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FEM and Sparse Linear System Solving

Survey on lecture

Survey on lecture

I The finite element method

I Direct solvers for sparse systems
I Iterative solvers for sparse systems

I Stationary iterative methods, preconditioning
I Preconditioned conjugate gradient method (PCG)
I Krylov space methods
I Incomplete factorization preconditioning
I Multigrid preconditioning
I Nonsymmetric problems (GMRES, BiCGstab, IDR(s))
I Indefinite problems (SYMMLQ, MINRES)
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Survey on lecture

Today’s topic

1. Comparison of direct and iterative linear solvers

2. Stationary iterative methods: theory

3. Stationary iterative methods: practical schemes

4. Smoothing properties of Jacobi and Gauss–Seidel

I Today: introduce some ‘classical’ iterative methods.

I Reason: still important as preconditioners, smoothers.

I Next time(s): conjugate gradient method, general Krylov
subspace methods.
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Comparison of direct and iterative linear solvers

Comparison of direct and iterative linear solvers

Direct solvers

I Computation is numerically stable in many relevant cases.

I Can solve economically for several right-hand sides.

I Accuracy can be improved via ‘iterative refinement.’

I ‘Essentially’ a black box.

I But: fill-in limits usefulness (memory, flops).

Iterative solvers

I Matrix often only implicitly needed via MatVec product.

I One might not care about exact solution of linear system.

I Good preconditioner often necessary for convergence.

I Quality often dependent on ‘right’ choice of parameters, e.g.
start vector, basis size, restart (see later).
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Comparison of direct and iterative linear solvers

Typical scenarios

Direct solvers

I Inverse Iteration

I Determinants

I Many linear systems with the same matrix A

I ‘Difficult’ applications (e.g. circuit simulation)

Iterative solvers

I Inexact Newton-Methods

I Many linear systems with ‘slightly changing’ matrices

I Matrix-free applications (e.g. MatVec product via FFT)

I Very large problems
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Comparison of direct and iterative linear solvers

Cross-over & synergy
Direct solvers as preconditioners for iterative ones:

I Incomplete Cholesky

I Incomplete LU

Combination as hybrid direct-iterative methods, example:

Compute [Akk ]−1 = U−1k L−1k
but evaluate Schur complement

S = A10,10 −
∑

A10,k [Akk ]−1Ak,10

iteratively instead of storing it
as dense matrix!
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Stationary iterative methods

Motivation

Stationary iterative methods: motivation

Let A be so large that it is impossible to compute its LU
factorization (fill-in). Then, we try to solve A x = b iteratively.
Let xk be an approximation to the solution x∗ of A x = b. Then

x∗ = xk + ek︸︷︷︸
error

Aek = Ax∗ − Axk = b − Axk =: rk︸︷︷︸
residual

x∗ = xk + A−1rk (1)

Of course, the above assumption prevents us from solving directly
Aek = rk for the error ek .
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Stationary iterative methods

Motivation

Stationary iterative methods: motivation (cont.)
Let M be an invertible matrix with the properties

1. M is a good approximation to A.

2. Mz = r can be solved (relatively) cheaply.

3. M can be formed (relatively) cheaply.

Then, instead of solving (1) we iterate according to

rk = b − Axk
xk+1 = xk + M−1rk

(2)

M is called a preconditioner.
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Stationary iterative methods

Motivation

Stationary iterative methods: motivation (cont.)
Practical procedure:

rk = b − Axk (Compute residual)

Mzk = rk (Solve with preconditioner)

xk+1 = xk + zk (Update approximate)

Remarks:

I In step 1, we have to multiply a matrix with a vector. In
practice: we need to have a procedure that computes y ← A x .

I In step 2, we have to solve a system of equations with the
preconditioner which is “by definition” cheap to do.
Still, this step is usually the most expensive one.

I zk is called the preconditioned residual.
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Stationary iterative methods

Theory

Stationary iterative methods: Theory

Definition (Matrix splitting)

Let A be nonsingular. Then A = M − N, with M nonsingular, is
called a matrix splitting.

We consider the iteration

Mxk+1 = Nxk + b ⇔ xk+1 = xk + M−1rk .

Note:

I If M−1 = A−1, then one-step convergence: xk+1 = A−1b.

I In practice, M−1 should be a good (but cheap) approximation
to A−1 (‘preconditioner’).
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Stationary iterative methods

Theory

Formulation as fixed-point iteration

xk+1 = xk + M−1rk = M−1 (Mxk + rk)

= M−1 ((M − A)xk + b)

= M−1N︸ ︷︷ ︸
=: G

xk + M−1b︸ ︷︷ ︸
=: c

, N = M − A.

⇒ xk+1 = Gxk + c fixed point iteration

G = M−1N = I −M−1A is called the iteration matrix.

FEM & sparse system solving, Lecture 7, Nov 3, 2017 12/46



FEM and Sparse Linear System Solving

Stationary iterative methods

Theory

Formulation as fixed-point iteration (cont.)
Theorem
The error satisfies ek+1 = Gek with G = I −M−1A.

Proof: With the fixed point x∗ = A−1b, one has x∗ = Gx∗ + c .
Subtract this from the fixed point iteration.

A similar equation holds for the residuals.

rk+1 = Aek+1 = AGek = AGA−1Aek = AGA−1rk .

This iteration matrix can be written as

A(I −M−1A)A−1 = I − AM−1AA−1 = I − AM−1.

Note that the two iteration matrices are similar !
This means that they have the same eigenvalues.
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Stationary iterative methods

Theory

Some tools

Let ‖ · ‖ be any vector norm and

‖G‖ := max
x 6=0

‖Gx‖
‖x‖

, induced matrix norm, (3)

ρ(G ) := max
λ∈σ(G)

|λ|, spectral radius of G , (4)

where σ(G ) is the spectrum (set of eigenvalues) of G .

Lemma 1. ρ(G ) ≤ ‖G‖
Proof. For all λ ∈ σ(G ) and associated eigenvector x we have

Gx = λx ⇒ ‖λx‖ = |λ| · ‖x‖ = ‖Gx‖ ≤ ‖G‖ · ‖x‖.

(In fact: ρ(G ) ≤ |||G ||| for any matrix norm ||| · |||.)
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Stationary iterative methods

Theory

Some tools (cont.)
Lemma 2. For any matrix G and any ε > 0 there is a matrix norm
such that

|||G ||| ≤ ρ(G ) + ε.

Proof. (See e.g. Horn-Johnson, Matrix analysis, p. 297.)
Let G = UDU∗ be the Schur decomposition of G with UU∗ = I
and D upper-triangular. The eigenvalues of G appear on the
diagonal of D

U∗GU = D =


λ1 d12 d13 · · · d1n

λ2 d23 · · · d2n
λ3 · · · d3n

. . .
...
λn


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Stationary iterative methods

Theory

Some tools (cont.)
Let Dt = diag(t, t2, t3, · · · , tn). Then,

DtU
∗GUD−1t =


λ1 t−1d12 t−2d13 · · · t−n+1d1n

λ2 t−1d23 · · · t−n+2d2n
λ3 · · · t−n+3d3n

. . .
...
λn

 .

For t large enough, the off-diagonal elements are so small, that the
sum of all off-diagonal elements of one column (or row) is smaller
than ε.
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Stationary iterative methods

Theory

Some tools (cont.)
Define the matrix norm (which in fact is induced by the vector
1-norm)

|||A|||1 := max
1≤j≤n

n∑
i=1

|aij |.

Then, for large enough t, the norm

|||G ||| := |||DtU
∗GUD−1t |||1

is smaller than ρ(G ) + ε.
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Stationary iterative methods

Theorem on convergence

Theorem on convergence

Theorem (Convergence theorem for stationary iterations)

Let A = M − N be a matrix splitting with M invertible. Then,

(1) The iteration
Mxk+1 = Nxk + b, (+)

converges for any x0 if and only if

ρ(G ) < 1, G = M−1N = I −M−1A.

(2) If, for any vector norm, ‖G‖ < 1, then iteration (+)
converges.
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Stationary iterative methods

Theorem on convergence

Theorem on convergence (cont.)
Proof. Recall that if (+) converges then lim ek = 0 for any starting
vector x0.

(1) “=⇒” Let e0 be an eigenvector of G corresponding to the
eigenvalue λ. Then,
Ge0 = λe0 ⇒ ek = G ke0 = λke0 =⇒ |λ| < 1, since
lim ek = 0. As this holds for all λ we have ρ(G ) < 1.

“⇐=” If ρ(G ) < 1 then by Lemma 2 there is a vector norm
‖ · ‖ such that ‖G‖ < 1.
⇒ ‖ek‖ = ‖G ke0‖ ≤ ‖G k‖ · ‖e0‖ ≤ ‖G‖k · ‖e0‖ → 0
⇒ ‖ek‖ → 0 for any e0. Thus we have convergence.

(2) trivial because of Lemma 1.
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Stationary iterative methods

Theorem on convergence

Remarks

I The convergence theorem is based entirely on the eigenvalues
of the iteration matrix G .

I There is however a big difference of the convergence behavior
of normal (diagonalizable by a unitary matrix) and nonnormal
matrices.

I Compare in Matlab the behavior of the error norm of ‖ek‖
(e0 = [

√
1/2,

√
1/2]T ) with the two matrices(
0.9 0
0 0.9

)
,

(
0.9 10
0 0.9

)
.
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Stationary iterative methods

Theorem on convergence

Practicalities: Initial vector

Starting vector, iterates & convergence
Improve initial vector x0 so that xk → x = A−1b in fewer steps.

Where to get x0 from?
There are various possibilities (some better than others):

I Zero vector.

I Random vector.

I Insights into underlying problem.

I Solution from a ‘similar’ previously solved problem.

Note

I For nonsingular A, iteration should converge for any starting
vector!

I But: better to make productive use of all information at hand!
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Stationary iterative methods

Theorem on convergence

Practicalities: Stopping criterion

A few practical possibilities

I ‖rk‖ ≤ τ‖b‖.
I ‖rk‖ ≤ τ (‖A‖‖xk‖+ ‖b‖).

I ‖rk‖ ≤ τ‖r0‖.

Note:

I ‖ek‖ ≤ ‖A−1‖ ‖rk‖, commonly estimate ‖A−1‖.
I All aforementioned criteria are scaling-invariant.

I Usually also set a maximum number of iterations.

I The criterion ‖rk‖ ≤ τ‖r0‖ can be misleading if x0 is very far
from the true solution.

For more information, see: Chapter 4.2. of
Barrett et al.: Templates for the Solution of Linear Systems.
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Stationary iterative methods: practical schemes

Jacobi iteration

Practical schemes: Jacobi iteration

Let A = L + D + U where

I D is diagonal,

I L is strictly lower triangular, and

I U is strictly upper triangular.

U

D
L

++
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Stationary iterative methods: practical schemes

Jacobi iteration

Practical schemes: Jacobi iteration (cont.)
We set

M = D = diag(a11, a22, . . . , ann), N = −(L + U).

Thus,
xk+1 = −D−1(L + U)xk + D−1b.

Component-wise notation:

x
(k+1)
i =

1

aii

bi −
n∑

j=1,j 6=i

aijx
(k)
j

 = x
(k)
i +

1

aii

bi −
n∑

j=1

aijx
(k)
j


︸ ︷︷ ︸

r
(k)
i
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Stationary iterative methods: practical schemes

Jacobi iteration

Practical schemes: Jacobi iteration (cont.)
Theorem
The Jacobi iteration converges if A is row-wise strictly diagonally
dominant.

Proof: We show that ‖D−1(L + U)‖∞ < 1. In fact,

ρ(M−1N) ≤ ‖D−1(L + U)‖∞ = max
1≤i≤n

n∑
j=1
j 6=i

∣∣∣∣aijaii
∣∣∣∣ < 1.
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Stationary iterative methods: practical schemes

Gauss–Seidel iteration

Practical schemes: Gauss–Seidel iteration

Again: A = L + D + U.

Let
M = D + L, N = −U.

Thus,
(D + L)xk+1 = −Uxk + b.

Component-wise notation:

x
(k+1)
i =

1

aii

bi −
∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j


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Stationary iterative methods: practical schemes

Gauss–Seidel iteration

Practical schemes: Gauss–Seidel iteration (cont.)
Theorem (Convergence of Gauss–Seidel)

The Gauss–Seidel iteration converges if A is SPD.

Proof: We show that the eigenvalues of the iteration matrix
G = −(D + L)−1LT are inside the unit disc.

Since D is SPD we can define D1 = D1/2 and set
G1 := D1GD

−1
1 = −(I + L1)−1LT1 with L1 = D−11 LD−11 .

G and G1 are similar and thus have the same eigenvalues.

If G1x = λx with ‖x‖2 = 1 then

−LT1 x = λ(I + L1)x .
and

−x∗LT1 x = λx∗(I + L1)x = λ(1 + x∗L1x).
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Stationary iterative methods: practical schemes

Gauss–Seidel iteration

Practical schemes: Gauss–Seidel iteration (cont.)
Note that the eigenvalue λ and thus the eigenvector x can be
complex.

Set x∗L1x = a + bi . Then

|λ|2 =

∣∣∣∣ −a + bi

1 + a + bi

∣∣∣∣2 =
a2 + b2

1 + 2a + a2 + b2
.

We now show that 1 + 2a > 0 from which we get that the
numerator is smaller than the denominator.
Since D−1/2AD−1/2 = I + L1 + LT1 is spd we have

0 < 1 + x∗L1x︸ ︷︷ ︸
a+bi

+ x∗LT1 x︸ ︷︷ ︸
a−bi

= 1 + 2a.
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Stationary iterative methods: practical schemes

Block iterations

Practical schemes: Block iterations

Let

A =


A11 A12 · · · A1m

A21 A22 · · · A2m
...

...
...

Am1 Am2 · · · Amm


Block Jacobi iteration

M = diag(A11,A22, . . . ,Amm)

Block Gauss–Seidel iteration

M =


A11

A21 A22
...

...
. . .

Am1 Am2 · · · Amm


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Stationary iterative methods: practical schemes

Successive Over-Relaxation (SOR)

Practical schemes: Successive Over-Relaxation (SOR)

Jacobi iteration: DxJ
k+1 = −LxJ

k − UxJ
k + b.

Gauss–Seidel iteration: DxGS
k+1 = −LxGS

k+1 − UxGS
k + b.

Successive Over-Relaxation (SOR) iteration:

DxSOR
k+1 = ω

(
−LxSOR

k+1 − UxSOR
k + b

)
+ (1− ω)DxSOR

k .

Thus, (
1

ω
D + L

)
︸ ︷︷ ︸

Mω

xSOR
k+1 =

(
1− ω
ω

D − U

)
︸ ︷︷ ︸

Nω

xSOR
k + b.
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Stationary iterative methods: practical schemes

Successive Over-Relaxation (SOR)

Practical schemes: Successive Over-Relaxation (SOR)
(cont.)

Theorem
The SOR iteration converges if A is SPD and 0 < ω < 2.

I SOR(ω = 1) = Gauss–Seidel iteration.

I Idea: ω 6= 1 may yield faster convergence than GS.

I Usually ω ≥ 1, therefore overrelaxation.
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Stationary iterative methods: practical schemes

Symmetric Successive Over-Relaxation (SSOR)

Symmetric Successive Over-Relaxation (SSOR)

Mω of SOR is nonsymmetric. Sometimes we need a symmetric
preconditioner −→ Symmetric Successive Over-Relaxation (SSOR)

Combination of standard forward and ‘backward’ SOR (same ω):

Mωxk+ 1
2

= Nωxk + b,

M̃ωxk+1 = Ñωxk+ 1
2

+ b,

with ‘backward’ SOR

M̃ω =
1

ω
D + U, Ñω =

1− ω
ω

D − L

Note: A symmetric ⇐⇒ U = LT =⇒ M̃ω = MT
ω , Ñω = NT

ω .
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Stationary iterative methods: practical schemes

Symmetric Successive Over-Relaxation (SSOR)

Symmetric Successive Over-Relaxation (SSOR) (cont.)
The iteration matrix of SSOR is

G = M̃−1ω ÑωM
−1
ω Nω.

The associated preconditioner is

MSSOR
ω =

ω

2− ω

(
1

ω
D + L

)
D−1

(
1

ω
D + U

)

Theorem (Convergence of SSOR)

SSOR converges if A is symmetric positive definite and 0 < ω < 2.

I SSOR used when A symmetric, i.e. U = Lt .

I Symmetric Gauss–Seidel: SSOR(ω = 1).

I Finding the optimal ω is mostly by experiment.
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Stationary iterative methods: practical schemes

Matlab

MATLAB - Experiment
function [x,k] = statit(A,M,M2,b,x,tol)

%STATIT Stationary Iteration

%

% x^{k+1} = x^{k} + M \ r^{k}, r^{k} = b - A x^{k}

% for solving A x = b

%

% [x,k] = statit(A,M1,M2,b,x,tol)

% Input: A system matrix

% M1,M2 M = M1*M2 ‘preconditioner’

% (M2 = [] indicates M2=identity)

% b right hand side

% x initial vector x^{0} (default x = 0)

% tol (default tol = eps)

% Output: x approximate solution

% k number of iteration until convergence

% convergence criterion:

% norm(b - A*x) <= tol*norm(b - A*x0)
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Stationary iterative methods: practical schemes

Matlab

if (nargin < 6), tol = eps; end

if (nargin < 5), x = zeros(size(A,1),1); end

r = b - A*x;

rnrm0 = norm(r); rnrm = rnrm0;

for k=1:5000

if isempty(M2),

x = x + M\r;

else

x = x + M2\(M\r);

end

r = b - A*x;

rnrm = norm(r);

if rnrm < tol*rnrm0, return, end

end
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Stationary iterative methods: practical schemes

Matlab

Poisson equation on square 11× 11 - grid

n=11; e = ones(n,1);

T=spdiags([-e,2*e,-e],[-1:1],n,n); I = speye(n);

A=kron(T,I) + kron(I,T);

b = A*[1:n2]’; tol = 1e-6, x = zeros(112,1)

Solver MATLAB nit

Jacobi M = D = diag(diag(A)) 341
Block Jacobi M= DB = triu(tril(A,1),-1) 176
Gauss–Seidel M=tril(A) 174
Block Gauss–Seidel M=tril(A,1) 90
SGS (A SPD) M1=tril(A)/sqrt(D); M2 = MT

1 90
Block SGS M1=tril(A,1)/chol(DB); M2 = MT

1 48
SOR(ω = 1.6) D/omega + tril(A,-1) 32
Block SOR(ω = 1.5) triu(tril(A,1),-1)/omega + tril(A,-n) 24
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Stationary iterative methods: practical schemes

Matlab

Poisson equation on slightly larger grids

solver n = 312 n = 632

Jacobi 2157 7787
Block Jacobi 1093 3943
Gauss–Seidel 1085 3905
Block Gauss–Seidel 547 1959
SSOR (ω = 1.8) 85 238
Block SSOR (ω = 1.8) 61 132

Tabelle 1: Iteration steps for solving the Poisson equation on a 31-by-31
and on a 63-by-63 grid with an relative residual accuracy of 10−6.
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Illustration of smoothing

Illustration of smoothing

I Let A be the matrix obtained from a FD discretization of the
Poisson equation on a rectangular grid. (5-point stencil with
diagonal elements 4.)

I It is easy to see, that the (real) eigenvalues λi = λi (A) of A
satisfy

0 < λi = λi (A) < 8.

I Then, with D = diag(A), the eigenvalues of D−1A satisfy

0 < λi (D
−1A) < 2,

and

−1 < λi (G ) = λi (I − D−1A) = 1− λi
4
< 1.

I Thus, Jacobi iteration converges. (What we know already.)
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Illustration of smoothing

Illustration of smoothing (cont.)
I The eigenvectors of A corresponding to small eigenvalues are

‘smooth’, like
sin(xπ) sin(yπ)

on the square (0, 1)2.

I In contrast, the eigenvectors of A corresponding to
eigenvalues close to 8 are ‘oscillatory’, like

sin(nxπ) sin(nyπ).

I Let A xi = λixi , 1 ≤ i ≤ n. Then

Gxi =

(
1− λi

4

)
xi .
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Illustration of smoothing

Illustration of smoothing (cont.)
I Let e0 be the initial error, which we decompose in the

directions of the eigenvectors,

e0 =
n∑

i=1

ηixi .

I Then,

ek = G ke0 =
n∑

i=1

ηi

(
1− λi

4

)k

xi .

I The error component corresponding to eigenvalues λi ≈ 0 and
λi ≈ 8 decrease very slowly as then∣∣∣∣1− λi

4

∣∣∣∣ ≈ 1.

The other error components converge to 0 (quite) quickly.
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Illustration of smoothing

Illustration of smoothing (cont.)
I We now introduce a damping coefficient to Jacobi,

xk+1 = xk + ωD−1rk .

With this modification

1− 2ω < 1− ωλi
4
< 1.

Typical factors are ω = 2/3 for 1D problems, ω = 4/5 in 2D
problems.

I Smooting with symmetric Gauss–Seidel is easier (automatic),
since the iteration matrix has positive eigenvalues only, with
the eigenvalues close to unity corresponding to smooth
eigenmodes.
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Illustration of smoothing

Numerical example: Smoothing with sym. Gauss–Seidel

I 2D Poisson equation, 21× 21 mesh. Random initial condition.
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Illustration of smoothing

Sym. Gauss–Seidel: error after 1 step
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Illustration of smoothing

Sym. Gauss–Seidel: error after 2 steps
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Summary

Summary

1. Comparison of direct and iterative linear solvers

2. Stationary iterative methods: theory

3. Stationary iterative methods: practical schemes

4. Illustration of smoothing

Next time: Steepest descent and conjugate gradient algorithms.
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Exercise 7

Exercise 7:

http://people.inf.ethz.ch/arbenz/FEM17/pdfs/ex7.pdf
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