
FEM and Sparse Linear System Solving

FEM and Sparse Linear System Solving
Lecture 6, October 27, 2017: Direct methods for sparse linear

systems
http://people.inf.ethz.ch/arbenz/FEM17

Peter Arbenz
Computer Science Department, ETH Zürich

E-mail: arbenz@inf.ethz.ch
FEM & sparse system solving, Lecture 6, Oct 27, 2017 1/74

http://people.inf.ethz.ch/arbenz/FEM17

FEM and Sparse Linear System Solving

Survey on lecture

I The finite element method
I Direct solvers for sparse systems

I LU and Cholesky decomposition
I Sparse matrices
I Fill-reducing orderings

I Iterative solvers for sparse systems

FEM & sparse system solving, Lecture 6, Oct 27, 2017 2/74

FEM and Sparse Linear System Solving

Some linear algebra basics

Recap of some linear algebra/factorization basics

LU factorization

I J. Demmel: Applied Numerical Linear Algebra, SIAM 1997.

I G. Golub & Ch. van Loan: Matrix Computations, 4th ed.,
Chapter 3, Johns Hopkins, 2013.

Gaussian elimination is the algorithm to compute the LU
factorization.

I A fundamental theoretical and practical tool!

I One of the ‘Top 10 Algorithms’, see:
G. W. Stewart: The decompositional approach to matrix
computation, Computing in Science and Engineering 2(1),
pp. 50–59, 2000.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 3/74

FEM and Sparse Linear System Solving

Some linear algebra basics

Recap of some linear algebra/factorization basics (cont.)
Recent survey of one of the protagonists:

I Timothy A. Davis (+ S. Rajamanickam, W. M. Sid-Lakhdar):
A survey of direct methods for sparse linear systems.
Acta Numerica (2016), pp. 383–566.
https://doi.org/10.1017/S0962492916000076

FEM & sparse system solving, Lecture 6, Oct 27, 2017 4/74

https://doi.org/10.1017/S0962492916000076

FEM and Sparse Linear System Solving

Linear systems: direct and iterative methods

Linear systems: problem statement

We consider linear systems of equation of the form

n∑
k=1

aikxk = bi , i = 1, . . . , n,

or
A x = b.

The matrix elements aik and the right-hand side elements bi are
given. We are looking for the n unknowns xk .

FEM & sparse system solving, Lecture 6, Oct 27, 2017 5/74

FEM and Sparse Linear System Solving

Linear systems: direct and iterative methods

Direct vs. iterative methods

I We consider the problem of finding x which solves

A x = b.

where A is a given real, square (n × n), nonsingular matrix
and b is a given real vector.

I Such problems are ubiquitous in applications, and often the
most time critical.

I Two types of solution approaches:
1. Direct methods: yield exact solution in absence of roundoff

error.
I Variations of Gaussian elimination.

2. Iterative methods: iterate in a similar fashion to what we do
for nonlinear problems.

I Use only when direct methods are ineffective.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 6/74

FEM and Sparse Linear System Solving

Gaussian elimination

Existence and uniqueness of LU decomposition

The decomposition of the matrix A into a unit lower triangular
matrix L and an upper triangular matrix U, A = LU, is called LU
decomposition or LU factorization. The process that computes the
LU decomposition is called Gaussian elimination.

Theorem
The square matrix A ∈ Rn×n has a unique decomposition A = LU
if and only if the leading principal submatrices
Ak := A(1 : k, 1 : k), k = 1, . . . , n − 1, are nonsingular.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 7/74

FEM and Sparse Linear System Solving

Gaussian elimination

Existence and uniqueness of LU decomposition (cont.)
Theorem
If A is nonsingular, then one can find a row permutation P such
that PA satisfies the conditions of the previous theorem, that is
PA = LU exists and is unique.

If PA = LU is available, then instead of Ax = b one solves

P A x = P b,

in two steps: Ly = P b, forward substitution,

Ux = y , backward substitution.

Remark: L and U can be stored in A. (They overwrite A.)
P needs an extra vector.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 8/74

FEM and Sparse Linear System Solving

Gaussian elimination

Cholesky factorization

Theorem
If A is symmetric positive definite (SPD), then there is a lower
triangular matrix L such that A = LLT .

The factorization is unique if we request that the diagonal
elements of L are positive.

If A = LLT , then instead of

A x = b,

one solves

LLTx = b ⇐⇒ L y = b, LTx = y .

Remark: Only the lower (upper) triangle of A is accessed.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 9/74

FEM and Sparse Linear System Solving

Gaussian elimination

Gaussian elimination with partial pivoting

x1 x2 x3 x4 1

a11 a12 a13 a14 b1
a21 a22 a23 a24 b2
a31 a32 a33 a34 b2
a41 a42 a43 a44 b2

1. Permute rows i = 1, . . . , 4 (if necessary) such that a11 6= 0.
This element is called the pivot.

2. Subtract multiples li1 = ai1/a11 of row 1 from row i ,
i = 2, . . . , 4.

3. Set a′ik = aik − li1a1k , i , k = 2, . . . , 4.

4. Set b′i = bi − li1b1, i = 2, . . . , 4.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 10/74

FEM and Sparse Linear System Solving

Gaussian elimination

Gaussian elimination with partial pivoting (cont.)

x1 x2 x3 x4 1

a11 a12 a13 a14 b1
0 a′22 a′23 a′24 b′2
0 a′32 a′33 a′34 b′2
0 a′42 a′43 a′44 b′2

1. Permute rows i = 2, . . . , 4 (if necessary) such that a′22 6= 0.
This is the next pivot.

2. Subtract multiples l ′i2 = a′i2/a
′
22 of row 2 from row i ,

i = 3, . . . , 4.

3. Set a′′ik = a′ik − l ′i2a
′
2k , i , k = 3, . . . , 4.

4. Set b′′i = b′i − l ′i2b
′
2, i = 3, . . . , 4.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 11/74

FEM and Sparse Linear System Solving

Gaussian elimination

Gaussian elimination with partial pivoting (cont.)

x1 x2 x3 x4 1

a11 a12 a13 a14 b1
0 a′22 a′23 a′24 b′2
0 0 a′′33 a′′34 b′′2
0 0 a′′43 a′′44 b′′2

1. Permute rows i = 3, . . . , 4 (if necessary) such that a′′33 6= 0.
This is the next pivot.

2. Subtract multiple l ′′43 = a′′43/a
′′
33 of row 3 from row 4.

3. Set a′′′44 = a′′44 − l ′′43a
′′
34.

4. Set b′′′4 = b′′4 − l ′′i1b
′′
3 .

FEM & sparse system solving, Lecture 6, Oct 27, 2017 12/74

FEM and Sparse Linear System Solving

Gaussian elimination

Gaussian elimination with partial pivoting (cont.)

x1 x2 x3 x4 1

u11 u12 u13 u14 c1
0 u22 u23 u24 c2
0 0 u33 u34 c2
0 0 0 u44 c2

⇐⇒

x1 x2 x3 x4 1

a11 a12 a13 a14 b1
0 a′22 a′23 a′24 b′2
0 0 a′′33 a′′34 b′′2
0 0 0 a′′′44 b′′′2

Actual storage scheme

x1 x2 x3 x4 1

a11 a12 a13 a14 b1
l21 a′22 a′23 a′24 b′2
l31 l ′32 a′′33 a′′34 b′′2
l41 l ′42 l ′43 a′′′44 b′′′2

plus vector that
stores info
on permutations

FEM & sparse system solving, Lecture 6, Oct 27, 2017 13/74

FEM and Sparse Linear System Solving

Gaussian elimination

Gaussian elimination for Ax = b (matrix notation)

We stick with the 4× 4 example. Let

L1 =


1
l21 1
l31 1
l41 1

 L2 =


1

1
l ′32 1
l ′42 1

 L3 =


1

1
1
l ′′43 1


Then, we executed the following

U = L−13 P3L
−1
2 P2L

−1
1 P1A

which can be interpreted as

U = L−13 (P3L
−1
2 P−13)(P3P2L

−1
1 P−12 P−13)︸ ︷︷ ︸

L−1

(P3P2P1)︸ ︷︷ ︸
P

A

FEM & sparse system solving, Lecture 6, Oct 27, 2017 14/74

FEM and Sparse Linear System Solving

Gaussian elimination

Possible numerical difficulties[
10−20 1

1 1

]
=

[
1

1020 1

] [
10−20 1

1− 1020

]
Finite precision: 1.) align to same exponent, 2.) subtract.

In double precision (Matlab):

>> a=1;

>> b=10^20;

>> a-b

ans =

-1.000000000000000e+20

Relative error of subtraction ok, but:[
1

1020 1

] [
10−20 1

−1020

]
=

[
10−20 1

1 0

]
⇒ Very different matrix, algorithm like this not backward stable

FEM & sparse system solving, Lecture 6, Oct 27, 2017 15/74

FEM and Sparse Linear System Solving

LU factorization

Sensitivity (Wilkinson, Higham)

Let A be nonsingular

Ax = b,

(A + ∆A)(x + ∆x) = (b + ∆b).

If ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖, then

‖∆x‖
‖x‖

≤ 2εκ(A)

1− εκ(A)
,

for εκ(A) < 1.

Norm-wise condition number κ(A) = ‖A‖‖A−1‖.

A ill conditioned :⇐⇒ κ(A)� 1

FEM & sparse system solving, Lecture 6, Oct 27, 2017 16/74

FEM and Sparse Linear System Solving

LU factorization

Condition Estimation

With the Singular Value Decomposition A = UΣV T , one has

κ2(A) = ‖A‖2‖A−1‖2 =
σmax

σmin
.

In practice, to compute the bound

‖∆x‖
‖x‖

≤ 2εκ(A)

1− εκ(A)
,

one often does not care about the exact κ, an estimate is sufficient!

Matlab: condest(A). We will not talk about this here, see

I N. Higham: Accuracy and Stability of Numerical Algorithms,
Chapter 15, SIAM 2002.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 17/74

FEM and Sparse Linear System Solving

LU factorization

Element growth in the LU decomposition(Wilkinson)

a
(k+1)
ij = a

(k)
ij −

a
(k)
ik · a

(k)
kj

a
(k)
kk

The stability of an LU decomposition depends on the growth factor. Let
A = LU be nonsingular, and x̂ the computed solution of Ax = b.

(A + ∆A)x̂ = b, ‖∆A‖ ∼ ρ · ‖A‖, ρ =
maxi,j,k |a(k)ij |

maxi,j |aij |
.

Thus the growth factor measures the growth of the elements during the
elimination. Purpose of pivoting: obtain small element growth where
possible. Remember:[

10−20 1
1 1

]
vs.

[
1

1020 1

] [
10−20 1

1− 1020

]
FEM & sparse system solving, Lecture 6, Oct 27, 2017 18/74

FEM and Sparse Linear System Solving

LU factorization

Partial (column) pivoting PA = LU

Before elimination step k , exchange row

i = arg max
{
|a(k)ik |, i ≥ k

}
with row k =⇒ |lik | ≤ 1.


∗ ∗ ∗ ∗
× × × ×
x x x x
× × × ×

 ⇒


x x x x
× × × ×
∗ ∗ ∗ ∗
× × × ×

 ⇒


x x x x
0 × × ×
0 × × ×
0 × × ×

⇒ . . .

Notes:

I Leading columns of U are never affected by later
permutations,

I Lower triangular part can be used to store L.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 19/74

FEM and Sparse Linear System Solving

LU factorization

Cholesky factorization

SPD matrices & Cholesky factorization

Conditions that are equivalent to xTAx > 0, ∀x ∈ Rn\{0}:
1. All eigenvalues of A are positive.

2. All leading principal matrices A(1 :k, 1:k) have positive
determinants.

3. The Cholesky decomposition A = LLT exists.
(Cheapest way to check.)

L is lower triangular, with positive entries on the diagonal
(difference to LU decomposition: here, these are in general
different from 1)

Connection to QR factorization:
Let A = QR be nonsingular, then ATA = RTQTQR = RTR.
R is the Cholesky factor of ATA if all diagonal entries are positive.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 20/74

FEM and Sparse Linear System Solving

LU factorization

Cholesky factorization

When pivoting is not needed

Definition
A ∈ Rn×n is column-wise strictly diagonally dominant (SDD), if

|Ai ,i | >
∑
j 6=i

|Aj ,i |.

A is Symmetric Positive Definite (SPD), if A = AT and

xTAx > 0, ∀x ∈ Rn \ {0}.

Theorem
If A is column-wise SDD or SPD, then A = LU exists and is
unique.

Exercise, or see Golub & van Loan.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 21/74

FEM and Sparse Linear System Solving

LU factorization

Cholesky factorization

Cholesky vs. Gaussian Elimination

Q: Why prefer Cholesky to Gaussian Elimination?
A: Cholesky exploits symmetry and definiteness!

I Cholesky is always stable! Element growth is limited:

L = UΣV T ⇒ A = UΣ2UT ⇒ ‖L‖2 =
√
‖A‖2, ‖L−1‖2 =

√
‖A−1‖2.

I Only need to store half of the matrix and one triangular factor.

I Better complexity. For A ∈ Rn×n, we have

Gauss:
2

3
n3 +O

(
n2
)
, Cholesky:

1

3
n3 +O

(
n2
)
.

floating point operations. Both need O(n2) memory space.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 22/74

FEM and Sparse Linear System Solving

LU factorization

Cholesky factorization

Matlab

I Matlab’s backslash operator, x=A\b, provides Gaussian
Elimination with partial pivoting to solve Ax = b.

I Explicit form for LU = PA is

[U,L,P]=lu(A); such that x=U\(L\(P*b));

I With

[U,L]=lu(A); such that x=U\(L\b);

we get a “psychologically lower triangular matrix” L, i.e.,
Matlab actually returns PTL in L.

I The Cholesky decompositions is obtained by

L=chol(A,’lower’); x=L’\(L\b);

FEM & sparse system solving, Lecture 6, Oct 27, 2017 23/74

FEM and Sparse Linear System Solving

Introduction to sparse matrices

Introduction to sparse matrices

What is a sparse matrix?

Informal working definition by J.H. Wilkinson (1969):

Any matrix with enough zeros that it pays to take
advantage of them.

This is not a ‘real’ definition.

I Sparsity not so much a matter of fraction of nonzeros.

I ‘It’s the economy, ...’: memory, operations, computing time.

Remark: More generally: structurally sparse matrices are matrices that
can be represented with a ’few numbers’. E.g., the rank-1 matrix
H = uvT is dense in general. However, one needs to store only two
vectors to have all the information to do a matrix-vector product.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 24/74

FEM and Sparse Linear System Solving

Introduction to sparse matrices

Introduction to sparse matrices (cont.)
Various practical aspects of sparsity:

I Storage of the sparse matrix

I Access of matrix elements

I Operations on the matrix

(LU and Cholesky decomposition)

I Operations with the matrix

(multiplication of a sparse matrix with a vector)

Note: The storage scheme depends on what you want to do with the
matrix.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 25/74

FEM and Sparse Linear System Solving

Sparse Matrix Storage Formats

Sparse Matrix Storage Formats

Matlab uses coordinate-based (COO) format to display sparse
matrices. You can enter a sparse matrix using the COO format:

S = sparse (i, j, s, m, n, nzmax);

I i: the row indices of the nonzero elements;

I j: the column indices of the nonzero elements;

I s: the values of the nonzero elements;

I m: the number of rows in the matrix;

I n: the number of columns in the matrix;

I nzmax: the maximum number of nonzero elements in the
matrix; nzmax is commonly omitted because its value is taken
from the length of s.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 26/74

FEM and Sparse Linear System Solving

Sparse Matrix Storage Formats

Sparse Matrix Storage Formats (cont.)
Simple! But can be improved regarding memory accesses.

i = [1, 1, 1, 2, 2, 3, 3, 3, 3];

j = [1, 2, 5, 2, 3, 1, 3, 4, 5];

val = [11, 12, 15, 22, 23, 31, 33, 34, 35];

m = 3;

n = 5;

nzmax = 9;

a = sparse (i, j, val, m, n, nzmax);

a =

11 12 0 0 15
0 22 23 0 0

31 0 33 34 35


FEM & sparse system solving, Lecture 6, Oct 27, 2017 27/74

FEM and Sparse Linear System Solving

Sparse Matrix Storage Formats

Survey of Sparse Matrix Storage Formats

Some alternatives to COO:

I Compressed Row Storage (CRS). Most used for MatVec

I Compressed Column Storage (CCS), used by Matlab,
Rutherford-Boeing

I Block Compressed Row/Column Storage (BCRS/BCCS)

I ELLPACK / ELLPACK-R

I Compressed Diagonal Storage (CDS)

I Jagged Diagonal Storage (JDS)

I Skyline Storage (SKS), used by many FE codes

I Element-by-element (FEM)

All formats have advantages/disadvantages. The best choice
depends on context (matrix structure) and algorithm.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 28/74

FEM and Sparse Linear System Solving

Sparse Matrix Storage Formats

Example: CRS format

A =


1

2 5
3 6 9
4 8

7 10


CRS uses three vectors for storing nonzeros row-wise:

vals = [1, 2, 5, 3, 6, 9, 4, 8, 7, 10]

col ind = [1, 2, 3, 2, 3, 5, 2, 4, 3, 5]

row ptr = [1, 2, 4, 7, 9, 11]

The last element of row ptr points behind last element of vals.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 29/74

FEM and Sparse Linear System Solving

Sparse Matrix Storage Formats

Sparse MatVec with CRS format

y = zeros(m,1);

for k=1:m,

for i=row_ptr(k):row_ptr(k+1)-1

y(k) = y(k) + vals(i)*x(col_ind(i));

end

end

vals: set of arrays comprising the matrix entries
col ind: set of arrays comprising the column indices

Should be used if no regular substructures can be exploited.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 30/74

FEM and Sparse Linear System Solving

Sparse Matrix Storage Formats

Sparse matrices in Matlab: CCS format

% Given a sparse matrix A stored as dense matrix

S = sparse(A); % generate sparse matrix from A

[i,j,s] = find(S); % extract generating information

[m,n] = size(S);

A = sparse(i,j,s,m,n); % generate sparse matrix from

% generating information

A = sparse(m,n);

A = spalloc(m,n,nnz);

A = spdiags(B,d,m,n); A = speye(n); A = spones(S);

spy(A) % look at nonzero structure

FEM & sparse system solving, Lecture 6, Oct 27, 2017 31/74

FEM and Sparse Linear System Solving

Sparse Matrix Storage Formats

ELLPACK/ELLPACK-R

ELLPACK contains zero entries (white boxes in figure).
See Kreutzer et al.: Sparse matrix-vector multiplication on GPGPU clusters... IPDPS 2012.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 32/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

Sparse factorizations and fill-in

I We consider the LU (Cholesky) factorization of a sparse
matrix A.

I The factors L and U are in general sparse again.

I The structure of the L and U factors, the locations of any
non-zero entries, is different as compared to A. Matrix entries
which are zero in A, but non-zero in L or U are called fill-ins.

I Triangular factors generally have more, even much more (!),
nonzero entries than the original matrix.

I Fill-in requires a larger amount of memory and causes a more
expensive factorization.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 33/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

Extreme example: arrow matrices

Fill-in and reordering


× × × × ×
× ×
× ×
× ×
× ×



× ×
× ×
× ×
× ×

× × × × ×


Corresponding lower triangular factors:

×
× ×
× × ×
× × × ×
× × × × ×



×
×
×
×

× × × × ×


FEM & sparse system solving, Lecture 6, Oct 27, 2017 34/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

Sparse factorizations and fill-in (cont.)

I What can we do to obtain little or no fill-in?

I No perfect solution for this problem. Finding optimal
permutations P,Q s.t. the factorization of PAQ has less fill-in
than that of A is NP-hard problem −→ heuristics needed.

I Occasionally, permuting rows and columns of A signifiantly
helps in reducing fill-in.

I Leads to considerations involving graph theory.

I If no pivoting occurs, we can compute the structural fill-in
symbolically!

I We represent the matrix as a graph and work on the graph.

I By doing this we do not consider the actual values of the
matrix entries! (Therefore the word ‘structural’.)

FEM & sparse system solving, Lecture 6, Oct 27, 2017 35/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

Double role of permutations

1. Guarantee stability, and

2. Avoid fill-in.

Potentially additional objectives:

1. Preserve symmetry if A symmetric (Q = PT).

2. Obtain diagonal entries that are large in magnitude (avoid
pivoting).

3. Block entries of dense submatrices to allow use of BLAS3
operations.

4. Allow for good parallelism.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 36/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

Adjacency graph & incidence matrix

Definition
The adjacency graph G (S) = (V ,E) of the symmetric sparse
matrix S ∈ Rn×n consists of the vertices V = {1, . . . , n} and the
edges E = {(i , j) : sij 6= 0}.
(Dual definition: incidence matrix for given undirected graph.)

Example: arrow matrix
× × × × ×
× ×
× ×
× ×
× ×


FEM & sparse system solving, Lecture 6, Oct 27, 2017 37/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

When does fill-in occur?

Let’s consider the k-th step in Gaussian elimination.

Let us assume that a
(k)
ik · a

(k)
kj 6= 0 but that a

(k)
ij = 0.

Then, according to

a
(k+1)
ij = a

(k)
ij −

a
(k)
ik · a

(k)
kj

a
(k)
kk

there will be fill in.

In the k-th elimination step all neighbors of node k are connected.
FEM & sparse system solving, Lecture 6, Oct 27, 2017 38/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

Example from Larson–Bengzon book

FEM & sparse system solving, Lecture 6, Oct 27, 2017 39/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

Cholesky fill-in path characterization

I Cholesky does not need pivoting
I Fill-in can be predicted beforehand!

Theorem (Fill path by Rose–Tarjan–Lueker)

Let the Cholesky factorization A = LLT exist. Then lij 6= 0 if and
only if there is an edge path connecting the vertices i , p1, . . . , pk , j
from G (A), with p1, . . . , pk < min(i , j).

p1

p2

p2

pk

i

pk

p1

j

j

i

FEM & sparse system solving, Lecture 6, Oct 27, 2017 40/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

Fill-in in the Cholesky factorization
Let k < i < j .

a
(k+1)
ij = a

(k)
ij − l

(k)
ik · l

(k)
jk

In the k-th elimination step there is fill

if a
(k)
ij = 0 and l

(k)
ik · l

(k)
jk 6= 0.

Any fill-in that is caused by ljk (or the edge (j , k)) is recovered by
lik and lij (or the path j → i → k).

Therefore, the first nonzero element of each column below the
diagonal holds all the necessary information to compute the
nonzeros of the Cholesky factorization.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 41/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

Fill-in in the Cholesky factorization (cont.)

From paper by Davis, Rajamanickam, Sid-Lakhdar (2016).

FEM & sparse system solving, Lecture 6, Oct 27, 2017 42/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

The elimination tree

I Represents partial ordering for Cholesky factorization
I See Matlab’s etree, etreeplot



1 × ×
2 × ×

3 × ×
4 × ×

× × 5 ×
6 × × ×

7 × × ×
× × × × 8

× × × × 9
× × × × × 10



FEM & sparse system solving, Lecture 6, Oct 27, 2017 43/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

The elimination tree (cont.)

I Computation of elim. tree from symbolic Cholesky factor.

I Rule: first entry (bold) below diagonal determines ordering.



1
2

3
4

x x 5
6

7
x x x x 8

× × x × × x 9
× × × × × × x 10


J. Liu: The Role of Elimination Trees in Sparse Factorization,
SIAM J. Matrix Anal. 11, 134–172 (1990).

FEM & sparse system solving, Lecture 6, Oct 27, 2017 44/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

The elimination tree (cont.)

[
L11
l21 l22

] [
LT11 lT21

l22

]
=

[
A11 a12
aT12 a22

]
l21 is obtained by solving L11l

T
21 = a12. Therefore, the structure of

l21 depends on the structure of L11 and of a12.

I Elimination tree can be used to cheaply determine the
location of the nonzeros of the Cholesky factor, row by row.

I The parent of node i in the tree is node k > i where lki is the
first nonzero off-diagonal element of L in column i .

FEM & sparse system solving, Lecture 6, Oct 27, 2017 45/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

LU fill-in

LU fill-in

Pivoting makes LU more complicated than Cholesky!

Practical issues:

I Fill-in in general not predictable a-priori.

I Symbolic analysis is not enough, numerical values matter too!

I ‘Dynamic’ pivoting conflicts with a-priori estimated fill-in.

I A-priori estimates may be too small, may need to provide &
manage additional memory during factorization.

To get an a-priori estimate on fill-in, commonly use G (A + AT).
Without pivoting, this yields an upper bound.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 46/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

LU fill-in

Scaling & equilibration
‘Badly scaled systems’ can look artificially hard! Compare:[

10 108

108 1016

]
vs.

[
10 1
1 1

]
Idea: apply nonsingular diagonal scaling matrices Dr ,Dc to
equilibrate as much as possible:

I A⇒ DrADc , here: Dr = Dc = diag(1, 10−8),

I Ax = b ⇔ (DrADc)D−1c x = Drb

Scaling does influence pivoting (see above!), and thus also

I fill-in & complexity,

I condition number, accuracy.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 47/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

LU fill-in

Dynamic Threshold-Pivoting (LU)
I Partial-Pivoting: good stability
I Threshold-Pivoting: tradeoff some stability for smaller fill-in

Select pivot with smallest fill-in from set

{a(k)ij : |a(k)ij | ≥ u ·max
i
|a(k)ij |}, 0 < u ≤ 1. (e.g . u := 0.1)

Partial Pivoting:

a
(k)
jj × × × × ×
× × × × ×

× × ×
× × ×
× × × × ×

× × × ×
× × × × × ×

× × × × × ×
x × × × × × × × ×



Threshold Pivoting:

a
(k)
jj × × × × ×
× × × × ×

× × ×
x × ×
× × × × ×

× × × ×
× × × × × ×

× × × × × ×
× × × × × × × × ×


FEM & sparse system solving, Lecture 6, Oct 27, 2017 48/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

3 phases of sparse direct solvers

3 phases of direct linear solvers for sparse Ax = b

1. Analysis (or: symbolic factorization)
I Analysis of the nonzero structure
I Row- and column-permutations
I Scaling to improve condition number

2. Numerical Factorization
I A = LU unsymmetric, with pivoting
I A = LLT symmetric positive definite, no pivoting

3. Solve Ax = b using triangular factors
I Can also solve for multiple right-hand sides
I If more accuracy necessary: Iterative Refinement

FEM & sparse system solving, Lecture 6, Oct 27, 2017 49/74

FEM and Sparse Linear System Solving

Sparse factorizations and fill-in

Band matrices

Band matrices

A is a n × n band matrix if all matrix elements are zero outside a
diagonally bordered band

ai ,j = 0, if j < i − k1 or j > i + k2, k1, k2 ≥ 0.

A band matrix with

I k1 = k2 = 0⇒ Diagonal Matrix

I k1 = k2 = 1⇒ Tridiagonal Matrix

I k1 = k2 = 2⇒ Pentadiagonal Matrix

The bandwidth of the matrix is k1 + k2 + 1.
Fill-in can occur only within the band. (The band structure can be
consider a simplified version of the skyline format.)

FEM & sparse system solving, Lecture 6, Oct 27, 2017 50/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Heuristics for avoiding fill-in

1. General principles of sparse direct solvers

2. Heuristics for avoiding fill-in: Matrix Reorderings

3. Combination with Maximum-Transversal Permutation

4. Software

FEM & sparse system solving, Lecture 6, Oct 27, 2017 51/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Heuristics for avoiding fill-in

1. For reducible matrices
I Dulmage-Mendelsohn (Matlab’s dmperm):

permute A to block-triangular form (if possible)

2. Local Greedy-algorithms
I Reverse Cuthill-McKee (Matlab’s symrcm):

reduce bandwidth of A
I Approximate Minimum Degree (Matlab’s symamd):

local minimization of fill-in

3. Global, Domain-Decomposition inspired reordering
I Nested Dissection:

divide and conquer heuristic

FEM & sparse system solving, Lecture 6, Oct 27, 2017 52/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

A sample matrix & fill-in



x × × × × ×
x × × × ×

x × × × ×
× × × x
× × × x
× x × ×
× × x
× × x

× × x
× × x





x
x

x
× × × x
× × × x x
× x x x
× × x x x x
× × x x x x x

× x x × x x x
× x x × x x x x


I Elimination of an unknown ⇒ clique among neighbors

I Matrix looks like lots of ‘up arrows’ ⇒ submatrix
A(4 : 10, 4 : 10) completely filled in!

I Can we do better than 19 fill-ins?

FEM & sparse system solving, Lecture 6, Oct 27, 2017 53/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Reverse Cuthill-McKee algorithm

Reverse Cuthill-McKee algorithm

I The Cuthill-McKee algorithm was designed to reduce the
bandwidth of sparse symmetric matrices.
Ref.: E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In: Proc. 24th Nat. Conf. ACM,
pp. 157–172, 1969.

I The reverse Cuthill-McKee algorithm (RCM) is the same
algorithm but with the resulting index numbers reversed. In
general, a better solution (less fill-in).

I The reverse Cuthill-McKee algorithm algorithm is often (but
need not be) used in connection with the skyline storage
scheme. (Only the entries from the first nonzero entry to the
last nonzero entry are stored.)

I Matlab command symrcm.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 54/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Reverse Cuthill-McKee algorithm

Reverse Cuthill-McKee algorithm (cont.)
I Step 0: Choose a vertex with minimum degree

(⇒ Greedy: corresponds often to locally minimum fill-in).

The degree of a vertex in a graph is the number of connecting edges.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 55/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Reverse Cuthill-McKee algorithm

Reverse Cuthill-McKee algorithm (cont.)
I Step 0: Choose a vertex with minimum degree.

I Step 1: Number all neighbors of vertex 1 by increasing degree.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 56/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Reverse Cuthill-McKee algorithm

Reverse Cuthill-McKee algorithm (cont.)
I Step 0: Choose a vertex with minimum degree.

I Step 1: Number all neighbors of vertex 1 by increasing degree.

I Step 2: For each vertex from step 1, number all its remaining
neighbors by increasing degree. etc.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 57/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Reverse Cuthill-McKee algorithm

Reverse Cuthill-McKee algorithm (cont.)



1 × ×
× 2 × ×
× 3 × ×
× 4 ×
× × 5 × × ×
× 6 ×
× × 7 ×

× 8 ×
× 9 ×
× × × × 10


‘Reverse’ Cuthill-McKee (RCM, George 1971, Jennings 1977):
Empirical finding: bandwidth often better when order reversed

I What is the fill-in incurred in CM and RCM?

I Try to find out yourself!

FEM & sparse system solving, Lecture 6, Oct 27, 2017 58/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Minimum Degree Algorithm

Minimum Degree Algorithm

I The Minimum Degree Algorithm is a heuristic for finding a
permutation P such that PAPT has fewer nonzeros in its
factorization than A.

I The algorithm is greedy in that it trys to do the best in each
iteration step. It selects the sparsest pivot row/column as the
next pivot row.

I The symmetric approximate minimum degree algorithm is
implemented in the Matlab function symamd.

I The Matlab function amd is applicable to all matrices and is
claimed to be faster than symamd.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 59/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Minimum Degree Algorithm

Minimum Degree Algorithm (cont.)
Include fill-in and update the vertex degree after elimination of a
variable.

I Step 1: Choose among n vertices one with minimum degree as
1. Connect all neighbors of 1 with each other to a ‘clique,’
(fill-in). Remove vertex 1 and all its edges from graph.

I Step 2: repeat with reduced graph of n − 1 vertices, etc.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 60/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Minimum Degree Algorithm

Minimum Degree Algorithm (cont.)
Complete execution for sample graph:

FEM & sparse system solving, Lecture 6, Oct 27, 2017 61/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Minimum Degree Algorithm

Minimum Degree Algorithm (cont.)



1 × ×
2 × ×

3 × ×
4 × ×

× × 5 ×
6 × × ×

7 × × ×
× × × × 8

× × × × 9
× × × × × 10



FEM & sparse system solving, Lecture 6, Oct 27, 2017 62/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Domain Decomposition-inspired algorithms

Nested Dissection

I The nested dissection matrix reordering strategy tries to
reorder the matrix A, so that the fill-in is kept within certain
matrix blocks in the factorisation.

I The graph of A is dissected into smaller subgraphs by
separators,

I A separator S between two subgraph D1 and D2 is the set of
vertices containing all paths between between D1 and D2.

I The rationale for making this dissection is that there can not
be any fill-in Lij with vertex i in D1 and j in D2.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 63/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Domain Decomposition-inspired algorithms

Nested Dissection (cont.)

A =

A11 0 A1S

0 A22 A2S

AS1 AS2 ASS

 = LLT , L =

L11 0 0
0 L22 0
LS1 LS2 LSS

 ,
where the diagonal blocks Aii , i = 1, 2, and ASS stem from the
vertex sets Di and S , and the off-diagonal blocks ASi stem from
the edge intersection of these sets.

Due to the nested dissection any fill-in must occur in Aii or ASS .

FEM & sparse system solving, Lecture 6, Oct 27, 2017 64/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Domain Decomposition-inspired algorithms

Domain Decomposition 1/3: Nested Dissection

Approximation of 2D-Poisson equation using FD:

−∆u(xi ,j) = f (xi ,j), 0 < i , j < n+1

Numbering: first the two sub-domains, then the boundary points

Only fill-in within the blocks of the ‘block-bordered’ matrix!

FEM & sparse system solving, Lecture 6, Oct 27, 2017 65/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Domain Decomposition-inspired algorithms

Domain Decomposition 2/3: Nested Dissection (recursive)

Numbering: first the two sub-domains, then the boundary points

Recursively:

Only fill-in within the blocks of the ‘block-bordered’ matrix!

FEM & sparse system solving, Lecture 6, Oct 27, 2017 66/74

FEM and Sparse Linear System Solving

Heuristics for avoiding fill-in

Domain Decomposition-inspired algorithms

Domain Decomposition 3/3: Multisection

Generalization of Nested Dissection:

Numbering: first all sub-domains and then the boundary points

FEM & sparse system solving, Lecture 6, Oct 27, 2017 67/74

FEM and Sparse Linear System Solving

Combination with Maximum-Transversal Permutation

Combination with Maximum-Transversal Permutation

I So far: symmetric permutations to avoid fill-in

I Observation: A and PAPT have the same entries on their
diagonals (only in different positions)

I Strategy (for unsymmetric A):

1. Unsymmetric permutation A′ = AQ to obtain large diagonal
entries (Koster & Duff 1999)

2. Symmetric permutation A′′ = PA′PT for small fill-in

Idea: the larger the diagonal (‘transversal’), the less one (probably)
has to resort to pivoting

Remember: no pivoting if A is strictly diagonally dominant!

Algorithm: Matching of columns with rows (Koster & Duff)

FEM & sparse system solving, Lecture 6, Oct 27, 2017 68/74

FEM and Sparse Linear System Solving

Combination with Maximum-Transversal Permutation

Matching algorithm for nonsymmetric matrices

I Let A ∈ Rn×n be a general matrix.

I The nonzero elements of A define a graph with edges
E = {(i , j) : aij 6= 0} of ordered pairs of row and column
indices.

I A subset M⊂ E is called a matching, or transversal, if every
row index i and every column index j appears at most once in
M.

I A matching is called perfect if its cardinality is n.

I For a nonsingular matrix, at least one perfect matching exists
and can be found with known algorithms.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 69/74

FEM and Sparse Linear System Solving

Combination with Maximum-Transversal Permutation

Matching algorithm for nonsymmetric matrices (cont.)
I With a perfect matching M, it is possible to define a

permutation matrix PM = (pij) with

pij =

{
1 (j , i) ∈M,
0 otherwise.

By consequence, PMA has nonzero elements on its diagonal.

I This takes only the nonzero structure of the matrix into
account.

I Other approaches maximize the diagonal values in some sense.

I One could try to find a matching such that the product of the
diagonal values of PMA is maximal.

I Problem in combinatorial optimization.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 70/74

FEM and Sparse Linear System Solving

Combination with Maximum-Transversal Permutation

Practical effect of Maximum-Transversal Permutation

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 18427
0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 18427

I Left: Original A
I Right: Column-permuted version A′ = AQ

(Data from: Amestoy & L’Excellent: Direct methods for sparse linear
algebra, CEA-EDF-INRIA School on High Performance Scientific
Computing, 2006)

FEM & sparse system solving, Lecture 6, Oct 27, 2017 71/74

FEM and Sparse Linear System Solving

Combination with Maximum-Transversal Permutation

Symmetric reordering (AMD) and factorization

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 18427
0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 76105

I Left: symmetric permutation A′′ = PA′PT

I Right: factorization A′′ = LU

FEM & sparse system solving, Lecture 6, Oct 27, 2017 72/74

FEM and Sparse Linear System Solving

Combination with Maximum-Transversal Permutation

Available Software

Available Software

I Sequential:
I UMFPACK (Davis, U. Florida/Texas A&M): indep. / Matlab /

FreeFem++
I SuperLU (Li, Berkeley)

I Parallel:
I SuperLU DIST (Li, Berkeley): distributed memory
I MUMPS (Amestoy, L’Excellent, France): distributed memory

References

I T. Davis: Summary of available software for sparse direct
methods. SIAM 2006.

I N. Gould, J. Scott, Y. Hu: A Numerical Evaluation of Sparse
Direct Solvers for [..] Symmetric Linear Systems of Equations,
2007.

FEM & sparse system solving, Lecture 6, Oct 27, 2017 73/74

FEM and Sparse Linear System Solving

Exercise 6

Exercise 6:

http://people.inf.ethz.ch/arbenz/FEM16/pdfs/ex6.pdf

FEM & sparse system solving, Lecture 6, Oct 27, 2017 74/74

http://people.inf.ethz.ch/arbenz/FEM16/pdfs/ex6.pdf

	Survey on lecture
	Some linear algebra basics
	Linear systems: direct and iterative methods
	Gaussian elimination
	LU factorization
	Cholesky factorization

	Introduction to sparse matrices
	Sparse Matrix Storage Formats
	Sparse factorizations and fill-in
	Extreme example: arrow matrices
	LU fill-in
	3 phases of sparse direct solvers
	Band matrices

	Heuristics for avoiding fill-in
	Reverse Cuthill-McKee algorithm
	Minimum Degree Algorithm
	Domain Decomposition-inspired algorithms

	Combination with Maximum-Transversal Permutation
	Available Software

	Exercise 6

