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FEM and Sparse Linear System Solving

LSurvey on lecture

Survey on lecture

» The finite element method

» Direct solvers for sparse systems
> lterative solvers for sparse systems

» Stationary iterative methods, preconditioning
Preconditioned conjugate gradient method (PCG)
Krylov space methods
Incomplete factorization preconditioning
Multigrid preconditioning
Nonsymmetric problems (GMRES, BiCGstab, IDR(s))
Indefinite problems (SYMMLQ, MINRES)

vV vy vy VY VY
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LSurvey on lecture

Today's topic

1. Comparison of direct and iterative linear solvers
2. Stationary iterative methods: theory

3. Stationary iterative methods: practical schemes
4

. Smoothing properties of Jacobi and Gauss—Seidel

» Today: introduce some ‘classical’ iterative methods.
» Reason: still important as preconditioners, smoothers.

» Next time(s): conjugate gradient method, general Krylov
subspace methods.
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LComparison of direct and iterative linear solvers

Comparison of direct and iterative linear solvers

Direct solvers

» Computation is numerically stable in many relevant cases.
Can solve economically for several right-hand sides.
Accuracy can be improved via ‘iterative refinement.’

‘Essentially’ a black box.

vV vV v v

But: fill-in limits usefulness (memory, flops).

Iterative solvers

v

Matrix often only implicitly needed via MatVec product.
» One might not care about exact solution of linear system.
» Good preconditioner often necessary for convergence.
>

Quality often dependent on ‘right’ choice of parameters, e.g.
start vector, basis size, restart (see later).
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LComparison of direct and iterative linear solvers

Typical scenarios

Direct solvers
> Inverse lteration
» Determinants
» Many linear systems with the same matrix A

» ‘Difficult’ applications (e.g. circuit simulation)

Iterative solvers
> Inexact Newton-Methods
» Many linear systems with ‘slightly changing’ matrices
» Matrix-free applications (e.g. MatVec product via FFT)
» Very large problems
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LC':)mparison of direct and iterative linear solvers

Cross-over & synergy

Direct solvers as preconditioners for iterative ones:
» Incomplete Cholesky
> Incomplete LU

Combination as hybrid direct-iterative methods, example

o j ". N
1o Yoo -1 _ gy-1,-1
; s Compute [Aw]| ™" = U, "L,
<> but evaluate Schur complement
% N
K ol —1
(A S = Aio,10 — § A10,k[Akk] ™ Ak 10
Bl Sy e : '
% iteratively instead of storing it
N ~ i
TYSeay % as dense matrix!
! N T, *
0 9 18 27 36 45 54 63 72 81 = =
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LStationary iterative methods
L Motivation

Stationary iterative methods: motivation

Let A be so large that it is impossible to compute its LU
factorization (fill-in). Then, we try to solve Ax = b iteratively.
Let x, be an approximation to the solution x* of Ax = b. Then

x* =x+ e
—~~
error
Ae, = Ax* — Ax, = b — Ax, =: r,
—~—
residual
X =x+An (1)

Of course, the above assumption prevents us from solving directly
Aey = ry for the error ey.
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LStationary iterative methods
LMﬂtivation

Stationary iterative methods: motivation (cont.)
Let M be an invertible matrix with the properties
1. M is a good approximation to A.
2. Mz = r can be solved (relatively) cheaply.

3. M can be formed (relatively) cheaply.

Then, instead of solving (1) we iterate according to

rg, — b—AXk
Xk+1 = xk—l—M_lrk

M is called a preconditioner.
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LStationary iterative methods
L Motivation

Stationary iterative methods: motivation (cont.)

Practical procedure:

r, = b — Axy (Compute residual)
Mz, = ry (Solve with preconditioner)
Xki1 = Xk + 2 (Update approximate)

Remarks:

> In step 1, we have to multiply a matrix with a vector. In
practice: we need to have a procedure that computes y < Ax.

> In step 2, we have to solve a system of equations with the
preconditioner which is “by definition” cheap to do.
Still, this step is usually the most expensive one.

> z, is called the preconditioned residual.
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LStationary iterative methods
LThenry
:

Stationary iterative methods: Theory

Definition (Matrix splitting)
Let A be nonsingular. Then A= M — N, with M nonsingular, is
called a matrix splitting.

We consider the iteration

I\/ka+1 =Nx,+b & XK1 = Xk + I\/I_lrk.

Note:
» If M~1 = A~1 then one-step convergence: x,11 = A~1b.
» In practice, M~! should be a good (but cheap) approximation
to A1 (‘preconditioner’).
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LStationary iterative methods
LTheury

Formulation as fixed-point iteration

Xk+1 = Xk + M_lrk =M1 (Mxk + rk)
= M1 ((M— A)x, + b)

M~ N x, + M~ 1b, N=M-—A.
N—— " N~

=G =

= |xk+1 = Gxx+ ¢ ‘ fixed point iteration

G=M1IN=1]—-M1Ais called the iteration matrix.

FEM & sparse system solving, Lecture 7, Nov 3, 2017

12/46



FEM and Sparse Linear System Solving
LStationary iterative methods
\—Theory

Formulation as fixed-point iteration (cont.)

Theorem
The error satisfies e,,.1 = Ge, with G =1 — M~1A.

Proof: With the fixed point x* = A~!h, one has x* = Gx* + c.
Subtract this from the fixed point iteration. O

A similar equation holds for the residuals.

rei1 = Aeg = AGe, = AGA™ 1 Ae, = AGA™ 'r,.
This iteration matrix can be written as

Al = MIPAAL = - AMTTAA =1 — AMTL.

Note that the two iteration matrices are similar!
This means that they have the same eigenvalues.
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LStationary iterative methods

LThenry
Some tools
Let || - || be any vector norm and
Gx
G|l = ” ” induced matrix norm, (3)
o x|
p(G) := max |\, spectral radius of G, (4)
A€o (G)

where o(G) is the spectrum (set of eigenvalues) of G.
Lemma 1. p(G) < ||G]|

Proof. For all A € 0(G) and associated eigenvector x we have
Gx = Ax = [|Ax|[ = [A[ - [Ix[| = | 6x]| < [[G ] - [Ix]]. O

(In fact: p(G) < |||G]|| for any matrix norm ||| - [||.)
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LStationary iterative methods
\—Theory

Some tools (cont.)

Lemma 2. For any matrix G and any € > 0 there is a matrix norm
such that
Gl < p(G) +e.

Proof. (See e.g. Horn-Johnson, Matrix analysis, p. 297.)
Let G = UDU* be the Schur decomposition of G with UU* =
and D upper-triangular. The eigenvalues of G appear on the

diagonal of D
A1 dip diz - dip
A2 dz -+ dop
UGU = D — A3 -- dip
An
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LStationary iterative methods
LTheory

Some tools (cont.)
Let D; = diag(t, t?,t3,--- , t"). Then,

A1 t_1d12 t_2d13 cee t_n+1d1n

Ao t71d23 cee t7"+2d2n

Dt U* GUDt_l — )\3 ce t_n+3d3n
An

For t large enough, the off-diagonal elements are so small, that the
sum of all off-diagonal elements of one column (or row) is smaller
than e.
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LStationary iterative methods
LTheory

Some tools (cont.)

Define the matrix norm (which in fact is induced by the vector

1-norm)
n
Al = max > Jas.
1=
Then, for large enough t, the norm
1IGII| = [[1D:U*GUD ||y

is smaller than p(G) +¢.
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LStationary iterative methods

LTheorem on convergence

Theorem on convergence

Theorem (Convergence theorem for stationary iterations)
Let A= M — N be a matrix splitting with M invertible. Then,
(1) The iteration
Mxyi 1 = Nxi + b, (+)

converges for any xq if and only if
o(G) < 1, G=M1IN=/-MT1TA

(2) If, for any vector norm,
converges.

G|| < 1, then iteration (+)
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LStationary iterative methods

L Theorem on convergence

Theorem on convergence (cont.)

Proof. Recall that if (+) converges then lim e, = 0 for any starting
vector Xp.

(1) "=" Let ey be an eigenvector of G corresponding to the
eigenvalue \. Then,
Gey = \eg = e, = GkEO = )\kEO - ‘/\‘ < 1, since
lim ex = 0. As this holds for all A\ we have p(G) < 1.

“«<="If p(G) < 1 then by Lemma 2 there is a vector norm
|| - || such that |G| < 1.

= |lexll = [ G¥eoll < [IG¥|| - [leo]l < [IG]|* - leo|l — O

= ||ex|]| — O for any ey. Thus we have convergence.

(2) trivial because of Lemma 1.
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LStationary iterative methods

\—Theorem on convergence

Remarks

» The convergence theorem is based entirely on the eigenvalues
of the iteration matrix G.

> There is however a big difference of the convergence behavior
of normal (diagonalizable by a unitary matrix) and nonnormal
matrices.

» Compare in MATLAB the behavior of the error norm of || e

(eo = [\/1/2,/1/2]T) with the two matrices

09 O 09 10
0 09 )’ 0 09 /)
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LStationary iterative methods

L Theorem on convergence

Practicalities: Initial vector

Starting vector, iterates & convergence
Improve initial vector xg so that x, — x = A~1b in fewer steps.

Where to get xo from?

There are various possibilities (some better than others):
> Zero vector.
» Random vector.
> Insights into underlying problem.

» Solution from a ‘similar’ previously solved problem.

Note

» For nonsingular A, iteration should converge for any starting
vector!

» But: better to make productive use of all information at hand!
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LStationary iterative methods

L Theorem on convergence

Practicalities: Stopping criterion

A few practical possibilities
> |lnll < 7.
> el < 7 (LAl Ik + 11bI]).-
> lrel] < 7llrol].

Note:
> |lexll < IIA7Y| ||rkll, commonly estimate ||A71]].
» All aforementioned criteria are scaling-invariant.
» Usually also set a maximum number of iterations.
» The criterion ||r|| < 7||ro|| can be misleading if xq is very far

from the true solution.

For more information, see: Chapter 4.2. of
Barrett et al.: Templates for the Solution of Linear Systems.
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LStationary iterative methods: practical schemes

LJan:uhi iteration

Practical schemes: Jacobi iteration

Let A= L+ D+ U where
» D is diagonal,
» L is strictly lower triangular, and

> U is strictly upper triangular.
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LStationary iterative methods: practical schemes

LJal:uhi iteration

Practical schemes: Jacobi iteration (cont.)
We set

M = D = diag(a11, a2, - - -, ann), N =—(L+ V).

Thus,
Xp1=—D7YL+ U)xx + D 'b.

Component-wise notation:

1 4 1 &
Xi(k+1) == b — Z ainj(k) _ Xi(k) + - b — Z ainj(k)
! =L ! j=1

ke
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LStationary iterative methods: practical schemes

LJal:uhi iteration

Practical schemes: Jacobi iteration (cont.)

Theorem

The Jacobi iteration converges if A is row-wise strictly diagonally
dominant.

Proof: We show that ||[D7Y(L + U)||ec < 1. In fact,

n
p(M™IN) < [D7HL + V)|l {g;’;xn,z ai| <7
J#i
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LStationary iterative methods: practical schemes

LGauss—Seidel iteration

Practical schemes: Gauss—Seidel iteration
Againt A=L+ D+ U.

Let

Thus,
(D + L)Xk_|_1 = —Ux, + b.

Component-wise notation:

1
X’_(k+1) LI . Z aij(k+1) _ Z ainj(k)

aji — T
" <i J>1
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LStationary iterative methods: practical schemes

L Gauss-Seidel iteration

Practical schemes: Gauss—Seidel iteration (cont.)
Theorem (Convergence of Gauss—Seidel)
The Gauss—Seidel iteration converges if A is SPD.

Proof: We show that the eigenvalues of the iteration matrix
G = —(D+ L)7ILT are inside the unit disc.
Since D is SPD we can define D; = D'/2 and set
Gi = D1GD; ' = —(1 + Ly)7*L] with Ly = Dy PLD; .
G and Gy are similar and thus have the same eigenvalues.
If Gix = Ax with ||x||2 = 1 then

—L]x =\ + L1)x.

and
—x*L{x = x*(1 + L1)x = M\(1 + x*L1x).
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LStationary iterative methods: practical schemes

L Gauss-Seidel iteration

Practical schemes: Gauss—Seidel iteration (cont.)
Note that the eigenvalue A and thus the eigenvector x can be
complex.

Set x*Lix = a+ bi. Then

2 az+b2

T 1+2a+a2+ b2

—a+ bi
1+ a+ bi

A2 = \

We now show that 1 4 2a > 0 from which we get that the
numerator is smaller than the denominator.
Since D™Y2AD7Y/2 = | 4 Ly + L] is spd we have

0<1+x"Lix+x*L{x=1+2a
N—— N——
a-+bi a—bi
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LStationary iterative methods: practical schemes
L Block iterations

Practical schemes: Block iterations

Let
Aur A - Aim
A Ax - Ao
A= . . .
Aml Am2 e Amm

Block Jacobi iteration
M = diag(All, A22, ey Amm)

Block Gauss—Seidel iteration

A1
A Ax
M= . .
Aml Am2 e Amm
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L Successive Over-Relaxation (SOR)

Practical schemes: Successive Over-Relaxation (SOR)
Jacobi iteration: Dx,{Jrl = —Lx! — Ux] + b.

Gauss—Seidel iteration: Dx,f';f1 = —kaGfl — UxPS +b.
Successive Over-Relaxation (SOR) iteration:

DxFOR = (_kasgf — UxfOR + b) + (1 — w)Dx§OR.
Thus,

1 1—
<D + L) xR = <°"D - U) xR 4 b.
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LStationary iterative methods: practical schemes
L Successive Over-Relaxation (SOR)

Practical schemes: Successive Over-Relaxation (SOR)
(cont.)

Theorem
The SOR iteration converges if A is SPD and 0 < w < 2.

» SOR(w = 1) = Gauss—Seidel iteration.
> ldea: w # 1 may yield faster convergence than GS.

» Usually w > 1, therefore overrelaxation.
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LStationary iterative methods: practical schemes

\—Symmetric Successive Over-Relaxation (SSOR)

Symmetric Successive Over-Relaxation (SSOR)

M,, of SOR is nonsymmetric. Sometimes we need a symmetric
preconditioner —» Symmetric Successive Over-Relaxation (SSOR)

Combination of standard forward and ‘backward’ SOR (same w):
wak+% = Nyx. + b,
Myxi 1 = N‘*’xk-i-% + b,

with ‘backward’ SOR

- 1 ~ 1—w
M,=-D+U, Ny=-—"D—1
w w

Note: A symmetric <« U=LT — M, =M] N, =N.
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LStationary iterative methods: practical schemes

\—Symmetric Successive Over-Relaxation (SSOR)

Symmetric Successive Over-Relaxation (SSOR) (cont.)
The iteration matrix of SSOR is
G = M; N M;N,,.
The associated preconditioner is

1 1
MSSOR — % <D + L) D! <D + U)
2 w w

—Ww

Theorem (Convergence of SSOR)
SSOR converges if A is symmetric positive definite and 0 < w < 2.

» SSOR used when A symmetric, i.e. U = Lt
» Symmetric Gauss—Seidel: SSOR(w = 1).
> Finding the optimal w is mostly by experiment.
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L Matiab

MATLAB - Experiment
function [x,k] = statit(A,M,M2,b,x,to0l)
#STATIT Stationary Iteration

h x"{k+1} = x"{k} + M \ r{k}, r°{k}=">b - A x"{k}
A for solving A x = b

o

% [x,k] = statit(A,M1,M2,b,x,t0l)

YA Input: A system matrix

A M1,M2 M = M1*M2 ‘preconditioner’

A (M2 = [] indicates M2=identity)
YA b right hand side

yA x initial vector x"{0} (default x = 0)
YA tol (default tol = eps)

yA Output: x approximate solution

A k number of iteration until convergence
A convergence criterion:

% norm(b - A*x) <= tol*norm(b - A*x0)
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LStationary iterative methods: practical schemes
L Matlab

if (nargin < 6), tol = eps; end
if (nargin < 5), x = zeros(size(A,1),1); end

r = b - Axx;
rnrm0 = norm(r); rnrm = rnrm0;
for k=1:5000
if isempty(M2),
x = x + M\r;
else
X
end
r = Db - A*x;
rnrm = norm(r);
if rnrm < tol*rnrmO, return, end
end

x + M2\ (M\r);
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LStationary iterative methods: practical schemes
L Matiab

Poisson equation on square 11 x 11 - grid

n=11; e = ones(n,1);
T=spdiags([-e,2*e,-e],[-1:1],n,n); I = speye(n);
A=kron(T,I) + kron(I,T);

b = A*[1:n%]’; tol = 1le-6, x = zeros(11%,1)

Solver MATLAB nit
Jacobi M = D = diag(diag(A)) 341
Block Jacobi M= Dg = triu(tril(A,1),-1) 176
Gauss—Seidel M=tril(A) 174
Block Gauss—Seidel ~ M=tril(A,1) 90
SGS (A SPD) M =tril(A) /sqrt(D); My = M, 90
Block SGS M =tril(A,1)/chol(Dg); My = M 48
SOR(w = 1.6) D/omega + tril(A,-1) 32

Block SOR(w = 1.5)  triu(tril(A,1),-1)/omega + tril(A,-n) 24
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LStationary iterative methods: practical schemes
L Matlab

Poisson equation on slightly larger grids

solver n=231° n=63°
Jacobi 2157 7787
Block Jacobi 1093 3943
Gauss—Seidel 1085 3905
Block Gauss—Seidel 547 1959
SSOR (w = 1.8) 85 238
Block SSOR (w = 1.8) 61 132

Tabelle 1: lteration steps for solving the Poisson equation on a 31-by-31
and on a 63-by-63 grid with an relative residual accuracy of 107°.
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L liustration of smoothing

lllustration of smoothing

> Let A be the matrix obtained from a FD discretization of the
Poisson equation on a rectangular grid. (5-point stencil with
diagonal elements 4.)
> It is easy to see, that the (real) eigenvalues \;j = \j(A) of A
satisfy
0< A\ = )\,’(A) < 8.

» Then, with D = diag(A), the eigenvalues of D~1A satisfy
0 < M\(D7tA) < 2,

and N
—1<X(G)=X(I-D A =1- ZI < 1.

» Thus, Jacobi iteration converges. (What we know already.)
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Llllustration of smoothing

lllustration of smoothing (cont.)

» The eigenvectors of A corresponding to small eigenvalues are
‘smooth’, like

sin(xm) sin(ym)
on the square (0, 1)2.

> In contrast, the eigenvectors of A corresponding to
eigenvalues close to 8 are ‘oscillatory’, like

sin(nx) sin(ny).

> Let Ax; = \jx;, 1 <i<n. Then

GX,' = <1 — %) Xi.
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L liustration of smoothing

lllustration of smoothing (cont.)

> Let ey be the initial error, which we decompose in the
directions of the eigenvectors,

n
€ = ZU,‘X,"
i=1
» Then,

n \: k
ek:GkEOZZn,' (1—4’) X;.
i=1

» The error component corresponding to eigenvalues A\; =~ 0 and
Aj = 8 decrease very slowly as then

The other error components converge to 0 (quite) quickly.
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L liustration of smoothing

lllustration of smoothing (cont.)

» We now introduce a damping coefficient to Jacobi,
Xp4+1 = Xk + wD_lrk.

With this modification
>\.
1—2w<1—wz'<1.

Typical factors are w = 2/3 for 1D problems, w = 4/5 in 2D
problems.

» Smooting with symmetric Gauss—Seidel is easier (automatic),
since the iteration matrix has positive eigenvalues only, with
the eigenvalues close to unity corresponding to smooth
eigenmodes.
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L Inustration of smoothing

Numerical example: Smoothing with sym. Gauss—Seidel

» 2D Poisson equation, 21 x 21 mesh. Random initial condition.

FEM & sparse system solving, Lecture 7, Nov 3, 2017 42/46



FEM and Sparse Linear System Solving
|—IIIustration of smoothing

Sym. Gauss—Seidel: error after 1 step
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Llllustration of smoothing

Sym. Gauss—Seidel: error after 2 steps
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LSummary

Summary

1. Comparison of direct and iterative linear solvers
2. Stationary iterative methods: theory
3. Stationary iterative methods: practical schemes

4. lllustration of smoothing

Next time: Steepest descent and conjugate gradient algorithms.
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|—Exercise 7

Exercise 7:

http://people.inf.ethz.ch/arbenz/FEM17/pdfs/ex7.pdf
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