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E-mail: arbenz@inf.ethz.ch

FEM & sparse linear system solving, Lecture 8, Nov 10, 2017 1/54

http://people.inf.ethz.ch/arbenz/FEM17


FEM and Sparse Linear System Solving

Survey on lecture

Survey on lecture

I The finite element method

I Direct solvers for sparse systems
I Iterative solvers for sparse systems

I Stationary iterative methods, preconditioning
I Steepest descent and conjugate gradient methods
I Krylov space methods, GMRES, MINRES
I Incomplete factorization preconditioning
I Multigrid preconditioning
I Indefinite problems
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FEM and Sparse Linear System Solving

Survey on lecture

Today’s topic

Today, we restrict ourselves to symmetric positive definite (SPD)
problems.

1. Steepest descent minimization of the energy norm

2. Conjugate gradient minimization of the energy norm

3. Chebyshev iteration

Literature

I O. Axelsson & V.A. Barker, Finite element solution of
boundary value problems, Academic Press, 1984.
Also: SIAM classics in applied mathematics, 2001

I Saad: Iterative methods for sparse linear systems, SIAM, 2nd
edition, 2003. Available from
http://www-users.cs.umn.edu/~saad/books.html
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Energy norm minimization

Energy norm minimization

Theorem: For Ax = b, with A SPD, consider for a real constant γ
the functional

ϕ(x) :=
1

2
xTAx − xTb + γ.

I ϕ is continuously differentiable, with
grad ϕ(x) = Ax − b = −r(x).

I If γ := 1
2b

TA−1b (our choice), then

ϕ(x) =
1

2
(Ax − b)TA−1(Ax − b) ≡ 1

2
‖r(x)‖2A−1

=
1

2
(x − A−1b)TA(x − A−1b)

=
1

2
(x − x∗)TA(x − x∗) ≡ 1

2
‖e(x)‖2A.

I Notice that our choice of γ makes the minimum of ϕ zero.
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Energy norm minimization

Energy norm minimization (cont.)

I ϕ has a unique minimum satisfying r(x) = 0⇔ x = A−1b.
I Let A = UΛUT be the spectral decomposition of A. Then

ϕ̂(z) := ϕ(Uz + x∗) =
1

2
‖Uz + x∗ − x∗‖2A =

1

2
‖Uz‖2A

=
1

2
zTUTAUz =

1

2
zTΛz =

1

2

n∑
i=1

λiz
2
i .

Level surfaces (n = 2) of a
quadratic functional ϕ with a
spd A.
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Steepest descent

Descent directions

Definition: Suppose that for a functional ϕ and vectors x , d there
is a α0 such that

ϕ(x + αd ) < ϕ(x), 0 < α ≤ α0.

Then, d is a descent direction for ϕ at x .

For our quadratic functional we have

ϕ(x + αd ) = ϕ(x)− α r(x)Td +
α2

2
dTAd .

Therefore, d is a descent direction if it has a positive component
in direction of −grad ϕ(x) = r(x).

The descent is steepest if d is aligned with r .
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Steepest descent

Local steepest descent minimization of ϕ

Let xk be an approximation of x∗. We want to improve xk in the
steepest descent direction.

xk+1 = xk − αkgrad ϕ(xk) = xk + αkrk

We choose αk such that ϕ(xk+1) is minimized (‘local line search’).
From

2ϕ(xk+1) = ‖ek+1‖2A = (x∗ − xk+1)TA(x∗ − xk+1)

= (x∗ − xk − αkrk)TA(x∗ − xk − αkrk)

= ‖ek‖2A − 2αkr
T
k rk + α2

kr
T
k A rk , A ek = rk ,

it follows that

dϕ(αk ; xk , rk)

dαk

!
= 0 ⇒ αk =

rTk rk

rTk A rk
.
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Steepest descent

The method

Steepest descent algorithm

Choose x0.
Set r0 = b − Ax0 and q0 = Ar0.
k := 0.
until convergence do

αk := rTk rk/r
T
k qk .

xk+1 := xk + αkrk .
rk+1 := rk − αkqk .
Compute qk+1 = Ark+1.
k := k + 1.

end do

This is very memory efficient, but how fast is the convergence?
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Steepest descent

Convergence

Convergence of steepest descent

Lemma: (Kantorovich inequality) Let A be any real SPD matrix
and λmin, λmax its smallest and largest eigenvalues. Then

(xTAx)(xTA−1x)

(xTx)2
≤ (λmax + λmin)2

4λmaxλmin
for all x 6= 0.

For a proof see Saad, p. 138.

Remark: From this we have

(xTx)2

(xTAx)(xTA−1x)
≥ 4λmaxλmin

(λmax + λmin)2

and therefore

1− (xTx)2

(xTAx)(xTA−1x)
≤ 1− 4λmaxλmin

(λmax + λmin)2
=

(λmax − λmin)2

(λmax + λmin)2
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Steepest descent

Convergence

Convergence of steepest descent (cont.)
Theorem: For the errors ek = x∗ − xk in steepest descent we have

‖ek+1‖A ≤
λmax − λmin

λmax + λmin
‖ek‖A.

Proof.

‖ek+1‖2A = eT
k+1A ek+1 = rTk+1A

−1 rk+1 (Aek+1 = rk+1)

= (rk − αkArk)TA−1 (rk − αkArk)

= rTk A−1(I − αkA)2rk

= rTk A−1 rk − (rTk rk)2/rTk A rk (αk =
rTk rk

rTk A rk
)

= rTk A−1 rk

(
1−

(rTk rk)2

(rTk A rk)(rTk A−1 rk)

)
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Steepest descent

Convergence

Convergence of steepest descent (cont.)
From the theorem we have

‖ek+1‖A ≤
κ(A)− 1

κ(A) + 1
‖ek‖A ≤

(
κ(A)− 1

κ(A) + 1

)k+1

‖e0‖A.

I We always have convergence; but it can be very slow if
κ(A)� 1. Then the contour ellipsoids are very elongated ,
that is stretched or squished ⇐⇒ some eigenvalues of A are
much smaller/larger than others.

I Steepest descent minimizes ϕ only locally (greedy algorithm).
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Steepest descent

Convergence

Slow convergence of steepest descent method

Picture: Martin Gutknecht
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Steepest descent

Convergence

Iteration steps

How many iteration steps p = p(ε) are needed such that

‖ep‖A ≤ ε‖e0‖A?

We write
1

ε
≈
(

1 + 1/κ(A)

1− 1/κ(A)

)p

Taking logarithms and using
log[(1 + s)/(1− s)] = 2(s + s3/3 + · · · ) we get

p(ε) ≈ 1

2
κ(A) log(1/ε).
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Steepest descent

Preconditioning

Preconditioning steepest descent

Let M be SPD with Cholesky factorization M = LLT

Standard: instead of solving Ax = b, apply steepest descent to the
SPD problem

L−1AL−Ty = L−1b, L−Ty = x

The above equation is obtained as follows: Since M−1 = L−TL−1 we have

M−1Ax = M−1b ⇐⇒ L−TL−1Ax = L−TL−1b

⇐⇒ L−1Ax = L−1b

⇐⇒ L−1AL−TLTx = L−1b

⇐⇒ L−1AL−Ty = L−1b, y = LTx .
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Steepest descent

Preconditioning

Preconditioning steepest descent (cont.)
Clever: replace all Euclidean inner products by M-inner product
〈x , y〉M := xTMy and solve system M−1Ax = M−1b.

Note: M−1A is SPD with respect to the M-inner product

〈x ,M−1Ay〉M = xTM(M−1Ay) = xTAy

= xTAM−1My = (M−1Ax)TMy

= 〈M−1Ax , y〉M
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Steepest descent

Preconditioning

Preconditioning steepest descent (cont.)
So, we can apply the steepest descent algorithm to

M−1Ax = M−1b

and replace the ordinary Euklidian inner product with the M-inner
product.

We want to retain the notation rk = b − Axk for the residual that we
actually care for. We define additionally the preconditioned residual by

zk = M−1rk = M−1(b − Axk).
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Steepest descent

Preconditioning

Preconditioning steepest descent (cont.)
So, in the steepest descent algorithm we simply have to replace

I A by M−1A,

I rk by zk , and

I Euklidian inner products by M-inner products.

So, qk = M−1Azk and

αk =
zT
k Mzk

zT
k Mqk

=
zT
k rk

zT
k Azk

=
zT
k rk

zT
k q̃k

with q̃k = Azk .
We actually do not need the auxiliary vectors qk but only the q̃k .
Therefore, we omit the tilde in the following algorithm.
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Steepest descent

Preconditioning

Preconditioned steepest descent algorithm

Choose x0.
Set r0 = b − Ax0. Solve Mz0 = r0. Set q0 = Az0.
k := 0.
until convergence do

αk := zTk rk/z
T
k qk .

xk+1 := xk + αkzk .
rk+1 := rk − αkqk .
Solve Mzk+1 = rk+1.
Compute qk+1 = Azk+1.
k := k + 1.

end do

Per iteration step we have to multiply a vector by A and solve a
linear system with M.
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Steepest descent

Preconditioning

Convergence of the Preconditioned Steepest Descent
Algorithm

We can easily adapt the convergence theorem to obtain

‖ek+1‖A ≤
(
κ(M−1A)− 1

κ(M−1A) + 1

)
‖ek‖A.

(Notice that a direct translation of norms gives

eT
k M(M−1Aek) = eT

k Aek = ‖ek‖2A.)

The preconditioner M again has the function to reduce the
condition of the original system matrix A.
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The conjugate gradient (cg) method

The method

The conjugate gradient (cg) method

Problem: Solve Ax = b with symmetric positive definite (spd) A.

The steepest descent algorithm is a greedy algorithm. It solves the
problem of minimization of ϕ only locally.

cg is also a descent method: In each iteration step we look for the
minimum of ϕ along a line xk + αpk . Here, xk is the current
approximation of the solution x∗ and pk is the search direction.
In order that the method is a descent method, pk has to have a
component in the direction of the residual rk = r(xk), meaning

pT
k rk > 0.
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The conjugate gradient (cg) method

The method

We determine
xk+1 = xk + αkpk (1)

such that ϕ(xk+1) is minimal. As

ϕ(xk+1) = αkp
T
k Axk +

1

2
α2
kp

T
k Apk − αkp

T
k b + const

is a quadratic polynomial in αk with positive second derivative, its
minimum is unique.

0
!

=
∂ϕ(xk)

∂αk
= pT

k (Axk − b) + αkp
T
k Apk = −pT

k rk + αkp
T
k Apk .

Thus

αk =
pT
k rk

pT
k Apk

(2)
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The conjugate gradient (cg) method

The method

The residual can be computed recursively,

rk+1 = b − Axk+1 = b − Axk − αkApk = rk − αkApk (3)

Notice that Apk is needed already in the computation of αk in (2).
Multiplying (3) by pT

k gives

pT
k rk+1 = pT

k rk − αkp
T
k Apk

(2)
= 0. (4)

That is, the new residual is orthogonal to the previous search
direction. This was true already with the steepest descent method.
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The conjugate gradient (cg) method

The method

How should we choose the pk?

Method of steepest descent: pk = −grad ϕ(xk) = rk .
This choice leads to slow convergence if ϕ(x) form long narrow
ellipsoids (i.e. if A has a big condition number).

We set
p0 = r0 (= b if x0 = 0).

(as we do not have anything better) and

pk = rk + βk−1pk−1, k = 1, 2, . . . (5)

This makes pk a descent direction independent of the choice of

βk−1 because (4) implies rTk pk
(5)
= rTk rk > 0.

(Steepest descent: βk−1 = 0.)
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The conjugate gradient (cg) method

The method

Strategy for determining βk−1: Minimize error ‖x − x∗‖A =
‖r‖A−1 over some k dimensional subspace of Rn.

We have r1
(3)
= r0 − α0Ap0 = r0 − α0Ar0.

r2
(3)
= r1 − α1Ap1
(5)
= r1 − α1A(r1 + β0p0)

(3)
= (r0 − α0Ar0)− α1A(r0 − α0Ar0)− α1β0Ar0

= r0 − (α0 + α1 + α1β0)Ar0 + α0α1A
2r0

...

rk = r0 + µ
(k)
1 Ar0 + µ

(k)
2 A2r0 + · · ·+ µ

(k)
k Akr0, µ

(k)
k = ±

k−1∏
j=0

αj 6= 0.

So, rk is element in a k-dimensional affine subspace.
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The conjugate gradient (cg) method

The method

Let Sk = span{Ar0,A2r0, . . . ,A
kr0} be a k-dim. subspace of Rn.

Let Tk = r0 + Sk = {r ∈ Rn|r = r0 + h,h ∈ Sk}.
Then rk ∈ Tk .

Theorem: If we impose the condition

‖rk‖A−1 = min
r∈Tk

‖r‖A−1

then

βk = −
rTk+1Apk

pT
k Apk

.

Furthermore,
rTk r` = 0, k 6= `. (6)

pT
k Ap` = 0, k 6= `. (7)
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The conjugate gradient (cg) method

The method

Proof: r ∈ Tk = r0 + Sk =⇒ r = r0 + h, h ∈ Sk

‖rk‖A−1 ≡ ‖r0 + hk‖A−1 = min
h∈Sk
‖r0 + h‖A−1

Interpretation: To have small norm, hk must be close to −r0.
Let hk be the projection of −r0 onto Sk .

Sk

hk + r0
−r0

hk

Note that the projection is with the A−1 inner product.
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The conjugate gradient (cg) method

The method

r0 + hk is A−1-orthogonal on Sk

⇐⇒ (r0 + hk)TA−1h = 0, ∀h ∈ Sk .

Let r ∈ Tk−1. Then h := Ar ∈ Sk .

=⇒ (r0 + hk)TA−1Ar = rkr = 0, ∀r ∈ Tk−1.

From this we have (6) since r` ∈ T` ⊂ Tk−1 for all ` < k .
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The conjugate gradient (cg) method

The method

We now want to establish (7). Let ` < k . Then

pT
k Ap` = (Apk)Tp`

(3)
= −α−1k (rk+1 − rk)Tp`

= −α−1k (rk+1 − rk)T (r` + β`−1p`−1)

(6)
= −α−1k β`−1(rk+1 − rk)Tp`−1.

Hence, by induction,

pT
k Ap` = −α−1k

(
`−1∏
i=0

βi

)
(rk+1 − rk)T p0︸︷︷︸

r0

(6)
= 0.

Now, the value of βk−1 follows by setting ` = k − 1:

0
!

= pT
k−1Apk = pT

k−1A(rk + βk−1pk−1)

⇒ βk−1 = −
pT
k−1Ark

pT
k−1Apk−1
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The conjugate gradient (cg) method

The method

The rest is cosmetics. We want to get nicer expressions for some of
the quantities involved.

Multiplying (5) by rTk gives

rTk pk = rTk rk + βk−1 r
T
k pk−1︸ ︷︷ ︸

(4)
=0

.

Thus,

αk =
pT
k rk

pT
k Apk

=
rTk rk
pT
k Apk

=
‖rk‖2
pT
k Apk

> 0. (8)
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The conjugate gradient (cg) method

The method

Furthermore, we have

rTk+1Apk
(3)
= rTk+1

(
1

αk
(rk − rk+1)

)
(6)
= −‖rk+1‖2

αk
.

Thus,

βk = −
rTk+1Apk

pT
k Apk

=
‖rk+1‖2

αkp
T
k Apk

(8)
=
‖rk+1‖2

‖rk‖2

whence

βk =
ρk+1
ρk

, ρk = ‖rk‖2. (9)
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The conjugate gradient (cg) method

The method

Algorithm CG

The conjugate gradient algorithm thus becomes

Choose x0, set p0 = r0 = b − Ax0 and ρ0 = ‖r0‖22
for k = 0, 1, . . . do

qk = Apk .
αk = rTk rk/p

T
k qk .

xk+1 = xk + αkpk .
rk+1 = rk − αkqk .
ρk+1 = ‖rk+1‖22.
if ρk+1 < ε exit.
βk = ρk+1/ρk .
pk+1 = rk+1 + βkpk .

endfor

Remark: Here we used the auxiliary vector qk = Apk .
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The conjugate gradient (cg) method

Convergence

Finite termination property

Theorem: The cg method
applied to a spd n-by-n matrix
A finds the solution after at
most n iteration steps.

Proof. Direct consequence
of (6).

Picture: Martin Gutknecht
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Intermezzo: Chebyshev polynomials

Definition and properties

Intermezzo: Chebyshev polynomials

I Family of orthogonal polynomials on [−1, 1] with respect to
weight function

w(x) =
1√

1− x2

I Define

Tj(x) = cos(j arccos(x)) = cos(jϑ), x = cos(ϑ).

I Clearly, the larger j the more oscillatory Tj .

I Orthogonality:∫ 1

−1
w(x)Tj(x)Tk(x) dx =


0, j 6= k ,
π
2 , j = k > 0,

π, j = k = 0.
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Intermezzo: Chebyshev polynomials

Definition and properties

Intermezzo: Chebyshev polynomials (cont.)
I Simple 3-term recurrence relation1

T0(x) = 1, T1(x) = x ,

Tj+1(x) = 2xTj(x)− Tj−1(x), j ≥ 1.

I Polynomials satisfy |Tj(x)| ≤ 1, −1 ≤ x ≤ 1.

Chebyshev polynomials
T0, . . . ,T5

in interval [−1, 1]

Source:https://en.
wikipedia.org/wiki/

Chebyshev_polynomials

1Remember: cos(j + 1)ϑ+ cos(j − 1)ϑ = 2 cosϑ cos jϑ
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Intermezzo: Chebyshev polynomials

Definition and properties

Intermezzo: Chebyshev polynomials (cont.)
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Intermezzo: Chebyshev polynomials

Definition and properties

Intermezzo: Chebyshev polynomials (cont.)

Theorem (Chebyshev polynomials)

Of all polynomials p ∈ Pn with a coefficient 1 in the highest (xn)
term the Chebyshev polynomial Tn(x)/2n−1 has the smallest
maximum norm in the interval [−1, 1].

Theorem (Chebyshev polynomials on interval (α, β))

Let (α, β) ⊂ R be nonempty and let γ ∈ R be outside [α, β]. Then,

min
p∈Pn,p(γ)=1

max
α<x<β

|p(x)|

is attained by the shifted Chebyshev polynomial

T̂n(x) =
Tn(1 + 2 x−β

β−α)

Tn(1 + 2 γ−ββ−α)
.
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Intermezzo: Chebyshev polynomials

Shifted Chebyshev polynomials

Shifted Chebyshev polynomials

Let us now look at shifted Chebyshev polynomials pk that
correspond to the interval [λ1, λn] instead of [−1, 1].

We assume that 0 < λ1 and normalize the polynomials: pk(0) = 1.

We define the map

[λ1, λn] 3 λ 7−→ x =
λ1 + λn − 2λ

λn − λ1
∈ [−1, 1].

and

ϑ ≡ λ1 + λn
2

, δ ≡ λn − λ1
2

, σk ≡ pk(0) = Tk

(
ϑ

δ

)
3-term recurrence for σ’s

σk+1 = 2
ϑ

δ
σk − σk−1, σ0 = 1, σ1 =

ϑ

δ
. (10)
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Intermezzo: Chebyshev polynomials

Shifted Chebyshev polynomials

Three-term recurrence for pk

Then,

pk(λ) =
1

σk
Tk

(
ϑ− λ
δ

)
, p0(λ) = 1, p1(λ) =

δ

ϑ

ϑ− λ
δ

= 1−λ
ϑ
.

The 3-term recurrence for pk ’s is given by

pk+1(λ) =
1

σk+1

[
2
ϑ− λ
δ

Tk

(
ϑ− λ
δ

)
− Tk−1

(
ϑ− λ
δ

)]
=

1

σk+1

[
2
ϑ− λ
δ

σkpk(λ)− σk−1pk−1(λ)

]
=

σk
σk+1

[
2
ϑ− λ
δ

pk(λ)− σk−1
σk

pk−1(λ)

]
.
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Intermezzo: Chebyshev polynomials

Shifted Chebyshev polynomials

Three-term recurrence for pk (cont.)
Defining

ρk =
σk
σk+1

, k = 1, 2, . . .

The 3-term recurrence (10) for the σ’s gives

ρk =
1

2σ1 − ρk−1
.

The 3-term recurrence for pk ’s then becomes

pk+1(λ) = ρk

[
2

(
σ1 −

λ

δ

)
pk(λ)− ρk−1pk−1(λ)

]
,

p0(λ) = 1, p1(λ) = 1− λ

ϑ
.
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CG convergence

Convergence of CG

Convergence rate:

‖x − xk‖A ≤ ‖x − x0‖A

(√
κ(A)− 1√
κ(A) + 1

)k

. (11)

The number of iterations p(ε) to reduce the error ‖x − xk‖A by a
factor ε is

p(ε) ≈ 1

2

√
κ(A) log(2/ε).

This is in general a huge reduction in comparison with steepest
descent.
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CG convergence

Convergence of CG (cont.)

‖rk‖A−1 = min
r∈Tk

‖r‖A−1

A typical element of Tk has the form

r = r0 +
k∑

j=1

µjA
j r0 = pk(A)r0,

where pk ∈ P′k is a polynomial of degree k normalized such that
pk(0) = 1. So,

‖rk‖A−1 = min
pk∈P′k

‖pk(A)r0‖A−1 = min
pk∈P′k

[rT0 A−1pk(A)2r0]1/2.
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CG convergence

Convergence of CG (cont.)
Let again A = UΛUT be the spectral decomposition of A and let
z = UT r0. Then

‖rk‖A−1 = min
pk∈P′k

[rT0 A−1pk(A)2r0]1/2 = min
pk∈P′k

n∑
i=1

z2i λ
−1
i pk(λi )

2.

If |pk(λi )| ≤ M for all eigenvalues λi then

‖xk − x∗‖A = ‖rk‖A−1 ≤ M

(
n∑

i=1

z2i λ
−1
i

)1/2

= M ‖r0‖A−1

To get at a value for M, we now select a set S that contains all
the eigenvalues and seek a polynomial p̃k(λ) such that
M := maxλ∈S |p̃k(λ)| is small.
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CG convergence

Convergence of CG (cont.)
It is straightforward to set S = [λ1, λn] = [λmin, λmax]. Then we
look for a polynomial p̃k(λ) with the property that

max
λ1≤λ≤λn

|p̃k(λ)| = min
pk∈P′k

max
λ1≤λ≤λn

|pk(λ)|.

The solution to this problem is known to be the shifted Chebyshev
polynomial of degree k

p̃k(λ) =
Tk((λn + λ1 − 2λ)/(λn − λ1))

Tk((λn + λ1)/(λn − λ1))

that increases rapidly outside the interval S . We have that

max
λ1≤λ≤λn

|p̃k(λ)| =
1

Tk(λn+λ1λn−λ1 )
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CG convergence

Convergence of CG (cont.)
From a particular representation of Chebyshev polynomials one
obtains (see Saad, p. 204f)

1

Tk(λn+λ1λn−λ1 )
=

1

Tk(η)
η =

λn + λ1
λn − λ1

≤ 2

(
1

η +
√
η2 + 1

)k

=
(
η −

√
η2 − 1

)k
=

(
λn + λ1 − 2

√
λ1λn

λn − λ1

)k

=

(√
λn +

√
λ1√

λn −
√
λ1

)k
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CG convergence

Representative values for Tk(1 + 2γ)

γ 10−4 10−3 10−2 10−1

T10(1 + 2γ) 1.02 1.21 3.75 252

T100(1 + 2γ) 3.76 2.79 · 102 2.35 · 108 5.34 · 1026

T200(1 + 2γ) 27.3 1.55 · 105 1.10 · 1017 5.71 · 1053

T1000(1 + 2γ) 2.43 · 108 1.45 · 1027 2.59 · 1086 9.72 · 10269

γ =
λ1

λn − λ1
λn + λ1
λn − λ1

=
λn − λ1 + 2λ1

λn − λ1
= 1 +

2λ1
λn − λ1

= 1 + 2γ
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CG convergence

Preconditioning

Preconditioning CG with SPD M

As with steepest descent we apply the conjugate gradient
algorithm to the SPD problem

M−1Ax = M−1b

and replace the ordinary Euklidian inner product with the M-inner
product.

Here is how the crucial equations (1), (3), (8), and (9) change. On
the left are the formulae with the straightforward changements, on
the right you see how we actually use them.

xk+1 = xk + αkpk =⇒ xk+1 = xk + αkpk unchanged
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CG convergence

Preconditioning

Preconditioning CG with SPD M (cont.)
We want to retain the notation rk = b − Axk for the residual that
we actually care for, so we define the
preconditioned residual by zk = M−1rk .

zk+1 = zk − αkM
−1Apk =⇒ rk+1 = rk − αkApk ,

αk =
zTk Mzk

pT
k MM−1Apk

=⇒ αk =
rTk zk

pT
k Apk

ρk = zTk Mzk =⇒ ρk = rTk zk

Notice that there is just one additional set of vectors, {zk}.
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CG convergence

Preconditioning

Algorithm PCG

Choose x0, set r0 = b − Ax0. Solve Mz0 = r0. ρ0 = zT
0 r0. Set p0 = z0.

for k = 0, 1, . . . do
qk = Apk .
αk = zT

k rk/p
T
k qk .

xk+1 = xk + αkpk .
rk+1 = rk − αkqk .
Solve Mzk+1 = rk+1.
ρk+1 = zT

k+1rk+1.
if ρk+1 < ε exit.
βk = ρk+1/ρk .
pk+1 = zk+1 + βkpk .

endfor

There is one new statement in the algorithm in which the
preconditioned residual zk is computed.
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Chebyshev iteration

Chebyshev iteration

I In each iteration step, CG determines xk such that
‖ek‖A = ‖x∗ − xk‖A or ‖rk‖A−1 is minimized in some
k-dimensional subspace of Rn.

I In the proof of convergence we employ Chebyshev polynomials
to establish some upper bounds for ‖rk‖A−1 ,

‖rk‖A−1 ≤ M‖r0‖A−1 , M = max
λ1≤λ≤λn

|p̃k(λ)| =
1

Tk(λn+λ1λn−λ1 )

where

p̃k(λ) =
Tk((λn + λ1 − 2λ)/(λn − λ1))

Tk((λn + λ1)/(λn − λ1))

is the shifted Chebyshev polynomial of degree k corresponding
to the interval [λ1, λn] normalized such that p̃k(0) = 1.
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Chebyshev iteration

Chebyshev iteration (cont.)
I The upper bound is “realistic”. Therefore it seems to be

natural to define the Chebyshev iteration such that

rk = p̃k(A)r0, k > 0.

I Because of the 3-term recurrence for Chebyshev polynomials,
this iteration can be executed efficiently.

I Why should this be useful? CG gives the best we can hope for.
We can avoid computing the coefficients αk and βk at the
expense of upper/lower bounds for the spectrum.

I The computation of αk and βk requires inner products which
may be costly (in particular in a parallel computation).

I Bounds for |p̃k(A)| independent of r0.
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Chebyshev iteration

Chebyshev iteration (cont.)
How do we get at xk?
Try to find a recurrence relation for xk .

rk = pk(A)r0, p ∈ P′k ⇐⇒ pk(λ) = 1 + λsk(λ), s ∈ Pk−1.

So,

rk+1 − rk = A(ek+1 − ek) = −A(xk+1 − xk), ej = x∗ − xj .

⇐⇒ pk+1(λ)− pk(λ) = −λ(sk+1(λ)− sk(λ)).
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Chebyshev iteration

Chebyshev iteration (cont.)
Using the 3-term recurrence for the pk ’s and 1 = ρk(2σ1 − ρk−1)
(see slide 37) gives

pk+1(λ)− pk(λ) = pk+1(λ)− ρk(2σ1 − ρk−1)pk(λ)

= ρk

[
−2λ

δ
pk(λ) + ρk−1(pk(λ)− pk−1(λ))

]
and after division by −λ

sk+1(λ)− sk(λ) = ρk

[
ρk−1(sk(λ)− sk−1(λ)) +

2

δ
pk(λ)

]
.

Defining dk = xk+1 − xk with get

dk = ρk

[
ρk−1dk−1 +

2

δ
rk

]
.
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Chebyshev iteration

Algorithm: Chebyshev iteration

Choose x0, set r0 = b − Ax0; σ1 = ϑ/δ.
ρ0 = 1/σ1; d0 = 1

ϑ r0.
for k = 0, 1, . . . until convergence do

xk+1 = xk + dk .
rk+1 = rk − Adk .
ρk+1 = (2σ1 − ρk)−1.

dk+1 = ρk+1ρkdk + 2ρk+1

δ rk+1.
endfor

No inner products
but knowledge of
(bounds for) λ1 and
λn required.

For details see Saad, Section 12.3.2.

See also
https://en.wikipedia.org/wiki/Chebyshev_iteration.
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Exercise 8

Exercise 8:

http://people.inf.ethz.ch/arbenz/FEM17/pdfs/ex8.pdf
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