphi_3 \varphi_1 & \varphi_4 \varphi_1 & \varphi_5 \varphi_1 \\ \varphi_1 \varphi_2 & \varphi_2 \varphi_2 & \varphi_3 \varphi_2 & \varphi_4 \varphi_2 & \varphi_5 \varphi_2 \\ \varphi_1 \varphi_3 & \varphi_2 \varphi_3 & \varphi_3 \varphi_3 & \varphi_4 \varphi_3 & \varphi_5 \varphi_3 \\ \varphi_1 \varphi_4 & \varphi_2 \varphi_4 & \varphi_3 \varphi_4 & \varphi_4 \varphi_4 & \varphi_5 \varphi_4 \\ \varphi_1 \varphi_5 & \varphi_2 \varphi_5 & \varphi_3 \varphi_5 & \varphi_4 \varphi_5 & \varphi_5 \varphi_5 \end{bmatrix} dx$$

FEM & sparse system solving, Lecture 2, Sept 29, 2017

・ロト ・聞ト ・ヨト ・ヨト

Piecewise polynomial approximation technique

- Computer implementation: assembly of the mass matrix

Break the integral over Ω into a sum of integrals over the triangles K_i , i = 1, 2, 3.

$$M = \sum_{i=1}^{3} \int_{\mathcal{K}_{i}} \begin{bmatrix} \varphi_{1}\varphi_{1} & \varphi_{2}\varphi_{1} & \varphi_{3}\varphi_{1} & \varphi_{4}\varphi_{1} & \varphi_{5}\varphi_{1} \\ \varphi_{1}\varphi_{2} & \varphi_{2}\varphi_{2} & \varphi_{3}\varphi_{2} & \varphi_{4}\varphi_{2} & \varphi_{5}\varphi_{2} \\ \varphi_{1}\varphi_{3} & \varphi_{2}\varphi_{3} & \varphi_{3}\varphi_{3} & \varphi_{4}\varphi_{3} & \varphi_{5}\varphi_{3} \\ \varphi_{1}\varphi_{4} & \varphi_{2}\varphi_{4} & \varphi_{3}\varphi_{4} & \varphi_{4}\varphi_{4} & \varphi_{5}\varphi_{4} \\ \varphi_{1}\varphi_{5} & \varphi_{2}\varphi_{5} & \varphi_{3}\varphi_{5} & \varphi_{4}\varphi_{5} & \varphi_{5}\varphi_{5} \end{bmatrix} dx = \sum_{i=1}^{3} M^{\kappa_{i}}$$

There are three non-zero hat functions on each triangle.

The computation of mass matrix M is reduce to a series of operations on the triangles.

FEM & sparse system solving, Lecture 2, Sept 29, 2017

Piecewise polynomial approximation technique

Computer implementation: assembly of the mass matrix

Computation of the element masses

The computation of the element masses could be done using quadrature. However, there is a much easier way. By induction

$$\int_{\mathcal{K}} \varphi_1^m \varphi_2^n \varphi_3^p dx = \frac{2m! n! p!}{(m+n+p+2)!} |\mathcal{K}|$$

on triangle K with its three nodes N_1 , N_2 , and N_3 , and corresponding hat functions φ_1 , φ_2 , and φ_3 .

$$M_{ij}^{\kappa} = \int_{\kappa} \varphi_i \varphi_j dx = \frac{1}{12} (1 + \delta_{ij}) |\kappa| \quad i, j = 1, 2, 3$$

$$M^{K} = \frac{1}{12} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} |K|$$

Local-to-global mapping is used when adding the entries of the local element mass matrix M^{κ} to appropriate positions in the global mass matrix M.

- Piecewise polynomial approximation technique

Computer implementation: assembly of the mass matrix

Algorithm: assembly of the mass matrix

```
function M = MassAssembler2D(p,t)
```

```
np = size(p,2); % number of nodes
nt = size(t,2); % number of elements
M = sparse(np,np); % allocate mass matrix
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Piecewise polynomial approximation technique

Computation of the load vector

The load vector b is assembled by summing element load vector b^{K} over the mesh

$$b_i^K = \int_K f\varphi_i \, dx, \quad i=1,2,3.$$

Using the trapezoidal rule (node quadrature)

$$b_i^K \approx \frac{1}{3}f(N_i)|K|, \quad i=1,2,3.$$

FEM and Sparse Linear System Solving Piecewise polynomial approximation technique Computation of the load vector

Algorithm: assembly of the mass matrix

```
function b = LoadAssembler2D(p,t,f)
np = size(p, 2);
nt = size(t, 2);
b = zeros(np, 1);
for K = 1:nt
  loc2qlb = t(1:3,K);
  x = p(1, loc2qlb);
  y = p(2, loc2qlb);
  area = polyarea(x,y);
  bK = [f(x(1), y(1));
        f(x(2), y(2));
        f(x(3),y(3))]/3*area; % element load vector
  b(loc2qlb) = b(loc2qlb) + bK; % add element loads to b
end
```

Piecewise polynomial approximation technique

- Computer Implementation: assembly of the load vector

Compute L2-projection of $f = 5x_1x_2$ on the unit square $\Omega = [0, 1] \times [0, 1]$

```
function L2Projector2D()
```

```
q = 'squareq';
[p,e,t] = initmesh(q, 'hmax', 0.5); % create mesh
M = MassAssembler2D(p,t);
b = LoadAssembler2D(p,t,@Foo2);
Pf = M \ ;
pdesurf(p,t,Pf)
```

- % unit square
- % assemble mass matrix
- % assemble load vector
- % solve linear system

% plot projection

```
function f = Foo2(x, y)
f = 5 * x * y;
```

Exercise 2

http://people.inf.ethz.ch/arbenz/FEM17/pdfs/exercise2.pdf

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣