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FEM and Sparse Linear System Solving

Survey on lecture

I The finite element method
I Introduction, model problems.
I 1D problems. Piecewise polynomials in 1D.
I 2D problems. Triangulations. Piecewise polynomials in 2D.
I Variational formulations. Galerkin finite element method.
I Theory of errors/error estimation.
I Adaptive mesh refinement
I Discontinuous Galerkin finite element method.
I Some problems from fluid mechanics.

I Direct solvers for sparse systems

I Iterative solvers for sparse systems
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Model problem

The Poisson problem

As a model problem, let us consider the problem

−∆u(x) = f (x), x ∈ Ω,

u(x) = gD(x), x ∈ ΓD = ∂ΩD ,

∂u(x)

∂n
= gN(x), x ∈ ΓN = ∂ΩN .

(*)

Here, ∂Ω = ΓD ∪ ΓN . On ΓD Dirichlet boundary conditions are
imposed. On ΓN Neumann boundary conditions are imposed.

Weak form of the model problem∫
Ω

grad u · grad v dx︸ ︷︷ ︸
a(u, v)

=

∫
Ω
f v dx +

∫
ΓN

gN v ds︸ ︷︷ ︸
`(v) := (f , v) + (gn, v)∂ΩN
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Model problem

Weak forms

With these notations the weak forms of the Poisson problem is

Find u ∈ H1
E (Ω) such that

a(u, v) = `(v) for all v ∈ H1
E0

(Ω)
(1)

The discrete problem is now

Find uh ∈ Sh
E such that

a(uh, vh) = `(vh) for all vh ∈ Sh
0

(2)
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Error

Galerkin orthogonality property

Error

We assume that Sh
E ⊂ H1

E (Ω). Then e := u − uh ∈ H1
E0

(Ω) is
called the error. From (1) we get

a(e, v) = a(u, v)− a(uh, v) = `(v)− a(uh, v).

If we plug in for v an arbitrary vh ∈ Sh
0 ⊂ H1

E0
(Ω) then we obtain

the Galerkin orthogonality property

a(e, vh) = a(u − uh, vh) = 0 for all vh ∈ Sh
0 (3)

That is, the error e ∈ H1
E0

(Ω) is orthogonal to Sh
0 with respect to

the energy inner product a(u, v).

Notice, that a(u, u)1/2 = ‖grad u‖ is a norm if the Dirichlet
boundary is nonempty.
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Error

Best approximation property

Best approximation property

Theorem:

‖grad u − grad uh‖ = min{‖grad u − grad vh‖ : vh ∈ Sh
E} (4)

Proof: Identical to the 1D case. See Larson–Bengzon.

We will later use this theorem to estimate the error by a clever
choice of vh.
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Some inequalities

Some inequalities

Definition: H1(Ω)-norm.

‖u‖1,Ω :=
(
‖u‖2 + ‖grad u‖2

)1/2
=

∫
Ω

(
u2 +

(
∂u

∂x

)2

+

(
∂u

∂y

)2
)1/2

Definition: H1
0(Ω) = {v ∈ H1(Ω) : v |∂Ω = 0}.

Theorem: (Poincaré inequality)
Let Ω ⊂ R2 be a bounded domain. Then, there is constant
C = C (Ω), such that for any v ∈ H1

0,

‖v‖ ≤ C ‖grad v‖ for all v ∈ H1
0(Ω).

Proof: Larson–Bengzon, p. 75.
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Some inequalities

Some inequalities (cont.)
The restriction v |∂Ω of v to the boundary ∂Ω of Ω is called the
trace of v .

Theorem: (Trace inequality)
Let Ω ⊂ R2 be a bounded domain with smooth or convex
polygonal boundary ∂Ω. Then, there is constant C = C (Ω), such
that for any v ∈ H1(Ω),

‖v‖L2(∂Ω) ≤ C
(
‖v‖2

L2(Ω) + ‖grad v‖2
L2(Ω)

)1/2
= C ‖v‖1,Ω

Proof: Larson–Bengzon, p. 75.
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Some inequalities

Some inequalities (cont.)

Definition: H2(Ω)-norm: ‖u‖2,Ω :=
(
‖u‖2

1,Ω + ‖D2u‖2
)1/2

where

D2u =

(
∂2u

∂x2
,
∂2u

∂x∂y
,
∂2u

∂y∂x
,
∂2u

∂y2

)
Clearly, H2(Ω) ⊂ H1(Ω).

Theorem: (Elliptic regularity) Let Ω ⊂ R2 be a bounded convex
domain with polygonal boundary or a general domain with smooth
boundary. Then, there is a constant C = C (Ω), such that for any
sufficiently smooth function v with v = 0 or ∂v

∂n = 0 on ∂Ω,

‖D2v‖L2(Ω) ≤ C‖∆v‖L2(Ω)

Proof: K. Eriksson et al.: Computational differential equations.
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Some inequalities

Some inequalities (cont.)
Definition: A sequence of triangular/ tetrahedral grids {Th} is said
to be quasi-uniform if there exists a constant ρ > 0 such that
min4k

hk = h ≥ ρh = ρmax4k
hk for every grid in the sequence.

Theorem: (Inverse estimate) On a quasi-uniform mesh any
vh ∈ Sh

E satisfies the inverse estimate

‖grad vh‖L2(Ω) ≤ Ch−1‖vh‖L2(Ω)

Proof: Larson–Bengzon, p. 77.
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Finite element convergence

Main convergence theorem

Theorem: If the variational problem (1) is solved using a mesh of
linear triangular elements and if a minimal angle condition is
satisfied (see below) then there is a constant C1 such that

‖grad (u − uh)‖ ≤ C1 h ‖D2u‖ (5)

where ‖D2u‖ measures the elliptic regularity of the solution, and h
is the longest triangle edge in the mesh.

Idea of proof:

1. Replace uh by the interpolant πhu of u in Sh
E and use best

approximation property.

2. Do estimates elementwise using the transformations to the
reference triangle.
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Finite element convergence

Proof

First we note that u ∈ H2(Ω) implies u ∈ C 0(Ω), i.e., it makes
sense to talk of function values u(x).

(In contrast, v ∈ H1(Ω) may not be continuous. There are notions of

boundary traces, e.g. ‖u‖∂Ω ≤ C‖u‖1,Ω.)

Let πhu ∈ Sh
E that interpolates the exact solution at all nodes of

the triangulation Th. Then,

‖grad (u − uh)‖2 ≤ ‖grad (u − πhu)‖2 =
∑
4k∈Th

‖grad (u − πhu)‖2
4k
.

(6)

We now use the local-global mapping from the reference triangle
4∗ to the actual triangle 4k .
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Finite element convergence

Lemma 11: ‖grad (u − πhu)‖2
4k
≤ 2

h2
k
|4k |‖grad (ū − πhū)‖2

4∗
Here ū is the image of u on 4∗.

Lemma 12: (without proof)
‖grad (ū − πhū)‖2

4∗
≤ C‖D2(ū − πhū)‖2

4∗
≡ C‖D2ū‖2

4∗

Lemma 13: ‖D2ū‖2
4∗
≤ 8h2

k
h2
k
|4k |‖D

2u‖2
4k

Altogether, we have

‖grad (u − πhu)‖2
4k
≤ 16Ch2

k

h4
k

|4k |2
‖D2u‖2

4k
(7)

Summing over all elements and maximizing (h = max hk) almost
gives the result; but we still have to discuss what happens with
h2
k
|4k | which is the quotient of two areas.
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Finite element convergence

Proof of Lemma 11

Let ek = u − πhu and ēk be the mapped function on 4∗. Then,

‖grad e‖2
4k

=

∫
4k

((
∂e

∂x

)2

+

(
∂e

∂y

)2
)

dx dy

=

∫
4∗

((
∂ē

∂x

)2

+

(
∂ē

∂y

)2
)

2|4k | dξ dη

=
1

2|4k |

∫
4∗

((
b2
∂ē

∂ξ
+ b3

∂ē

∂η

)2

+

(
c2
∂ē

∂ξ
+ c3

∂ē

∂η

)2
)

dξ dη

≤ 4h2
k

2|4k |

∫
4∗

((
∂ē

∂ξ

)2

+

(
∂ē

∂η

)2
)

dξ dη

Here, we used the Schwarz inequality and bi , ci ≤ hk .
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Finite element convergence

Proof of Lemma 13

‖D2ū‖2
4∗

=

∫
4∗

((
∂2ū

∂ξ2

)2

+ 2

(
∂2ū

∂ξ∂η

)2

+

(
∂2ū

∂η2

)2
)

dξ dη

=

∫
4k

((
∂2u

∂ξ2

)2

+ 2

(
∂2u

∂ξ∂η

)2

+

(
∂2u

∂η2

)2
)

1

2|4k |
dx dy

We deal with each of the three (four) terms individually. As an example

the first one is treated on the following page.
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Finite element convergence

Proof of Lemma 13 (cont.)

(
∂

∂ξ

(
∂u

∂ξ

))2

=

(
c3
∂

∂x

(
∂u

∂ξ

)
− b3

∂

∂y

(
∂u

∂ξ

))2

=

(
c2

3

∂2u

∂x2
− c3b3

∂2u

∂x∂y
− b3c3

∂2u

∂y∂x
+ b2

3

∂2u

∂y2

)2

≤
(
c4

3 + 2c2
3b

2
3 + b4

3

)
·

·

((
∂2u

∂x2

)2

+

(
∂2u

∂x∂y

)2

+

(
∂2u

∂y∂x

)2

+

(
∂2u

∂y2

)2
)

=
(
c2

3 + b2
3

)2︸ ︷︷ ︸
≤ 4h4

k

((
∂2u

∂x2

)2

+ 2

(
∂2u

∂x∂y

)2

+

(
∂2u

∂y2

)2
)

︸ ︷︷ ︸
|D2u|2

.
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Finite element convergence

Minimum angle condition I

Bounds in Lemmata 11 and 13 involve

the triangle aspect ratio
h2
k
|4k |

. Keeping

the aspect ratio small is equivalent to a
minimum angle condition

Proposition: For any triangle we have

h2
T

4
sin θT ≤ |4T | ≤

h2
T

2
sin θT

where 0 < θT ≤ π/3 is the smallest of the interior angles.
Proof. By elementary trigonometrics.

Remark: Similarly, for rectangles there is an aspect ratio condition.
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Finite element convergence

Minimum angle condition II

Combining equations (6) and (7) we get

‖grad (u − uh)‖2 ≤ C
∑
4k∈Th

1

sin2 θk
h2
k ‖D2u‖2

4k
(8)

Definition: A sequence of triangular grids {Th} is said to be shape
regular if there exists a minimum angle θ∗ 6= 0 such that every
element in Th satisfies θT ≥ θ∗.

Then (8) becomes (with hk ≤ h)

‖grad (u − uh)‖2 ≤ C (θ∗) h
2
∑
4k∈Th

‖D2u‖2
4k

= C h2‖D2u‖2 (9)
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Finite element convergence

L2 error

L2 error

In a similar way we can prove that

‖u − πhu‖2 ≤ C
∑
4k∈Th

h4
k‖D2u‖2

4k
(10)

Notice, that we do not bound ‖u − uh‖.

Remark: In a similar way error estimates can be deduced for the
bilinear square (rectangular) element, or, in 3D, for the linear
tetrahedron and the trilinear cube.

FEM & sparse system solving, Lecture 4, Oct 13, 2017 19/50



FEM and Sparse Linear System Solving

Finite element convergence

Errors for higher order elements

Errors for higher order elements

Using a higher-order finite element approximation space Pm or Qm

with m ≥ 2 leads to the higher order convergence bound

‖grad (u − uh)‖ ≤ Cmh
m‖Dm+1u‖. (11)

So, we get m-th order convergence as long as the regularity of the
solution is good enough. Note that ‖Dm+1u‖ <∞ if and only if all
the m+1-st derivatives of u are in L2(Ω).

The error in the L2 norm is one order higher, in general.
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Finite element convergence

Numerical tests

Numerical tests

Data from the book by Elman, Silvester and Wathen.
Q1,Q2 denote piecewise bilinear/biquadratic square elements.
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Finite element convergence

Numerical tests

Numerical tests (cont.)
If the weak solution is not smooth, then the superiority of the Q2

method over the simpler Q1 method is not so clear.
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Finite element convergence

Numerical tests

Numerical tests (cont.)
An appropriately stretched grid of Q2 elements with 705 degrees of
freedom gives better accuracy than that obtained using a uniform grid
with 2945 dofs.
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Properties of the Stiffness Matrix

Properties of the Stiffness Matrix

Theorem: The stiffness matrix A is SPD.

Theorem: The condition number of the stiffness matrix A satisfies

κ(A) = ‖A‖‖A−1‖ =
λmax(A)

λmin(A)
≤ Ch−2.

Proof: Poincaré inequality ‖s‖2
L2(Ω) ≤ C1‖grad s‖2

L2(Ω) in matrix
notation:

x
TMx ≤ C1 x

TAx

where M is mass matrix and x vector of nodal values of s.
Inverse estimate ‖grad s‖2

L2(Ω) ≤ C2h
−2‖s‖2

L2(Ω) in matrix notation

x
TAx ≤ C2h

−2
x
TMx .
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Properties of the Stiffness Matrix

Properties of the Stiffness Matrix (cont.)
Thus,

C−1
1

x
TMx

x
T
x

≤ x
TAx

x
T
x

≤ C2h
−2 x

TMx

x
T
x

Larson–Bengzon, Thm. 3.5: there are constants C3 and C4 s.t.

C3h
2 ≤ x

TMx

x
T
x

≤ C4h
2.

Thus, the extremal eigenvalues of A are bounded by

(C3/C1)h2 ≤ λmin(A) and λmax(A) ≤ C2C4.

Combining this gives

κ(A) =
C1C2C4

C3h2
≡ C h−2.
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A priori error estimation

A priori error estimation [redux]

Definition: A sequence of triangular grids {Th} is said to be shape
regular if there exists a minimum angle θ∗ 6= 0 such that every
element in Th satisfies θT ≥ θ∗.

Proposition: For piecewise linear finite elements, the convergence
rate of the gradient of the error is linear

‖grad (u − uh)‖2 ≤ C (θ∗)
∑
T∈Th

h2
T‖D2u‖2

T = C h2‖D2u‖2 (9)

where h = max hT .

Observation: The error can vary much in elements because of the
term ‖D2u‖T .
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A posteriori error estimation

A posteriori error estimation

I Many interesting problems have singularities or at least
behave very differently in various parts of the domain. This
motivates the concept of a posteriori error estimation.

I Given FE subdivision Th and solution uh: we want to compute
a local (element-wise) error estimator ηT that approximates
the local error in the energy norm ‖grad (u − uh)‖T .
Ultimate goal: modify mesh such that the (estimated) error is
distributed equally among the elements.

I Want to have garanteed accuracy, i.e.,

‖grad (u−uh)‖2 ≡
∑
T∈Th

‖grad (u−uh)‖2
T ≤ C (θ∗)

∑
T∈Th

η2
T .

(12)
I ηT should be cheap to compute.
I ηT should be ‘close’ to the real error.

FEM & sparse system solving, Lecture 4, Oct 13, 2017 27/50



FEM and Sparse Linear System Solving

A posteriori error estimation

Localization of the error

The FE error e = u − uh is characterized by (Galerkin
orthogonality)

a(e, v) = `(v)− a(uh, v) for all v ∈ H1
E0
. (3)

Now, we assume (for simplicity) that the Neumann boundary
conditions are homogeneous (if there are any), i.e., gN = 0.
Then we rewrite (3) as∑

T∈Th

a(e, v)T =
∑
T∈Th

(f , v)T −
∑
T∈Th

a(uh, v)T (13)

where subscripts T denote element-wise quantities.
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A posteriori error estimation

Localization of the error (cont.)
We integrate the last term in (13) by parts,

a(uh, v)T = (∆uh, v)T −
∑

E∈E(T )

(grad uh · nE ,T , v)E

Here, E(T ) denotes the set of edges of element T and
grad uh · nE ,T is the outward-pointing normal flux.

T

E

nE ,S

nE ,T

S
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A posteriori error estimation

Localization of the error (cont.)
Let us define the flux jump[
∂v

∂n

]
:= (grad v |T−grad v |S)·nE ,T = (grad v |S−grad v |T )·nE ,S

Then, (13) becomes

∑
T∈Th

a(e, v)T =
∑
T∈Th

(f + ∆uh, v)T −
1

2

∑
E∈E(T )

([
∂uh
∂n

]
, v

)
E


(14)

e has two distinct components

1. an element interior residual RT := {f + ∆uh}|T
2. an inter-element flux jump RE := [∂uh/∂n]
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A posteriori error estimation

Estimate of the first term in (14)

We set v = e − πe. Then, using Cauchy-Schwarz inequality and
standard interpolation error estimate:

(f + ∆uh, e − πe)T ≤ ‖f + ∆uh‖T‖e − πe‖T
≤ ‖f + ∆uh‖TChT‖grad (e − πe)‖T

Note: For piecewise linear triangle elements we have

RT := {f + ∆uh}|T = {f }T

RT can be approximated by a constant R0
T by projecting f on the

piecewise constant functions.

FEM & sparse system solving, Lecture 4, Oct 13, 2017 31/50



FEM and Sparse Linear System Solving

A posteriori error estimation

Estimate of the second term in (14)

Here, we use the scaled trace inequality

‖v‖L2(∂T ) ≤ C
(
h−1
T ‖v‖

2
L2(T ) + hT‖grad v‖2

L2(T )

)1/2
.

with v = e − πe:

‖e − πe‖L2(∂T ) ≤ C
(
h−1
T ‖e − πe‖

2
L2(T ) + hT‖grad (e − πe)‖2

L2(T )

)1/2

Poincaré

≤ C
(
hT‖grad (e − πe)‖2

L2(T )

)1/2
≤ Ch

1/2
T ‖grad e‖L2(T ).

∑
E∈E(T )

([
∂uh
∂n

]
, e − πe

)
E

=

∫
∂T

[
∂uh
∂n

]
(e − πe) ds

≤
∥∥∥∥[∂uh∂n

]∥∥∥∥
∂T

‖e − πe‖∂T ≤ C

∥∥∥∥[∂uh∂n
]∥∥∥∥

∂T

h
1/2
T ‖grad e‖L2(T ).

FEM & sparse system solving, Lecture 4, Oct 13, 2017 32/50



FEM and Sparse Linear System Solving

A posteriori error estimation

A posteriori error estimation

Therorem The finite element solution uh of (1), satisfies the
estimate

a(u − uh, u − uh) = ‖grad (u−uh)‖2 ≤ C
∑
T∈Th

η2
T

where the element residual ηT (uh) is defined by

ηT (uh) = hT‖f + ∆uh‖L2(T ) +
1

2
h

1/2
T

∥∥∥∥[∂uh∂n
]∥∥∥∥

∂T

Here,
[
∂uh
∂n

]
denotes the jump in the normal derivative of uh on the

(interior) edges of element T . Also, since uh is linear on T,
∆uh = 0.
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A posteriori error estimation

Flux jump operator

We have to distinguish between edges in the interior of Ω,
(element transitions), on the Dirichlet boundary, and on the
Neumann boundary.
We set

R∗E =


1
2 [∂uh/∂n] , E in interior of Ω,
−grad uh · nE ,T , E ⊂ on Neumann boundary,
0, E ⊂ Dirichlet boundary.

Remark: In case of nonhomogeneous Neumann boundary
conditions, the second term must be modified.
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Adaptive mesh refinement

Adaptive mesh refinement

I Mesh refinement in two and three dimensions is much more
complicated than in one dimension.

I Important issues to consider:

1. invalid elements (i.e., with hanging nodes) are not allowed,
2. refine as few elements as possible,
3. minimal angle as large as possible.

I For triangle and tetrahedral meshes the most popular
algorithms used for mesh refinement are:

1. Rivara refinement, or, longest edge bisection.
2. Regular refinement, or, red-green refinement.

Both approaches available in Matlab pdetool box.

For more info see Larson & Bengzon.
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Adaptive mesh refinement

Adaptive finite elements using Matlab

Here is a cook book for the procedure in Matlab.

I Create a (coarse) initial mesh

1 g = 'cardg'; % predefined geometry of a cardioid
2 [p,e,t] = initmesh(g,'hmax',0.25);

I Compute the finite element solution uh
1 [A,~,b] = assema(p,t,...);
2 ... % Introduce the boundary conditions
3 x = A\b;

I Compute element residuals ηT for each triangle.

1 eta = pdejmps(p,t,...);
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Adaptive mesh refinement

Adaptive finite elements using Matlab (cont.)
I Select the elements to refine

1 elements = find(eta > tol)';

I Do the actual refinement, e.g., using regular refinement

1 [p,e,t] = refinemesh(g,p,e,t,elements,'regular');

On the next slide there is code to solve

−∆u = 1 in Ω, u = 0 on ∂Ω.

Matlab routines are designed to solve

−div (c grad u(x)) + a u(x) = f (x)

e.g., [A,M,b] = assema(p,t,c,a,f);.
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Adaptive mesh refinement

The complete Matlab procedure
1 function AdaptivePoissonSolver2D()
2 g = 'cardg'; % set up geometry
3 [p,e,t] = initmesh(g,'hmax',0.25); % create initial mesh
4 while size(t,2) < 10000 % while not too many elemts, do
5 [A,~,b] = assema(p,t,1,0,1); % assemble st. matrix A,
6 % and load vector b
7 np = size(p,2); % get number of nodes
8 fixed = unique([e(1,:) e(2,:)]); % enforce bndry cond
9 free = setdiff([1:np],fixed);

10 A = A(free,free); b = b(free);
11 xi = zeros(np,1);
12 xi(free) = A\b; % solve for FE solution
13 eta = pdejmps(p,t,1,0,1,xi,1,1,1); % element residuals
14 tol = 0.8*max(eta); % set selection criteria
15 elements = find(eta > tol)'; % elements to refine
16 % refine elements using regular refinement
17 [p,e,t] = refinemesh(g,p,e,t,elements,'regular');
18 end
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Discontinous Galerkin Finite Elements

Discontinous Finite Element Spaces

Let K = {K} be a mesh of Ω. Define the space of discontinuous
piecewise linear functions

Vh = {v : v |K ∈ P1(K ), ∀K ∈ K} 6⊂ C 0(Ω).

Let EI be set of interior edges.

With each interior edge E we associate a fixed unit normal n. We
denote by K+/K− the element for which n/−n is the exterior
normal. (On ∂Ω, n is the exterior unit normal to Ω.)

We define the jump and the average of a function v ∈ Vh at the
edge E by

[v ] = v+ − v−, 〈v〉 =
v+ + v−

2
.
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Discontinous Galerkin Finite Elements

Symmetric Interior Penalty Method

Model problem

−∆u(x) = f (x), in Ω,

u(x) = 0, on ∂Ω.

To derive a discontinuous Galerkin (DG) method we multiply the
equation with a test function v ∈ Vh. Integration by parts on each
element gives

(f , v) =
∑
K∈K

(grad u, grad v)K − (n · grad u, v)∂K

=
∑
K∈K

(grad u, grad v)K −
∑
E∈EI

(n · grad u, [v ])E − (n · grad u, v)∂Ω

Here, we used the continuity of n · grad u, i.e. [n · grad u] = 0.
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Discontinous Galerkin Finite Elements

Symmetric Interior Penalty Method (cont.)
To make sense of this expression also for u ∈ Vh we replace the
normal flux n · grad u by a discrete counterpart

〈n · grad u〉 − βh−1[u],

where β is a positive parameter.
Inserting the discrete flux we arrive at

(f , v) =
∑
K∈K

(grad u, grad v)K −
∑
E∈EI

(〈n · grad u〉, [v ])E − (n · grad u, v)∂Ω

+
∑
E∈EI

(βh−1[u], [v ])E + (βh−1u, v)∂Ω
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Discontinous Galerkin Finite Elements

Symmetric Interior Penalty Method (cont.)
The following term is zero when u is the exact solution∑

E∈EI

([u], 〈n · grad v〉)E + (u,n · grad v)∂Ω.

Therefore, we can subtract it from the right side to obtain a
symmetric form.

ah(u, v) =
∑
K∈K

(grad u, grad v)K −
∑
E∈EI

(〈n · grad u〉, [v ])E

− (n · grad u, v)∂Ω −
∑
E∈EI

([u], 〈n · grad v〉)E − (u,n · grad v)∂Ω

+
∑
E∈EI

(βh−1[u], [v ])E + (βh−1[u], [v ])∂Ω

lh(v) =(f , v),
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Discontinous Galerkin Finite Elements

Symmetric Interior Penalty Method (cont.)
With the above definitions of ah(u, v) and lh(v), the finite element
method reads:

Find uh ∈ Vh such that

ah(uh, v) = lh(v), for all v ∈ Vh.
(15)

This dG method is called the Nitsches method or the Symmetric
Interior Penalty Galerkin method (SIPG).

This method is consistent, and satisfies the Galerkin orthogonality
condition

ah(u − uh, v) = 0, for all v ∈ Vh. (16)
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Discontinous Galerkin Finite Elements

A Priori Error Estimates

For the analysis of the method we define the following energy type
norm

|||v |||2 ≡
∑
K∈K
‖grad v‖2

K +
∑
E∈EI

h‖〈n · grad v〉‖2
E + h‖n · grad v‖2

∂Ω

+
∑
E∈EI

h−1‖[v ]‖2
E + h−1‖v‖2

∂Ω

Then, the error of (15) satisfies the estimate

|||u − uk |||2 ≤ Ch|u|2H2(Ω).

FEM & sparse system solving, Lecture 4, Oct 13, 2017 44/50



FEM and Sparse Linear System Solving

Discontinous Galerkin Finite Elements

Implementation issues

In the DG methods the number of degrees of freedom are the
number of elements times the number of element degree
(assuming these are the same for each element).
It is easy to form the element integrals. They become blocks on
the diagonal of A.
The edge flux matrix SE = (〈n · grad ϕi 〉, [ϕj ])E and the edge
penalty matrix PE = (βh−1[ϕi ], [ϕj ])E are more difficult to
compute and assemble.
To this end, we traverse all elements and find for each edge the
neighboring element. (We have to be careful not to treat an edge
twice.)
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Discontinous Galerkin Finite Elements

Implementation issues (cont.)
Let E = K+ ∩ K− with element basis functions ϕ±i , i = 1, 2, 3.
Then,

ϕE =



ϕ+
1

ϕ+
2

ϕ+
3

ϕ−1
ϕ−2
ϕ−3

 , [ϕE ] =



ϕ+
1

ϕ+
2

ϕ+
3

−ϕ−1
−ϕ−2
−ϕ−3

 ,

since all ‘hats’ ϕ±i are zero outside their associated element K±.
Furthermore,

〈n · grad ϕE 〉 =
1

2
n

+ · grad ϕE .

Line integrals can be computed by the Simpson rule.
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Discontinous Galerkin Finite Elements

Experiments

Spy of A A− SE − (SE )T + (β/h)PE
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Discontinous Galerkin Finite Elements

Experiments (cont.)

uh with β = 3 and h = 0.125. uh with β = 36 and h = 0.125.
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Discontinous Galerkin Finite Elements

Experiments (cont.)

uh with β = 9 and h = 0.0625.
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Exercise 4

Exercise 4:

http://people.inf.ethz.ch/arbenz/FEM17/pdfs/ex4.pdf
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