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FEM and sparse linear system solving

Survey on lecture

Survey on lecture

I The finite element method

I Direct solvers for sparse systems
I Iterative solvers for sparse systems

I Stationary iterative methods, preconditioning
I Steepest descent and conjugate gradient methods
I Krylov space methods for nonsymmetric systems

GMRES, MINRES
I Preconditioning
I Nonsymmetric Lanczos iteration based methods

Bi-CG, QMR, CGS, BiCGstab
I Multigrid (preconditioning)
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FEM and sparse linear system solving

Survey on lecture

Outline of this lecture

1. Krylov (sub)spaces

2. Orthogonal bases for Krylov spaces

3. GMRES

4. MINRES

Krylov space methods are ‘matrix-free’:
only a MatVec function is necessary, that computes y ← Ax .
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Krylov spaces

Krylov spaces

In steepest descent and CG we have

rk = rk−1 − αk−1Apk−1, pk = rk + βk−1pk−1,

where rk = b − Axk is the residual and pk is the search direction.
Since pk depends on pk−1 and rk we can write

rk = r0 +
k∑

j=1

cjA
j r0 ⇐⇒ rk = pk(A)r0, pk(0) = 1,

Thus, the residuals of these methods can be written as a k-th
order polynomial in A applied to the initial residual r0.
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Krylov spaces

Krylov spaces (cont.)
Moreover,

k∑
j=1

cjA
j rj = rk − r0

= (b − Axk)− (b − Ax0) = −A(xk − x0)

such that

xk = x0 −
k−1∑
j=0

cj+1A
j r0.
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Krylov spaces

Krylov spaces (cont.)

Definition For given A, the m-th Krylov space generated by the
vector r is given by

Km = Km(A, r) := span
{
r ,Ar ,A2r , . . . ,Am−1r

}
.

We can also write

Km(A, r) = {p(A)r | p ∈ Pm−1} .

where Pd denotes the set of polynomials of degree at most d .

For the residuals rm of stationary or CG iterations we have

rm ∈ r0 + AKm−1(A, r0) ⊂ Km(A, r0).
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Krylov spaces

Cayley–Hamilton theorem

Theorem: Let χA(ζ) := det(ζI − A) denote the characteristic
polynomial of A ∈ Rn×n. Then

χA(A) = O.

Corollary: Let A be nonsingular and

χA(ζ) = ζn + an−1ζ
n−1 + an−2ζ

n−2 + · · ·+ a0,

with a0 = det(A) 6= 0, then

A−1 = − 1

a0

[
An−1 + an−1A

n−2 + an−2A
n−3 + · · ·+ a1I

]
.
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Krylov spaces

Cayley–Hamilton theorem (cont.)
Consequence:

I If A nonsingular, then A−1 is a polynomial in A of degree at
most n − 1.

I If Ax = b then

x = (An−1b + an−1A
n−2b + an−2A

n−3b + · · ·+ a1b)/(−a0).

I As Ae0 = r0 we have

e0 = (An−1r0 +an−1A
n−2r0 +an−2A

n−3r0 + · · ·+a1r0)/(−a0).

I x ∈ x0 +Kn(A, r0).

Therefore it makes sense to look for approximate solutions in
Krylov spaces.
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Krylov spaces

Minimal polynomial

Definition
For A ∈ Rn×n, the unique monic polynomial µA of minimal degree
d satisfying µA(A) = 0 is called the minimal polynomial of A.

Theorem: Let A have distinct eigenvalues λ1, . . . , λk , then

µA(ζ) =
k∏

i=1

(ζ − λi )ri ,

where ri is the order of the largest Jordan block of A for λi .

Note: I The degree of µA is at most n (Cayley–Hamilton).

I e0 ∈ Kd , interesting when d � n

I Ideal: few distinct eigenvalues, small Jordan blocks!
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Krylov spaces

Dependence on right-hand side

What does it mean when K1 $ K2 $ · · · $ Kp = Kp+1 = · · · ?

Apr0 = α0 r0 + α1Ar0 + α2A
2r0 + · · ·+ αp−1A

p−1r0

Multiplying by A−1 and noting that A−1r0 = e0 gives

Ap−1r0 = α0 e0 + α1 r0 + α2Ar0 + · · ·+ αp−1A
p−2r0

Therefore e0 ∈ Kp(A, r0) or

x∗ ∈ x0 +Kp(A, r0).

We get the solution after precisely p steps.

Note that p depends on r0 (and thus on x0).

FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 10/36



FEM and sparse linear system solving

Krylov spaces

Dependence on right-hand side (cont.)
Let A be diagonalizable with A = UΛU−1.
This means that there n linearly independent vectors (eigenvectors)
with Aui = uiλi , 1 ≤ i ≤ n.

If r0 =
∑p

i=1 αiui then Aj r0 =
∑p

i=1 αiλ
jui .

So, if r0 ∈ span{u1, . . . ,up} with Aui = uiλi , then Kp = Kp+1

means that the solution is found in p iteration steps.

This is an uncommon situation! Usually, p ≈ n and it is not
practical to iterate until the Krylov space is exhausted.
We try to get a good approximation of x∗ after m� n iteration
steps.
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Krylov spaces

What is the best xm from Km?

Want to best approximate x∗ = A−1b from x0 +Km(A, r0).
Various answers lead to different methods:

I Ideal but not practical: minimize ‖em‖2 = ‖x∗ − xm‖2.

I When A is SPD, then we can minimize ‖em‖A = ‖rm‖A−1 .
Conjugate Gradients

I Can minimize ‖rm‖2. For symmetric A: MINimum RESidual,
for nonsymmetric A: Generalized Minimum RESidual

I Can enforce Galerkin condition rm ⊥ Km or Petrov-Galerkin
condition rm ⊥ Lm, e.g. BiConjugate Gradients and Quasi
Minimum Residual, these are m constraints to compute m
parameters α0, . . . , αm−1 from
xm = x0 + α0r0 + α1Ar0 + α2A

2r0 + · · ·+ αm−1A
m−1r0.
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Orthogonal basis

An orthogonal basis for Km

Problem: The matrix

Km(A, r0) :=

 r0 Ar0 · · · Am−1r0


becomes more and more ill-conditioned as k increases. (Remember
vector iteration for computing largest eigenvalue.)

Solution: We have to find a well-conditioned basis of Km.
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Orthogonal basis

Arnoldi & Lanczos algorithms

Task: For j = 1, 2, . . . ,m, compute orthonormal bases {v1, . . . , vj}
for the Krylov spaces

Kj = span
{
r0,Ar0,A

2r0, . . . ,A
j−1r0

}
.

The algorithms that do this are

I Lanczos algorithm for A symmetric/Hermitian.

I Arnoldi algorithm for A nonsymmetric.

In principle, Lanczos and Arnoldi algorithms implement the
Gram–Schmidt orthogonalization procedure.

Difficulty: Because of ill-conditioning, we do not want to explicitly
form r0,Ar0, . . . ,A

j r0.
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Orthogonal basis

Arnoldi & Lanczos algorithms (cont.)
Instead of using Aj r0 we proceed with Avj .
(Notice that Avi ∈ Ki+1 ⊂ Kj for all i < j .)

Orthogonalize Avj against v1, . . . , vj by the Gram–Schmidt
procedure:

wj = Avj −
j∑

i=1

vihij .

wj points in the desired new direction (unless it is 0). Therefore,

vj+1 = wj/‖wj‖.

Q: What happens if wj = 0?
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Orthogonal basis

Arnoldi: Classical and modified Gram–Schmidt

v1 = r0/‖r0‖2
for j:=1 to m do
wj = Avj ;
for i:=1 to j do

Orthogonalize Avj against v1, . . . , vj :{
hi ,j := (Avj)

∗vi ; (Classical Gram–Schmidt)
hi ,j := w∗j vi ; (Modified Gram–Schmidt)

wj := wj − hi ,j ∗ vi ;
end for
hj+1,j = ‖wj‖2. (Stop if hj+1,j is zero.)
vj+1 = wj/hj+1,j ;

end for

In practice: MGS is more numerically stable than CGS
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Orthogonal basis

Remark: Classical vs. modified Gram–Schmidt

Given vectors a and v1, . . . , vj with vT
k v` = 0 for all 1 ≤ k , ` ≤ j .

Task: Compute z s.t. a =
∑
i
αivi + z with zTv` = 0 for all `.

Classical Gram–Schmidt

z = a;
for i:=1 to j do
αi = vT

i a;
z = z − viαi ;

end for

Modified Gram–Schmidt

z = a;
for i:=1 to j do
αi = vT

i z ;
z = z − viαi ;

end for

MGS is more stable than CGS.

There are other solutions as, e.g., Householder reflectors.

See Golub–van Loan: Matrix Computations.
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Orthogonal basis

Arnoldi relation

Define Vm := [v1, . . . , vm]. Then we get the Arnoldi relation

AVm = VmHm + wme
T
m = Vm+1H̄m.

+=A Vm

Hm

Vm O wm
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Orthogonal basis

Arnoldi relation (cont.)
Here,

H̄m =


h11 h12 · · · h1,m
h21 h22 · · · h2,m

h3,2 · · · h3,m
. . .

...
hm+1,m

 ∈ R(m+1)×m

The square matrix Hm ∈ Rm×m is obtained from H̄m by deleting
the last row.
Notice that

Hm = V T
m AVm.

Therefore, if A is symmetric ⇒ Hm ≡ Tm is tridiagonal!

The Lanczos relation is AVm = VmTm + wme
T
m = Vm+1Tm.
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GMRES

GMRES

The GMRES (Generalized Minimal Residual) algorithm computes
xm ∈ x0 +Km(A, r0) that leads to the smallest residual exploiting
the Arnoldi relation.
The MINRES algorithm does the same for symmetric matrices
using the Lanczos relation.

Goal: Cheaply minimize

‖rm‖2 = ‖b − Axm‖2, xm ∈ x0 +Km(A, r0),

using the Arnoldi relation

AVm = Vm+1H̄m

and R(Vm) = Km(A, r0).
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GMRES

A Hessenberg Least-Squares problem

Arnoldi basis expansion xm = x0 + Vmy gives with β := ‖r0‖2:

min ‖rm‖2 = min
y
‖b − A(x0 + Vmy)‖2

= min
y
‖r0 − AVmy‖2

= min
y
‖r0 − Vm+1H̄my‖2

= min
y
‖Vm+1

(
βe1 − H̄my

)
‖2

= min
y
‖βe1 − H̄my‖2.

I Hessenberg least squares problem of dimension (m + 1)×m.

I QR factorization of H̄m can be cheaply computed using
Givens rotations.
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GMRES

QR factorization of H̄m using m Givens row rotations


h11 h12 h13 h14
h21 h22 h23 h24

h32 h33 h34
h43 h44

h54

 ⇒


r
′
11 r ′12 r ′13 r ′14
0 r ′22 r ′23 r ′24

h32 h33 h34
h43 h44

h54

⇒

r ′11 r ′12 r ′13 r ′14
0 r ′′22 r ′′23 r ′′24

0 r ′33 r ′34
h43 h44

h54

 ⇒


r ′11 r ′12 r ′13 r ′14
0 r ′′22 r ′′23 r ′′24

0 r ′′33 r ′′34
0 r ′44

h54

⇒

r ′11 r ′12 r ′13 r ′14
0 r ′′22 r ′′23 r ′′24

0 r ′′33 r ′′34
0 r ′′44

0


Apply same rotations to rhs & solve triangular m ×m system:

min ‖rm‖2 = min ‖βe1 − H̄my‖2 = min ‖βz − R̄my‖2.
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GMRES

Residual results

Monotonicity: ‖rm+1‖2 ≤ ‖rm‖2 because Km ⊂ Km+1.

Residual polynomial: Since rm = b − Axm ∈ r0 + AKm, we have
rm = pm(A)r0.
pm is a polynomial of degree m and pm(0) = 1. Denote the set of
all such polynomials by P′m.

Theorem
Let A = QΛQ−1 be diagonalizable. Then at step m of the GMRES
iteration, the residual rm satisfies

‖rm‖2
‖r0‖2

≤ inf
pm∈P′m

‖pm(A)‖2 ≤ κ(Q) inf
pm∈P′m

max
λ∈σ(A)

|pm(λ)|.

FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 23/36



FEM and sparse linear system solving

GMRES

Residual results (cont.)
I We have seen a similar result for the CG algorithm. There
κ(Q) = 1 and σ(A) ⊂ [α, β], α > 0.

I In more general situations, the distribution of A’s eigenvalues
is more complicated.

I One may replace σ(A) by a simpler shaped set D ⊃ σ(A) to
simplify the analysis. E.g., D may be an ellipse for which more
general Chebyshev polynomials have been developed.

I But 0 must never be contained in D!
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GMRES

Sample matrices & convergence

Remember: minimal polynomial µA, assume that
A diagonalizable ⇔ all Jordan blocks size one

I Ideally: few distinct eigenvalues

I Heuristically: eigenvalues should best be ‘squeezed’ in small
ball

I Perfect: A is (multiple of) identity: one point spectrum

I ⇒ Visual interpretation of preconditioning goal

Compare convergence of GMRES for two matrices with quite
different spectra

Pictures from Trefethen–Bau, Numerical Linear Algebra, SIAM 1997,

Lecture 35.
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GMRES

Matrix 1 – spectrum

Matrix A is obtained in Matlab by
m = 200; A = 2*eye(m) + 0.5*randn(m)/sqrt(m);.

I A has a spectrum in a ball with
radius 1/2 centered at 2

I Let us choose pn(z) = (1− z/2)n.

I On the spectrum |1− z/2| ≤ 1/4
and therefore |pn(z)| ≤ (1/4)n.

I The convergence in this case is
extraordinarily steady at a rate
≈ 4−n, see next slide.
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GMRES

Matrix 1 – GMRES convergence
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GMRES

Matrix 2 - spectrum

A′ = A + D where A is matrix 1 and D is the diagonal matrix with

dk = (−2+2 sin θk)+i cos θk , θk = kπ/(m+1), 0 ≤ k < m.

I A′ has a spectrum that is
‘surrounding the origin’. The
eigenvalues lie in a semicircular
cloud that bends around the origin.

I The convergence rate is much
worse than in example 1.

I The condition of Q is not large.

I The slow convergence is due to the
location of the eigenvalues.
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GMRES

Matrix 2 – GMRES convergence
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GMRES

Practical issues

I The GMRES algorithm with m steps needs memory space for
m +O(1) vectors of length n plus the matrices A and M.
CG needed just 4 vectors

I Slow convergence may entail expensive memory requirements.
Recipe: limit m. Execute m steps of GMRES. Then restart
with xm as initial approximation of the next GMRES cycle.

I GMRES does not care about symmetries. There is no gain in
choosing a symmetric preconditioner M when solving

M−1Ax = M−1b.

I Incomplete LU factorizations (ILU) are popular
preconditioners.
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GMRES

The GMRES(m) algorithm

Set an initial guess x0
until convergence do

Compute initial residual, r0 = b − Ax0
Solve for preconditioned residual, Mz0 = r0
Normalize residual: v1 = z0/‖z0‖
for k = 1, 2, ..., m do

Compute matrix-vector product rk = Avk
Solve Mzk = rk
Orthonormalize zk with respect to all vj , j = 1, . . . , k
by modified Gram-Schmidt procedure to obtain vk+1

end
Solve GMRES minimization problem. Copy solution xm into x0.
Check convergence, if satisfied leave GMRES.

end
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MINRES

Krylov space methods for symmetric systems

Let A be symmetric indefinite. The CG method does not work
since A does not induce a norm: xTAx and xTA−1x can be
negative and it does not make sense to minimize ‖r‖A−1 .

Then the minimal residual (MINRES) algorithm is a feasible
solution method.

MINRES is essentially GMRES adapted to symmetric systems.
Two things are worth noting:

I Avk does not need to be orthogonalized against vj for
j < k − 1:

(Avk)Tvj = vT
k ATvj

A=AT

= vT
k Avj︸︷︷︸
∈Kj+1

= 0 if j + 1 < k.

We have a short recurrence.
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MINRES

Krylov space methods for symmetric systems (cont.)
I H̄m =: Tm is tridiagonal.

T̄m =



t11 t12
t21 t22 t23

t3,2
. . .

. . .
. . . tm−1,m−1 tm−1,m

tm,m−1 tm,m
tm+1,m


=

[
Tm

tm+1,me
T
m

]

Note that the submatrix Tm is symmetric.
Operating with Givens rotations on Tm zeros the lower
off-diagonal elements at the expense of an additional upper
off-diagonal. Of course the resulting matrix is upper-triangular.

FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 33/36



FEM and sparse linear system solving

MINRES

The (unpreconditioned) MINRES algorithm

Choose x0.
Compute r0 = b − Ax0. β = ‖r0‖. Set v0 = r0/β.
for k = 1, 2, . . . do

wk := Avk−1; if k > 1 then wk = wk − vk−2tk,k−1
tk,k := wT

k vk−1; wk = wk − vk−1tk,k
tk+1,k := ‖wk‖2; yk = wk/tk+1,k ;

Update the QR factorization T k = QkRk .
Solve Rkhk = βQT

k e1.
xk := Vkhk . rk := b − Axk .
Check for convergence.

end do

I The updates of xk and rk can be done by 3-term recurrencies.
I Preconditioners for A must be SPD in order to use this

procedure. (Why?)
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MINRES

Note on CG

CG 6= MINRES

In both methods: xm ∈ x0 +Km(A, r0)

MINRES: Choose xm such that ‖rm‖2 is minimized.

min‖rm‖2 = min
y
‖r0 − AVmy‖2 = min

y
‖β e1 − T̄my‖2.

CG: Choose xm such that the Galerkin condition rm ⊥ Km is

satisfied.

0 = V T
m (b − Axm) = V T

m (r0 − AVmym) = β e1 − Tm ym.

(β = ‖r0‖2)
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MINRES

Note on CG

Main practical issues for Krylov space methods

I Select reasonable convergence criterion, and reasonable
accuracy threshold τ .

I Without a good preconditioner, the method might not
converge within a reasonable number of iteration steps.

I Cannot keep increasing the dimension of K, not enough
memory!
=⇒ need to decide how and when to restart.
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