
FEM and Sparse Linear System Solving

FEM and Sparse Linear System Solving
Lecture 2, Sept 29, 2017: Triangulations in 2D
http://people.inf.ethz.ch/arbenz/FEM17

Peter Arbenz
Computer Science Department, ETH Zürich
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FEM and Sparse Linear System Solving

Survey on lecture

I The finite element method
I Introduction, model problems.
I 1D problems. Piecewise polynomials in 1D.
I 2D problems. Triangulations. Piecewise polynomials in 2D.
I Variational formulations. Galerkin finite element method.
I Implementation aspects.

I Direct solvers for sparse systems
I LU and Cholesky decomposition
I Sparse matrices
I Fill-reducing orderings

I Iterative solvers for sparse systems
I Stationary iterative methods, preconditioning
I Preconditioned conjugate gradient method (PCG)
I Incomplete factorization preconditioning
I Multigrid preconditioning
I Nonsymmetric problems (GMRES, BiCGstab)
I Indefinite problems (SYMMLQ, MINRES)
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FEM and Sparse Linear System Solving

Weak formulation

Motivation

Motivation

I We extend the concept of piecewise polynomial approximation
to two dimensions (2D).

I Basic idea: construct spaces of piecewise polynomial functions
that are easy to represent in a computer and

I that can be used to approximate more general functions.

I Difficulty: domain must be partitioned into elements, such as
triangles, which may be nontrivial if the domain has complex
shape.
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Piecewise polynomial approximation in 2D

Triangulation

Triangulations

I For simplicity, we assume that Ω ⊂ R2 is a bounded domain
with smooth or polygonal boundary ∂Ω.

I Set of triangles {K} defines a triangulation K of Ω such that
I ∪K∈KK = Ω,
I the intersection K 1 ∩ K 2 of two triangles K1,K2 ∈ K,

K1 6= K2, is either an edge, a corner, or empty.
(Hanging vertices are not allowed.)

I The points where triangle vertices meet are called nodes.
I We number the nodes from 1 to n.
I Surrounding any node is a patch of triangles that each have

that node as a vertex.
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Piecewise polynomial approximation in 2D

Triangulation

Data structures for triangulations in Matlab

Represention of triangular mesh with np nodes and nt elements by two
matrices:

I Point matrix p ∈ R2×np : column j contains coordinates of node Nj .

I connectivity matrix t ∈ R3×nt : column j contains numbers of the
three nodes in triangle Kj

Very coarse triangulation of the L-shaped domain

p =

[
0 1 2 0 1 2 0 1
0 0 0 1 1 1 2 2

]

t =

1 2 5 3 4 5
2 5 2 6 5 8
4 4 3 5 7 7
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Piecewise polynomial approximation in 2D

Triangulation

Tetrahedral meshes in 3D

Tetrahedral meshes are (can be) used to partition domains in three
dimensions. The way of representing a tetrahedral mesh is similar
as with triangular meshes in 2D.

I p, point matrix, has 3 rows for the three node coordinates

I t, connectivity matrix, has 4 rows containing the four nodes of
a tetrahedron
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Piecewise polynomial approximation in 2D

Triangulation

Mesh generation

I In 2D there are efficient algorithms for
creating a mesh on quite general
domains. Delaunay triangulations
ensure that for a set of points the
circumcircle associated with each
triangle contains no other point in its
interior.
Delaunay triangulations maximize the
minimum angle of all the angles of the
triangles in the triangulation.

Picture from Wikipedia.

I PDE-Toolbox in Matlab includes a high quality Delaunay
mesh generator for creating high quality triangulations of 2D
geometries.
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Piecewise polynomial approximation in 2D

Triangulation

Mesh generation (cont.)
I g: Geometry matrix for the L-shaped domain in Matlab

g =



2 2 2 2 2 2
0 2 2 1 1 0
2 2 1 1 0 0
0 0 1 1 2 2
0 1 1 2 2 0
1 1 1 1 1 1
0 0 0 0 0 0



Row 1 in g: ‘2’ for linear boundary segment; row 2,4 (3,5):
coordinates of initial (final) endpoint. Row 6 (7): number of
geometry piece to left (right) of segment.
For more info see Matlab docu.
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Piecewise polynomial approximation in 2D

Triangulation

Generate a mesh of the domain g

I Built-in geometries in PDE-Toolbox:
I lshapeg, L-shaped domain
I squareg, square [−1, 1]2.
I cicrcleg, the unit radius circle centered at origin.

I More general geometries can be drawn in the PDE-Toolbox
GUI. It is initialized by typing pdetool at the MATLAB
prompt.

I g: geometry matrix; p: point matrix;
e: edge matrix; t: triangle matrix.

g = ‘lshapeg’;

[p,e,t]=initmesh(g,’hmax’,0.1);

pdemesh(p,e,t); % plots

axis square
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Piecewise polynomial approximation in 2D

The space of linear polynomials

The space of linear polynomials

Meshing a domain allows for a simple construction of piecewise
polynomial function spaces.
Let K be a triangle and P1(K ) space of linear functions on K :

P1(K ) = {v : v = c0 + c1x1 + c2x2, (x1, x2) ∈ K , c0, c1, c2 ∈ R}

Any function v in P1(K ) can be determined by its

{α0, α1, α2} : nodal values αi = v(Ni ); Ni = (x
(i)
1 , x

(i)
2 )

v(x) = α0λ0 + α1λ1 + α2λ2

λj(Ni ) =

{
1, if i = j
0, if i 6= j

On reference triangle K̄ with nodes (0, 0), (1, 0) and (0, 1), the nodal
basis function for P1(K̄ ) are λ1 = 1− x1 − x2, λ2 = x1, λ3 = x2.

FEM & sparse system solving, Lecture 2, Sept 29, 2017 10/25



FEM and Sparse Linear System Solving

Piecewise polynomial approximation in 2D

The space of continuous piecewise linear polynomials

The space of continuous piecewise linear polynomials

The construction of piecewise linear functions on a mesh
K = {K}: On each triangle K any such function v is simply
required to belong to P1(K )
The space of continuous piecewise linear polynomials Vh

Vh =
{
v : v ∈ C 0(Ω), v |K ∈ P1(K ), ∀K ∈ K

}
.

C 0(Ω): the space of continuous functions on Ω
P1(K ): the space of linear polynomials on K

A continuous piecewise linear function v
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Piecewise polynomial approximation in 2D

The space of continuous piecewise linear polynomials

Any function v in Vh can be written as a linear combination of
{ϕi}

np
i=1 ⊂ Vh nodal basis (hat) functions

v(x) =

np∑
i=1

αiϕi (x), αi = v(Ni ),

with

ϕj(Ni ) = δij ≡

{
1, if i = j ,

0, if i 6= j ,
i , j = 1, 2, . . . , np.

A two-dimensional hat function ϕj on a general triangle mesh
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Piecewise polynomial approximation technique

L2-projection

L2-projection

Definition: The L2-projection Phf of f ∈ L2(Ω) onto the space Vh

is defined by ∫
Ω

(f − Phf )vh dx = 0, ∀vh ∈ Vh. (∗)

The definition is equivalent to∫
Ω

(f − Phf )ϕidx = 0, i = 1, 2, . . . , np.

where the ϕi are the basis functions of Vh. Since Phf ∈ Vh,

Phf =

np∑
j=1

ξjϕj

ξj : the unknown coefficients to be determined.
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Piecewise polynomial approximation technique

L2-projection

∫
Ω
f ϕidx =

∫
Ω

Phf︷ ︸︸ ︷ np∑
j=1

ξjϕj

ϕidx =

np∑
j=1

ξj

∫
Ω
ϕjϕidx , i = 1, . . . , np.

Using the notations:

Mass matrix: mij =

∫
Ω
ϕjϕi dx , i , j = 1, . . . , np.

Load vector: bi =

∫
Ω
f ϕidx , i = 1, . . . , np.

The linear system for the unknown coefficients ξj is

Mξ = b ⇐⇒
np∑
j=1

mijξj = bi , i = 1, . . . , np.

The np × np matrix M is SPD.
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Piecewise polynomial approximation technique

L2-projection

Properties of the mass matrix

Theorem: M is SPD.

Proof: ξTMξ =

np∑
i ,j=1

mijξiξj

=

np∑
i ,j=1

(∫
Ω
ϕjϕi dx

)
ξiξj

=

∫
Ω

( np∑
i=1

ξiϕi

) np∑
j=1

ξjϕj

 dx

=

∥∥∥∥∥
np∑
i=1

ξiϕi

∥∥∥∥∥
2

> 0 if ξ 6= 0,

since the ϕj are linearly independent by construction.
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Piecewise polynomial approximation technique

Quadrature and numerical integration

Quadrature rules

The integral is approximated by a sum of weights times the values
of the integrand at a set of carefully selected quadrature points.∫

K
fdx ≈

∑
j

wj f (qj).

{qj}: set of quadrature points in triangle K̄ .
{wj}: quadrature weights
Simple quadrature formulas for integrating a continuous function f
over a general triangle K with nodes (vertices) N1, N2, and N3 are:

1. Center of gravity rule

2. Trapezoidal rule (aka. corner quadrature formula)

3. A better quadrature formula is 2D mid-point rule
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Piecewise polynomial approximation technique

Quadrature and numerical integration

1. The simplest quadrature formula is center of gravity rule:∫
K
fdx ≈ f

(
N1 + N2 + N3

3

)
|K |

|K |: the area of K . (Variant of 2D mid-point rule)

2. Trapezoidal rule ∫
K
fdx ≈

3∑
i=1

f (Ni )
|K |
3

3. 2D mid-point rule∫
K
fdx ≈

3∑
1≤i<j≤3

f

(
Ni + Nj

2

)
|K |
3

(Ni + Nj)/2: the mid-point of the edge between node number
i and j.
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Piecewise polynomial approximation technique

Computer implementation: assembly of the mass matrix

Let’s consider the small mesh of the rectangle Ω = [0, 2]× [0, 1]

We want to compute the mass matrix M

M =

∫
Ω


ϕ1ϕ1 ϕ2ϕ1 ϕ3ϕ1 ϕ4ϕ1 ϕ5ϕ1

ϕ1ϕ2 ϕ2ϕ2 ϕ3ϕ2 ϕ4ϕ2 ϕ5ϕ2

ϕ1ϕ3 ϕ2ϕ3 ϕ3ϕ3 ϕ4ϕ3 ϕ5ϕ3

ϕ1ϕ4 ϕ2ϕ4 ϕ3ϕ4 ϕ4ϕ4 ϕ5ϕ4

ϕ1ϕ5 ϕ2ϕ5 ϕ3ϕ5 ϕ4ϕ5 ϕ5ϕ5

 dx
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Piecewise polynomial approximation technique

Computer implementation: assembly of the mass matrix

Break the integral over Ω into a sum of integrals over the triangles
Ki , i = 1, 2, 3.

M =
3∑

i=1

∫
Ki


ϕ1ϕ1 ϕ2ϕ1 ϕ3ϕ1 ϕ4ϕ1 ϕ5ϕ1

ϕ1ϕ2 ϕ2ϕ2 ϕ3ϕ2 ϕ4ϕ2 ϕ5ϕ2

ϕ1ϕ3 ϕ2ϕ3 ϕ3ϕ3 ϕ4ϕ3 ϕ5ϕ3

ϕ1ϕ4 ϕ2ϕ4 ϕ3ϕ4 ϕ4ϕ4 ϕ5ϕ4

ϕ1ϕ5 ϕ2ϕ5 ϕ3ϕ5 ϕ4ϕ5 ϕ5ϕ5

 dx =
3∑

i=1

MKi

There are three non-zero hat functions on each triangle.

M =

∫
K1


ϕ1ϕ1 0 0 ϕ4ϕ1 ϕ5ϕ1

0 0 0 0 0
0 0 0 0 0

ϕ1ϕ4 0 0 ϕ4ϕ4 ϕ5ϕ4
ϕ1ϕ5 0 0 ϕ4ϕ5 ϕ5ϕ5

 dx +
∫
K2


ϕ1ϕ1 ϕ2ϕ1 0 ϕ4ϕ1 0
ϕ1ϕ2 ϕ2ϕ2 0 ϕ4ϕ2 0

0 0 0 0 0
ϕ1ϕ4 ϕ2ϕ4 0 ϕ4ϕ4 0

0 0 0 0 0

 dx

+
∫
K3


0 0 0 0 0
0 ϕ2ϕ2 ϕ3ϕ2 ϕ4ϕ2 0
0 ϕ2ϕ3 ϕ3ϕ3 ϕ4ϕ3 0
0 ϕ2ϕ4 ϕ3ϕ4 ϕ4ϕ4 0
0 0 0 0 0

 dx

The computation of mass matrix M is reduce to a series of operations on the triangles.
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Piecewise polynomial approximation technique

Computer implementation: assembly of the mass matrix

Computation of the element masses

The computation of the element masses could be done using
quadrature. However, there is a much easier way. By induction∫

K
ϕm

1 ϕ
n
2ϕ

p
3dx =

2m!n!p!

(m + n + p + 2)!
|K |

on triangle K with its three nodes N1, N2, and N3, and corresponding hat
functions ϕ1, ϕ2, and ϕ3.

MK
ij =

∫
K

ϕiϕjdx =
1

12
(1 + δij)|K | i , j = 1, 2, 3

MK =
1

12

2 1 1
1 2 1
1 1 2

 |K |
Local-to-global mapping is used when adding the entries of the local
element mass matrix MK to appropriate positions in the global mass
matrix M.
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Piecewise polynomial approximation technique

Computer implementation: assembly of the mass matrix

Algorithm: assembly of the mass matrix

function M = MassAssembler2D(p,t)

np = size(p,2); % number of nodes
nt = size(t,2); % number of elements
M = sparse(np,np); % allocate mass matrix

for K = 1:nt % loop over elements
loc2glb = t(1:3,K); % local-to-global map
x = p(1,loc2glb); % node x-coordinates
y = p(2,loc2glb); % node y-coordinates
area = polyarea(x,y); % triangle area
MK = [2 1 1;

1 2 1;
1 1 2]/12*area; % element mass matrix

M(loc2glb,loc2glb) = M(loc2glb,loc2glb) ...
+ MK; % add element masses to M

end
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Piecewise polynomial approximation technique

Computation of the load vector

The load vector b is assembled by summing element load vector
bK over the mesh

bKi =

∫
K
f ϕi dx , i = 1, 2, 3.

Using the trapezoidal rule (node quadrature)

bKi ≈
1

3
f (Ni )|K |, i = 1, 2, 3.
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Piecewise polynomial approximation technique

Computation of the load vector

Algorithm: assembly of the mass matrix

function b = LoadAssembler2D(p,t,f)

np = size(p,2);
nt = size(t,2);
b = zeros(np,1);

for K = 1:nt
loc2glb = t(1:3,K);
x = p(1,loc2glb);
y = p(2,loc2glb);
area = polyarea(x,y);
bK = [f(x(1),y(1));

f(x(2),y(2));
f(x(3),y(3))]/3*area; % element load vector

b(loc2glb) = b(loc2glb) + bK; % add element loads to b
end
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Piecewise polynomial approximation technique

Computer Implementation: assembly of the load vector

Compute L2-projection of f = 5x1x2 on the unit square Ω = [0, 1]× [0, 1]

function L2Projector2D()

g = 'squareg'; % unit square
[p,e,t] = initmesh(g,'hmax',0.5); % create mesh
M = MassAssembler2D(p,t); % assemble mass matrix
b = LoadAssembler2D(p,t,@Foo2); % assemble load vector
Pf = M\b; % solve linear system
pdesurf(p,t,Pf) % plot projection

function f = Foo2(x, y)
f = 5*x.*y;
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Exercise

Exercise 2

http://people.inf.ethz.ch/arbenz/FEM17/pdfs/exercise2.pdf
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