
Chapter 11

The Jacobi-Davidson Method

The Lanczos and Arnoldi methods are very effective to compute extremal eigenvalues
provided these are well separated from the rest of the spectrum. Lanczos and Arnoldi
methods combined with a shift-and-invert sprectral transformation are also efficient to
compute eigenvalues in the vicinity of the shift σ. In this case it is necessary to solve a
system of equation

(A− σI)x = y, or (A− σM)x = y,

respectively, in each iteration step. These systems have to be solved very accurately since
otherwise the Krylov or Arnoldi relation does not hold anymore. In most cases the matrix
A− σI (or A− σM) is LU or Cholesky factored. The Jacobi–Davidson (JD) algorithm is
particularly attractive if this factorization is not feasible [11].

11.1 The Davidson algorithm

Let v1, . . . ,vm be a set of orthonormal vectors, spanning the search space R(Vm) with
Vm = [v1, . . . ,vm]. In the Galerkin approach we are looking for vectors s ∈ F

m such that
the Galerkin condition holds,

(11.1) AVms− ϑVms ⊥ v1, . . . ,vm.

This immediately leads the the (small) eigenvalue problem

(11.2) V ∗
mAVms = ϑV ∗

mVms

with solutions (ϑ
(m)
j , s

(m)
j), j = 1, . . . ,m. ϑ

(m)
j is called a Ritz value and Vms

(m)
j is called

a Ritz vector. In the sequel we omit the superscript m for readability. The dimension of
the search space should become evident from the context.

Let us consider, say, the Ritz value ϑj , its Ritz vector uj = Vmsj and their residual
rj = Auj−ϑjuj . Often we are looking for the largest or smallest eigenvalue of A in which
case j = 1 or j = m, respectively. The question immediately arises how we can improve
(ϑj ,uj) if ‖rj‖ is still large. It is straightforward to try to find a better approximate
eigenpair by expanding the search space. Davidson, in his original paper [2], suggested to
compute a vector t from

(11.3) (DA − ϑjI)t = rj ,

189

190 CHAPTER 11. THE JACOBI-DAVIDSON METHOD

where DA is the diagonal of the matrix A. The vector t is then made orthogonal to the
basis vectors v1, . . . ,vm. The resulting vector, after normalization, is chosen as vm+1 by
which R(Vm) is expanded, i.e., Vm+1 = [v1, . . . ,vm,vm+1].

This method is successful in finding dominant eigenvalues of (strongly) diagonally dom-
inant matrices. The matrix DA− ϑjI has therefore often been viewed as a preconditioner
for the matrix A − ϑjI. A number of investigations were made with more sophisticated
preconditioners M − ϑjI, see e.g. [7, 8]. They lead to the conclusion that M − ϑjI should
not be too close to A− ϑjI which contradicts the notion of a preconditioner as being an
easily invertible (factorizable) approximation of A− ϑjI.

11.2 The Jacobi orthogonal component correction

In his seminal paper, Jacobi [6] not only presented the solution of symmetric eigenvalue
problems by successive application of (later to be called) Jacobi rotations, but also pre-
sented an approach to improve an approximate eigenpair with an iterative procedure.
Here, we give Jacobi’s approach in a generalized form presented by Sleijpen and van der
Vorst [11]. Let uj be an approximation to the eigenvector x of A corresponding to the
eigenvalue λ. Jacobi proposed to correct uj by a vector t, uj ⊥ t, such that

(11.4) A(uj + t) = λ(uj + t), uj ⊥ t.

This is called the Jacobi orthogonal component correction (JOCC) by Sleijpen &
van der Vorst [11]. As t ⊥ uj we may split equation (11.4) in the part parallel to uj and
in the part orthogonal to uj . If ‖uj‖ = 1 then the part parallel to uj is

(11.5) ujuj
∗A(uj + t) = λujuj

∗(uj + t)

which simplifies to the scalar equation

(11.6) ϑj + uj
∗At = λ.

Here ϑj is the Rayleigh quotient of uj , ϑj = ρ(uj). The part orthogonal to uj is

(11.7) (I − ujuj
∗)A(uj + t) = λ(I − ujuj

∗)(uj + t)

which is equivalent to

(I − ujuj
∗)(A− λI)t = (I − ujuj

∗)(−Auj + λuj)

= −(I − ujuj
∗)Auj = −(A− ϑjI)uj =: −rj .

As (I − ujuj
∗)t = t we can rewrite this equation as

(11.8) (I − ujuj
∗)(A− λI)(I − ujuj

∗)t = −rj .

If A is symmetric then the matrix in (11.8) is symmetric as well.
Unfortunately, we do not know λ! Therefore, we replace λ by ϑj to get the Jacobi–

Davidson correction equation

(11.9) (I − uju
∗
j)(A− ϑjI)(I − uju

∗
j)t = −rj = −(A− ϑjI)uj , t ⊥ uj .

As rj ⊥ uj this equation is consistent if A− ϑjI is nonsingular.

11.2. THE JACOBI ORTHOGONAL COMPONENT CORRECTION 191

The correction equation (11.9) is, in general, solved iteratively by the GMRES or
MINRES algorithm [1]. Often, only little accuracy in the solution is required.

Once t is (approximately) known we set

(11.10) uj+1 = uj + t.

From (11.6) we may then obtain

(11.11) ϑj+1 = ϑj + uj
∗At.

If A is symmetric ϑj+1 may be set equal to the Rayleigh quotient ρ(uj+1).

Let us analyze (11.9) more closely. Let us first investigate the role of the orthogonality
condition t ⊥ uj . If this condition is omitted then the equation to be solved is

(11.12) (I − uju
∗
j)(A− ϑjI)t = −rj = −(A− ϑjI)uj .

This equation has the solution t = −uj . Therefore, without the condition t ⊥ uj there is
no progress in solving the eigenvalue problem Ax = λx.

One can argue that this is the approach suggested by Davidson [2]. Davidson approx-
imated A on the left side of (11.12) by an approximation of it, typically the diagonal,
say DA, of A. As his matrices were diagonally dominant, he solved a reasonably good
approximation of (11.12). If DA in (11.3) is considered a preconditioner of A then any
matrix closer to A should lead to better performance of the algorithm. In extremis, A
should be a possible choice for the matrix on the left. But we have just seen that this
leads to a situation without progress. In fact the progess in the iteration deteriorates the
better the preconditioner approximates the system matrix. In consequence, DA in (11.3)
must not be considered a preconditioner.

Let us now investigate what happens if the correction equation is solved exactly. To
that end we write it as

(I − uju
∗
j)(A− ϑjI)t = −rj , t ⊥ uj ,

which immediately leads to

(A− ϑjI)t− uj u
∗
j (A− ϑjI)t︸ ︷︷ ︸
α ∈ F

= −rj ,

or,

(A− ϑjI)t = αuj − rj .

Assuming that ϑj is not an eigenvalue of A we get

t = α(A− ϑjI)−1uj − (A− ϑjI)−1rj .

The constraint u∗
jt = 0 allows us to determine the free variable α,

0 = αu∗
j (A− ϑjI)−1uj − u∗

j (A− ϑjI)−1rj ,

whence

α =
u∗
j (A− ϑjI)−1rj

u∗
j (A− ϑjI)−1uj

.

192 CHAPTER 11. THE JACOBI-DAVIDSON METHOD

By (11.10), the next approximate is then

(11.13) uj+1 = uj + t = uj + α(A− ϑjI)−1uj − (A− ϑjI)−1rj︸ ︷︷ ︸
uj

= α(A− ϑjI)−1uj

which is a step of Rayleigh quotient iteration! This implies a fast (quadratic in general,
cubic in the Hermitian case) convergence rate of this algorithm.

In general the correction equation

(11.14) Ãt = (I − uju
∗
j)(A− ϑjI)(I − uju

∗
j)t = −rj , t ⊥ uj ,

is solved iteratively with a Krylov space solver like GMRES or MINRES [1]. To get
a decent performance a preconditioner is needed. Sleijpen and van der Vorst suggest
preconditioners of the form

(11.15) K̃ = (I − uju
∗
j)K(I − uju

∗
j), K ≈ A− ϑjI.

We assume that K is (easily) invertible, i.e., that it is computationaly much cheaper to
solve a system of equation with K than with A. With this assumption the system of
equation

K̃z = v, z ⊥ uj ,

can be solved provided that the right-hand side v is in the range of K̃, i.e., provided that
v ⊥ uj . We formally denote the solution by z = K̃+v. So, instead of (11.14) we solve the
equation

(11.16) K̃+Ãt = −K̃+rj , t ⊥ uj .

Let t0 = 0 be the initial approximation to the solution of (11.16). (Notice that t0 trivially
satisfies the orthogonality constraint.) Because of the projectors I−uju

∗
j in the definitions

of Ã and K̃ all approximations are orthogonal to uj .
In each iteration step we have to compute

z = K̃+Ãv, z ⊥ uj

where v ⊥ uj . To do this we proceed as follows. First we write

Ãv = (I − uju
∗
j)(A− ϑjI)v︸ ︷︷ ︸
y

=: y.

Then,
K̃z = y, z ⊥ uj .

With (11.15) this becomes

(I − uju
∗
j)Kz = Kz− uju

∗
jKz = y,

the solution of which is
z = K−1y − αK−1uj ,

where, formally, α = −u∗
jKz. Similarly as earlier, we determine the scalar by means of

the constraint z∗uj = 0. Thus

α =
u∗
jK

−1y

u∗
jK

−1uj
.

Remark 11.1. Since uj is fixed during the solution of the secular equation, the vector
K−1uj has to be computed just once. Thus, if the iterative solver needs k steps until
convergence, k + 1 systems of equations have to be solved with the matrix K.

11.2. THE JACOBI ORTHOGONAL COMPONENT CORRECTION 193

Algorithm 11.1 The Jacobi–Davidson algorithm to compute the eigenvalue of
A closest to a target value τ

1: Let A,B ∈ F
n×n. This algorithm computes the eigenvalue of A that is closest to τ .

Let t be an initial vector. Set V0 = [], V A
0 = [], m = 0.

2: loop
3: for i = 1, . . . ,m− 1 do
4: t := t− (v∗

i t)vi; /* t = (I − Vm−1V
∗
m−1)t */

5: end for
6: vm := t/‖t‖; vAm := Avm; Vm := [Vm−1,vm]; V A

m := [V A
m−1,v

A
m];

7: for i = 1, . . . ,m do
8: Mi,m := v∗

i v
A
m; Mm,i := v∗

mvAi ; /* M = V ∗
mAVm */

9: end for
10: Mm,m := v∗

mvAm;
11: Compute the eigenvalue ϑ of M closest to τ and the /* Rayleigh Ritz step */

corresponding eigenvector s: Ms = ϑs; ‖s‖ = 1;
12: u := Vms; uA := V A

m s; r := uA − ϑu;
13: if ‖r‖ < tol then
14: return (λ̃ = ϑ, x̃ = u)
15: end if
16: (Approximatively) solve the correction equation for t,

(I − uu∗)(A− ϑjI)(I − uu∗)t = −r, t ⊥ u;
17: end loop

11.2.1 Restarts

Evidently, in Algorithm 11.1, the dimension m of the search space can get large. To limit
memory consumption, we limit m such that m ≤ mmax. As soon as m = mmax we restart:
Vm = Vmmax is replaced by the q Ritz vectors corresponding to the Ritz values closest to
the target τ . Notice that the Schur decomposition of M = Mm,m = V ∗

mAVm is computed
already in step 11 of the Algorithm. Let M = S∗TS be this Schur decomposition with
|t11 − τ | ≤ |t22 − τ | ≤ · · · . Then we set Vq = Vm · S:,1:q, V

A
q = V A

m · S:,1:q, M = T · S1:q,1:q.
Notice that the restart is easy because the Jacobi–Davidson algorithm is not a Krylov
space method.

11.2.2 The computation of several eigenvalues

Let x̃1, x̃2, . . . , x̃k be already computed eigenvectors or Schur vectors with x̃∗
i x̃j = δij ,

1 ≤ i, j ≤ k. Then.

(11.17) AQk = QkTk, Qk = [x̃1, . . . , x̃k].

is a partial Schur decomposition of A [13]. We want to extend the partial Schur de-
composition by one vector employing the Jacobi–Davidson algorithm. Since Schur vectors
are mutually orthogonal we can apply the Jacobi–Davidson algorithm in the orthogonal
complement of R(Qk), i.e., we apply the Jacobi–Davidson algorithm to the matrix

(11.18) (I −QkQ∗
k)A(I −QkQ∗

k), Qk = [x̃1, . . . , x̃k].

The correction equation gets the form

(11.19) (I−uju
∗
j)(I−QkQ∗

k)(A−ϑjI)(I−QkQ∗
k)(I−uju

∗
j)t = −rj , t ⊥ uj , t ⊥ Qk.

194 CHAPTER 11. THE JACOBI-DAVIDSON METHOD

As uj ⊥ Qk we have

(I − uju
∗
j)(I −QkQ∗

k) = I − Q̃kQ̃∗
k, Q̃k = [x̃1, . . . , x̃k,uj].

Thus, we can write (11.19) in the form

(11.20) (I − Q̃kQ̃∗
k)(A− ϑjI)(I −QkQ∗

k)(I − Q̃kQ̃∗
k)t = −rj , Q̃∗

kt = 0.

The preconditioner becomes

(11.21) K̃ = (I − Q̃kQ̃∗
k)K(I − Q̃kQ̃∗

k), K ≈ A− ϑjI.

Similarly as earlier, for solving

K̃z = Ãv, Q̃∗
kz = Q̃∗

kv = 0,

we execute the following step. Since

Ãv = (I − Q̃kQ̃∗
k) (A− ϑjI)v︸ ︷︷ ︸

y

=: (I − Q̃kQ̃∗
k)y =: y − Q̃k Q̃∗

ky︸︷︷︸
a

.

we have to solve

K̃z = (I − Q̃kQ̃∗
k)Kz = (I − Q̃kQ̃∗

k)y, z ⊥ Q̃k.

Thus,
z = K−1y −K−1Q̃ka.

Similarly as earlier, we determine a by means of the constraint Q̃∗
kz = 0,

a = (Q̃∗
kK

−1Q̃k)
−1Q̃∗

kK
−1y.

If the iteration has converged to the vector x̃k+1 we can extend the partial Schur decom-
position (11.17). Setting

Qk+1 := [Qk, x̃k+1],

we get

(11.22) AQk+1 = Qk+1Tk+1

with

Tk+1 =

[
Tk Q∗

kAx̃k+1

0 x̃∗
k+1Ax̃k+1

]
.

11.2.3 Spectral shifts

In the correction equation (11.9) and implicitely in the preconditioner (11.15) a spectral
shift ϑj appears. Experiments show that it is not wise to always choose the Rayleigh
quotient of the recent eigenvector approximation u as the shift. In particular, far away
from convergence, i.e., in the first few iteration steps, the Rayleigh quotient may be far
away from the (desired) eigenvalue, and in fact may direct the JD iteration to an un-
wanted solution. So, one proceeds similarly as in the plain Rayleigh quotient iteration,
cf. Remark 6.8 on page 118. Initially, the shift is held fixed, usually equal to the target
value τ . As soon as the norm of the residual is small enough, the Rayleigh quotient of the
actual approximate is chosen as the spectral shift in the correction equation. For efficiency

11.2. THE JACOBI ORTHOGONAL COMPONENT CORRECTION 195

Algorithm 11.2 The Jacobi–Davidson QR algorithm to compute p of the eigen-
values closest to a target value τ

1: Q0 := []; k = 0. /* Initializations */
2: Choose v1 with ‖v1‖ = 1.
3: w1 = Av1; H1 := v∗

1w1; V1 := [v1]; W1 := [W1];
4: q̃ = v1; ϑ̃ = v∗

1w1; r := w1 − ϑ̃q̃.
5: j := 1;
6: while k < p do
7: /* Compute Schur vectors one after the other */
8: Approximatively solve the correction equation

(I − Q̃kQ̃∗
k)(A− ϑ̃I)(I −QkQ∗

k)(I − Q̃kQ̃∗
k)t = −rj , Q̃∗

kt = 0.

where Q̃k = [Qk, q̃].
9: vj = (I − Vj−1V

∗
j−1)t/‖(I − Vj−1V

∗
j−1)t‖; Vj := [Vj−1,vj].

10: wj = Avj ; Hj =

[
Hj−1 V ∗

j−1wj

v∗
jWj−1 v∗

jwj

]
; Wj = [Wj−1,wj].

11: Compute the Schur decomposition of
Hj =: SjRjSj

with the eigenvalues r
(j)
ii sorted according to their distance to τ .

12: /* Test for convergence */
13: repeat

14: ϑ̃ = λ
(j)
1 ; q̃ = Vjs1; w̃ = Wjs1; r = w̃ − ϑ̃q̃

15: found := ‖r‖ < ε
16: if found then
17: Qk+1 = [Qk, q̃]; k := k + 1;
18: end if
19: until not found
20: /* Restart */
21: if j = jmax then
22: Vjmin := Vj [s1, . . . , smin]; Tjmin := Tj(1 : jmin, 1 : jmin);
23: Hjmin := Tjmin ; Sjmin := Ijmin ; J := jmin

24: end if
25: end while

reasons, the spectral shift in the preconditioner K is always fixed. In this way it has to
be computed just once. Notice that K̃ is changing with each correction equation.

Remark 11.2. As long as the shift is held fixed Jacobi–Davidson is actually performing a
shift-and-invert Arnoldi iteration.

Algorithm 11.2 gives the framework for an algorithm to compute the partial Schur
decomposition of a matrix A. Qk stores the converged Schur vectors; Vj stores the ‘active’
search space. This algorithm does not take into account some of the just mentioned
issues. In particular the shift is always taken to be the Rayleigh quotient of the most
recent approximate q̃.

196 CHAPTER 11. THE JACOBI-DAVIDSON METHOD

11.3 The generalized Hermitian eigenvalue problem

We consider the problem

(11.23) Ax = λMx,

with A andM n×n Hermitian, andM additionally positive definite. Then the eigenvectors
can be chosen mutually M -orthogonal,

(11.24) x∗
iMxj = δij , Axi = λiMxi, 1 ≤ i, j ≤ n,

where δij denotes the Kronecker delta function. Then it makes sense in the Jacobi–
Davidson (as in other algorithms) to keep the iterates M -orthogonal.

Let Vm = [v1, . . . ,vm] be an M -orthogonal basis of the search space Vm. Then the
Galerkin condition

(11.25) AVms− ϑMVms ⊥ v1, . . . ,vm,

leads to the eigenvalue problem

(11.26) V ∗
mAVms = ϑV ∗

mMVms = ϑs.

Let (ϑ̃, ũ = Vms̃) be a solution of (11.26). Then the correction t to ũ must be M -
orthogonal,

(11.27) t∗M ũ = 0 ⇐⇒ (I − ũũ∗M)t = t.

The correction equation in turn becomes

(11.28) (I −M ũũ∗)(A− ϑ̃M)(I − ũũ∗M)t = −(I − ũũ∗M)r̃,= −r̃, t ⊥M ũ,

where r̃ = Aũ− ϑ̃M ũ. Preconditioners for the secular equation are chosen of the form

(11.29) K̃ = (I −M ũũ∗)K(I − ũũ∗M),

where K ≈ A− τM and τ is the target value.

11.4 A numerical example

We give a demonstration on how a full-fledged Jacobi–Davidson algorithm works. The
code is a Matlab implementation of a program from the PhD thesis of Geus [4]. It solves
the generalized symmetric eigenvalue problem as discussed in the previous section. The
command help jdsym provides the output given on page 197.

As the numerical example we again consider the accustic behavour in the interior
of a car. We compute the five smallest eigenvalues and associated eigenvectors. The
preconditioner is chosen to be the diagonal of A. An eigenpair (λ̃, q̃ is declared converged
if the residual norm ‖Aq̃ − λ̃M q̃‖ < 10−8‖q̃‖. Most of the components of options are
explained in the help text. The residual norms for each iteration step are plotted in
Fig. 11.1. As soon as an eigenpair has converged a new iteration starts. The residual
norm then increases by several orders of magnitude.

11.4. A NUMERICAL EXAMPLE 197

[Q, lambda, it] = jdsym(n, A, B, K, kmax, tau, options)

jdsym is a MATLAB implementation of the JDQR algorithm for symmetric

matrices.

jdsym returns kmax eigenvalues with corresponding eigenvectors of

the matrix A near the target tau. K is a symmetric preconditioner

for A - tau * B.

The arguments A and B both contain either n-by-n symmetric matrices

or a string containing the name of an M-file which applies a

symmetric linear operator to the columns of a given

matrix. Matrix B must be positive definite.

To solve the specialized eigenvalue problem A * x = lambda * x pass

an empty matrix [] for parameter B. If no preconditioner is used

pass an empty matrix [] for parameter K.

The options structure specifies certain parameters in the algorithm:

options.tol convergence tolerance 1e-10

options.jmax maximal dimension of search subspace V 2*kmax

options.jmin dimension of search subspace V after restart kmax

options.maxit maximum number of outer iterations max(100,2*n/jmax)

options.clvl verbosity of output (0 means no output) 1

options.eps_tr tracing parameter as described in literature 1e-4

options.toldecay convergence tolerance for inner iteration is 2

toldecay ^ (-solvestep)

options.cgmaxit maximum number of iterations in linear solver 100

options.V0 initial search subspace rand(n,1)-.5

V0 will be orthonormalized by jdsym

options.linsolv solver used for corrections equation 1

1 -- CGS

2 -- SYMMLQ

3 -- CGS_OP

4 -- CGS mit SYMOP

5 -- MINRES

6 -- QMR

7 -- QMRS

options.strategy strategy to avoid computation of zero

eigenvalues:

0 -- standard JD algorithm 0

1 -- never choose Ritz values that are close

to zero as best current approximation.

Purge Ritz values that are close

to zero when restarting

2 -- dynamically adjust tau

3 -- see (1) and set tau to last converged

eigenvalue if it was bigger than the old

tau

4 -- set tau to last converged eigenvalue if

it was bigger than the old tau

The converged eigenvalues and eigenvectors are stored in Q and lambda. The

number of outer JD iterations performed is returned in it.

198 CHAPTER 11. THE JACOBI-DAVIDSON METHOD

>> K=diag(diag(A));

>> options

options =

linsolv: 6

strategy: 0

>> options.tol=1e-8

options =

tol: 1.0000e-08

jmax: 20

jmin: 10

clvl: 1

optype: 1

linsolv: 5

>> [Q, lambda, it] = jdsym(n, A, M, K, 5, -0.01, options);

JDSYM Solving A*x = lambda*M*x with preconditioning

N= 1095 ITMAX=1.095000e+02

KMAX= 5 JMIN= 10 JMAX= 20 V0DIM= 1

TAU= -1.0000e-02 JDTOL= 1.0000e-08 STRATEGY= 0

LINSOLVER= MINRES OPTYPE= SYM

LINITMAX= 100 EPS_TR= 1.000e-04 TOLDECAY= 2.00e+00

IT K J RES CGTHET CGTOL CGIT CGERR CGFLG Ritz values 1-5

0 0 1 4.26e+00

1 0 2 9.33e-01 -1.00e-02 2.50e-01 1 9.74e-01 0

2 0 3 7.13e-02 -1.00e-02 1.25e-01 4 6.95e-02 0

3 0 4 4.14e-03 -1.00e-02 6.25e-02 10 4.04e-03 0

4 0 5 2.01e-04 -1.00e-02 3.12e-02 33 1.22e-04 0

5 0 6 4.79e-05 -1.00e-02 1.56e-02 71 3.07e-06 0

6 0 7 3.66e-07 9.33e-08 7.81e-03 88 3.53e-07 0

7 0 8 1.70e-09 6.39e-12 3.91e-03 74 1.34e-09 0

7 1 7 5.94e-03

8 1 8 4.98e-03 -1.00e-02 5.00e-01 4 2.67e-03 0

9 1 9 2.53e-03 -1.00e-02 2.50e-01 11 1.19e-03 0

10 1 10 3.38e-04 -1.00e-02 1.25e-01 18 3.06e-04 0

11 1 11 4.76e-05 -1.00e-02 6.25e-02 27 2.05e-05 0

12 1 12 1.45e-06 1.27e-02 3.12e-02 26 1.48e-06 0

13 1 13 1.87e-08 1.27e-02 1.56e-02 38 2.22e-08 0

14 1 14 9.87e-11 1.27e-02 7.81e-03 60 1.38e-10 0

14 2 13 4.75e-03

15 2 14 3.58e-03 -1.00e-02 5.00e-01 5 2.17e-03 0

16 2 15 1.16e-03 -1.00e-02 2.50e-01 9 8.93e-04 0

17 2 16 1.59e-04 -1.00e-02 1.25e-01 10 1.24e-04 0

18 2 17 1.46e-05 -1.00e-02 6.25e-02 14 8.84e-06 0

19 2 18 4.41e-07 4.44e-02 3.12e-02 21 4.29e-07 0

20 2 19 7.01e-09 4.44e-02 1.56e-02 29 6.58e-09 0

20 3 18 4.82e-03

21 3 19 3.44e-03 -1.00e-02 5.00e-01 3 2.34e-03 0

22 3 20 8.25e-04 -1.00e-02 2.50e-01 7 7.08e-04 0

11.4. A NUMERICAL EXAMPLE 199

23 3 11 1.57e-04 -1.00e-02 1.25e-01 11 8.91e-05 0

24 3 12 1.65e-05 -1.00e-02 6.25e-02 14 9.77e-06 0

25 3 13 4.77e-07 5.66e-02 3.12e-02 31 4.68e-07 0

26 3 14 6.51e-09 5.66e-02 1.56e-02 32 7.26e-09 0

26 4 13 1.28e-02

27 4 14 1.14e-02 -1.00e-02 5.00e-01 3 6.30e-03 0

28 4 15 3.54e-03 -1.00e-02 2.50e-01 6 2.45e-03 0

29 4 16 8.00e-04 -1.00e-02 1.25e-01 10 4.19e-04 0

30 4 17 1.13e-04 -1.00e-02 6.25e-02 12 4.95e-05 0

31 4 18 1.67e-05 -1.00e-02 3.12e-02 16 3.22e-06 0

32 4 19 4.23e-07 1.17e-01 1.56e-02 21 2.49e-07 0

33 4 20 3.20e-09 1.17e-01 7.81e-03 45 3.21e-09 0

JDSYM

IT_OUTER=33 IT_INNER_TOT=764 IT_INNER_AVG= 23.15

Converged eigensolutions in order of convergence:

I LAMBDA(I) RES(I)

1 9.102733263227557e-16 1.70111e-09

2 1.269007628846320e-02 9.86670e-11

3 4.438457596823515e-02 7.01153e-09

4 5.663501055565738e-02 6.50940e-09

5 1.166311652214006e-01 3.19504e-09

>>

0 5 10 15 20 25 30 35

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Figure 11.1: Jacobi–Davidson convergence history

200 CHAPTER 11. THE JACOBI-DAVIDSON METHOD

11.5 The Jacobi–Davidson algorithm for interior eigenval-
ues

Interior eigenvalues are eigenvalues that do not lie at the ‘border’ of the convex hull of the
spectrum, cf. Fig. 11.2

Figure 11.2: View of a spectrum σ(A) in the complex plane. The eigenvalues in the red
circle are to be computed

The success of the Jacobi–Davidson algorithm depends heavily on the quality of the
actual Ritz pair (ϑ̃j , q̃). However, the Rayleigh–Ritz procedure can lead to problem if it is
applied to interior eigenvalues. The following simple numerical example shall demonstrate
the problem. Let

A =

0 0 0
0 1 0
0 0 −1

 , U =

1 0

0
√

0.5

0
√

0.5

 .

Then,

U∗AU =

[
0 0
0 0

]
U∗U = I2.

So, any linear combination of the columns of U is a Ritz vector corresponding to the Ritz
value 0, e.g.,

U

(√
0.5√
0.5

)
=

√

0.5
0.5
0.5

 .

Thus, although the basis contains the correct eigenvalue associated with the eigenvalue 0,
the Rayleigh–Ritz procedure fails to find it and, instead, returns a very bad eigenvector
approximation.

This example may look contrived. So, we conduct a Matlab experiment with the
same A but with a randomly perturbed U .

11.6. HARMONIC RITZ VALUES AND VECTORS 201

>> rand(’state’,0)

>> U1=U+1e-4*rand(size(U)); [U1,dummy]=qr(U1,0); U1=-U1

U1 =

1.0000 -0.0001

0.0000 0.7071

0.0001 0.7071

>> B=U1’*A*U1

B =

1.0e-04 *

-0.0000 -0.2656

-0.2656 0.1828

>> [X,L]=eig(B)

X =

-0.8140 -0.5808

-0.5808 0.8140

L =

1.0e-04 *

-0.1896 0

0 0.3723

>> x=U1*-X(:,1)

x =

0.8140

0.4107

0.4107

>> theta=L(1,1)

theta =

-1.8955e-05

>> norm(A*x-x*theta)

ans =

0.5808

We note that ϑ is a reasonable approximation for the eigenvalue 0. However, as the
norm of the residual indicates, the Ritz vector is a bad approximation of the eigenvector.

11.6 Harmonic Ritz values and vectors

In the shift-and-invert Arnoldi algorithm the basic operator is A − σI where σ is some
shift. The Arnoldi algorithm finds the largest eigenvalues of A − σI, i.e., the eigenvalues
of A closest to the shift. One of the reasons for inventing the Jacobi-Davidson algorithm
is infeasibility of the factorization of A−σI. Therefore, a shift-and-invert approach is not
possible.

A clever way out of this dilemma works as follows: We apply the Ritz–Galerkin pro-
cedure with the matrix (A − σI)−1 and some subspace R(V) ⊂ F

n. This leads to the

202 CHAPTER 11. THE JACOBI-DAVIDSON METHOD

eigenvalues problem

(11.30) V ∗(A− σI)−1V s = µV ∗V s.

The largest Ritz values µj approximate the largest eigenvalues of (A− σI)−1, i.e.,

µj ≈
1

λj − σ
⇐⇒ λj ≈ σ +

1

µj
,

where λj is an eigenvalue of A close to the shift σ.
The trick is in the choice of V . Let us set V := (A− σI)U . Then (11.30) becomes

(11.31) U∗(A− σI)∗Us = µU∗(A− σI)∗(A− σI)Us,

or, with τ = 1/µ,

(11.32) U∗(A− σI)∗(A− σI)Us = τU∗(A− σI)∗Us.

With V = (A− σI)U this becomes

(11.33) V ∗V s = τV ∗Us.

If A is nonsymmetric, we compute an orthonormal basis Ṽ of V = (A − σI)U . Then we
can write (11.32) in the nonsymmetric form

(11.34) Ṽ ∗(A− σI)Us = τ Ṽ ∗Us.

We make the following

Definition 11.1 Let (τ, s) be an eigenpair of (11.32)–(11.34). Then the pair (σ + τ, Us)
is called a harmonic Ritz pair of A with shift σ.

In practice, we are interested only in the harmonic Ritz pair corresponding to the small-
est harmonic Ritz values. In the correction equation of the Jacobi–Davidson algorithm the
harmonic Ritz vector is used as the latest eigenvector approximation and the harmonic
Ritz values as the shift. In the symmetric case the harmonic Ritz value is replaced by the
Rayleigh quotient of the harmonic Ritz vector x, since

‖Ax− ρ(x)x‖ ≤ ‖Ax− µx‖, for all µ.

We continue the previous numerical example regarding the computation of the eigen-
value 0 of A = diag(0, 1,−1)

>> V=(A-theta*eye(3))*U1;

>> [v,l]=eig(V’*V, V’*U1)

v =

-1.000000000000000 -1.000000000000000

0.000059248824925 -0.713473633096137

l =

1.0e+17 *

0.000000000000000 0

0 -1.970695224946170

>> theta + l(1,1) % Harmonic Ritz value

ans =

3.722769433847084e-05

11.7. REFINED RITZ VECTORS 203

>> x = U1*v(:,1) % Harmonic Ritz vector

x =

1.000000001402380

-0.000018783973233

0.000018783630008

>> x’*A*x

ans =

1.289413628670287e-14

The above considerations affect the Jacobi–Davidson algorithm in the extraction phase.
Steps 11 and 14 in Algorithm 11.2 become

11: Compute the smallest eigenpair (τ̃ , s̃) of

(W ∗
j − σ̄V ∗

j)(Wj − σVj)s = τ(W ∗
j − σ̄V ∗

j)Vjs.

14: Set q̃ = Vj s̃, w̃ = Wj s̃. ϑ̃ = σ + τ or ϑ̃ = q̃∗Aq̃/q̃∗q̃.

To solve the eigenvalue problem (11.34) the QZ algorithm has to be employed, see
section 11.8. In the symmetric case (11.33) the symmetric QR algorithm will suffice in
general since the matrix on the left is positive definite.

11.7 Refined Ritz vectors

An alternative to harmonic Ritz vectors are refined Ritz vectors [13]. Again we start from
the observation that the Ritz values were of good quality. What we need are improved
Ritz vectors. Stewart [13] suggested the following procedure.

Definition 11.2 Let µϑ be a Ritz value of A restricted to Uϑ. A solution of the mini-
mization problem

(11.35) min
x̂∈Uϑ,‖x̂‖=1

‖Ax̂− µϑx̂‖

is called a refined Ritz vector.

How is this minimization problem solved? We write x̂ = Uϑz. Then (11.35) becomes

(11.36) min
‖z‖=1

‖(A− µϑI)Uϑz‖.

This minimization problem is solved by the right singular vector corresponding to the
smallest singular value of (A − µϑI)Uϑ or, equivalently, the eigenvector corresponding to
the smallest eigenvalue of

U∗
ϑ(A− µϑI)∗(A− µϑI)Uϑz = τz.

We continue the example of before.

>> [u,s,v]=svd((A - 0*eye(3))*U)

u =

204 CHAPTER 11. THE JACOBI-DAVIDSON METHOD

0 1.0000 0

-0.7071 0 0.7071

0.7071 0 0.7071

s =

1.0000 0

0 0

0 0

v =

0 1

-1 0

>> U*v(:,2)

ans =

1

0

0

>> [u,s,v]=svd((A - L(1,1)*eye(3))*U1)

u =

-0.0000 0.5810 0.8139

-0.7071 -0.5755 0.4108

0.7071 -0.5755 0.4108

s =

1.0001 0

0 0.0000

0 0

v =

-0.0001 1.0000

-1.0000 -0.0001

>> format long

>> U1*v(:,2)

ans =

1.00009500829405

-0.00001878470226

0.00001878647014

With the refined Ritz vector approach Steps 11 and 14 in Algorithm 11.2 are replaced
by

11: Compute the Ritzpair (ϑ̃, q̃) of A closest to the target value.
Compute the smallest singular vector s̃ of AVj − ϑ̃Vj .

14: Replace q̃ by Vj s̃.

11.8. THE GENERALIZED SCHUR DECOMPOSITION 205

11.8 The generalized Schur decomposition

The QZ algorithm computes the following generalized Schur decomposition.

Theorem 11.3 (Generalized Schur decomposition) If A,B ∈ C
n×n then there are

unitary matrices Q,Z ∈ C
n×n such that

(11.37) Q∗AZ = TA, Q∗BZ = TB,

are upper triangular. If for some k, tAkk = tBkk = 0 then σ(A,B) = C. Otherwise

σ(A,B) = {tAii/tBii | tBii 6= 0}.

Proof. See [5]
The algorithm starts out with transforming A and B in Hessenberg and upper triangular
form, respectively. After defalting zeros in the lower offdiagonal of the Hessenberg matrix
and on the diagonal of the upper triangular matrix, the QR algorithm with implicit shifts
is applied to AB−1. For details see [5].

Corresponding to the notion of an invariant subspace for a single matrix we have
the notion of a deflating subspace for the pencil A − λB. In particular, we say that
a k-dimensional subspace S ⊂ F

n is “deflating” for the pencil A − λB if the subspace
{Ax + By | x,y ∈ S} has dimension k or less. Note that the columns of the matrix Z
in the generalized Schur decomposition define a family of deflating subspaces, for if Q =
[q1, . . . ,qn] and Z = [z1, . . . , zn] then we have span{Az1, . . . , Azk} ⊂ span{q1, . . . ,qk}
and span{Bz1, . . . , Bzk} ⊂ span{q1, . . . ,qk}.

11.9 JDQZ: Computing a partial QZ decomposition by the
Jacobi–Davidson algorithm

We now consider the generalized eigenvalue problem

(11.38) Ax = λBx,

with arbitrary A and B. There is a variant of Jacobi–Davidson called JDQZ that com-
putes a partial QZ decomposition of the stencil (A,B). This section follows closely the
corresponding section in the eigenvalue templates [12]. Further details are found in [3].

With λ = α/β, the generalized eigenproblem (11.38) is equivalent to the eigenproblem

(11.39) (βA− αB)x = 0,

where we denote a generalized eigenvalue of the matrix pair {A,B} as a pair (α, β). The
notation (11.39) is preferred over (11.40), because underflow or overflow for λ = α/β in
finite precision arithmetic may occur when α and/or β are zero or close to zero. It also
emphazises the symmetry of the roles of A and B.

A partial generalized Schur form of dimension k for a matrix pair {A,B} is the
decomposition

(11.40) AQk = ZkR
A
k , BQk = ZkR

B
k ,

where Qk and Zk are unitary n× k matrices and RAk and RBk are upper triangular k × k
matrices. A column qi of Qk is referred to as a generalized Schur vector, and we refer to a

206 CHAPTER 11. THE JACOBI-DAVIDSON METHOD

pair ((αi, βi),qi), with (αi, βi) = (RAk (i, i), RBk (i, i)) as a generalized Schur pair. It follows
that if ((α, β),y) is a generalized eigenpair of (RAk , R

B
k) then ((α, β), Qky) is a generalized

eigenpair of {A,B}.
From the relations (11.40) we see that

βiAqi − αiBqi ⊥ zi.

This somewhat resembles the Schur decomposition, where Aqi − λiqi ⊥ qi. The zi on
the right hand side suggests that we should follow a Petrov-Galerkin condition for the
construction of reduced systems. In each step the approximate eigenvector u is selected
from a j-dimensional search subspace span(Vj) = span{v1, . . . ,vj}. We require that the
residual ηAu − ζBu is orthogonal to some other well-chosen test subspace span(Wj) =
span{w1, . . . ,wj},

(11.41) η Au− ζ Bu ⊥ span(Wj).

Equation (11.41) leads to the projected generalized j × j eigenproblem

(11.42) (ηW ∗
j AVj − ζ W ∗

j BVj) s = 0.

The j-dimensional pencil ηW ∗
j AVj − ζ W ∗

j BVj can be reduced by the QZ algorithm

(see §11.8) to generalized Schur form. This leads to orthogonal j × j matrices SR and SL

and upper triangular j × j matrices TA and TB, such that

(11.43) (SL)∗(W ∗
j AVj)S

R = TA and (SL)∗(W ∗
j BVj)S

R = TB.

This decomposition can be reordered such that the first column of SR and the (1, 1)-
entries of TA and TB represent the wanted Petrov solution [3]. With s := sR1 := SRe1 and
ζ := TA1,1, η := TB1,1, the Petrov vector is defined as

u := Vjs = Vjs
R
1

for the associated generalized Petrov value (ζ, η). In an analogous way we can define a
left Petrov vector as

p := Wjs
L
1 sL1 := SLe1

If Vj and Wj are unitary, as in Algorithm 11.3, then ‖sR‖2 = ‖sL‖2 = 1 implies ‖u‖2 = 1.
With the decomposition in (11.43), we construct an approximate partial generalized

Schur form (cf. (11.40)): VjS
R approximates a Qk, and WjS

L approximates the associated
Zj .

It is not yet clear how to choose the test space Wj . The equations span(Zj) =
span(AQj) = span(BQj), cf. (11.40), suggest to choose Wj such that span(Wj) coin-
cides with span(ν0AVj + µ0BVj) for some suitably chosen ν0 and µ0. With the weights
ν0 and µ0 we can influence the convergence of the Petrov values. If we want eigenpair
approximations for eigenvalues λ close to a target τ , then the choice

ν0 = 1/
√

1 + |τ |2, µ0 = −τν0

is very effective [3], especially if we want to compute eigenvalues in the interior of the
spectrum of A− λB. We will call the Petrov approximations for this choice the harmonic
Petrov eigenpairs. The Jacobi-Davidson correction equation for the component t ⊥ u for
the pencil ηA− ζB becomes

(11.44) (I − pp∗) (ηA− ζB) (I − uu∗) t = −r, r := ηAu− ζBu.

11.9. JDQZ: COMPUTING A PARTIAL QZ DECOMPOSITION 207

Sleijpen et al. [10] have shown that if (11.44) is solved exactly, the convergence to the
generalized eigenvalue is quadratic. Usually, this correction equation is solved only ap-
proximately, for instance, with a (preconditioned) iterative solver. The obtained vector t
is used for the expansion v of Vj and ν0Av + µ0Bv is used for the expansion of Wj . For
both spaces we work with orthonormal bases. Therefore, the new columns are orthonor-
malized with respect to the current basis by a modified Gram-Schmidt orthogonalization
process.

11.9.1 Restart

Suppose that the generalized Schur form (11.43) is ordered with respect to τ such that

|TA1,1/TB1,1 − τ | ≤ |TA2,2/TB2,2 − τ | ≤ · · · ≤ |TAj,j/TBj,j − τ |,

where j is the dimension of span(Vj). Then, for i < j, the space span(Vjs
R
1 , . . . , Vjs

R
i)

spanned by the first i columns of VjS
R contains the i most promising Petrov vectors.

The corresponding test subspace is given by span(Wjs
L, . . . ,W sLi). Therefore, in order to

reduce the dimension of the subspaces (“implicit restart”) to jmin, jmin < j, the columns
vjmin+1 through vj and wjmin+1 through wj can simply be discarded and the Jacobi-
Davidson algorithm can be continued with

V = [V sR1 , . . . , V sRjmin
] and W = [W sL1 , . . . ,W sLjmin

].

11.9.2 Deflation

Like in the Jacobi-Davidson algorithm for the standard eigenvalue problem, in the Jacobi-
Davidson process for the generalized eigenvalue problem found (converged) Ritz (here
Petrov) vectors can be deflated.

The partial generalized Schur form can be obtained in a number of successive steps.
Suppose that we have already available the partial generalized Schur form AQk−1 =
Zk−1R

A
k−1 and BQk−1 = Zk−1R

B
k−1. We want to expand this partial generalized Schur

form with the new right Schur vector u and the left Schur vector p to

A[Qk−1u] = [Zk−1p]

[
RAk−1 a

0 α

]

and

A[Qk−1u] = [Zk−1p]

[
RBk−1 b

0 β

]

The new generalized Schur pair ((α, β),u) satisfies

Q∗
k−1u = 0 and (βA− αB)u− Zk−1(βa− αb) = 0,

or, since βa− αb = Z∗
k−1(βA− αB)u,

Q∗
k−1u = 0 and

(
I − Zk−1Z

∗
k−1

)
(βA− αB)

(
I −Qk−1Q

∗
k−1

)
u = 0.

Hence, the vectors a and b can be computed from

a = Z∗
k−1Au and b = Z∗

k−1Bu.

208 CHAPTER 11. THE JACOBI-DAVIDSON METHOD

Furthermore, the generalized Schur pair ((α, β),u) is an eigenpair of the deflated matrix
pair

((
I − Zk−1Z

∗
k−1

)
A
(
I −Qk−1Q

∗
k−1

)
,
(
I − Zk−1Z

∗
k−1

)
B
(
I −Qk−1Q

∗
k−1

))
.

This eigenproblem can be solved again with the Jacobi-Davidson QZ process. In that
process we construct vectors vi that are orthogonal to Qk−1 and vectors wi that are
orthogonal to Zk−1. This simplifies the computation of the interaction matrices MA and
MB, associated with the deflated operators

{
MA ≡W ∗ (I − Zk−1Zk−1∗)A (I −Qk−1Qk−1∗)V = W ∗AV,
MA ≡W ∗ (I − Zk−1Zk−1∗)B (I −Qk−1Qk−1∗)V = W ∗BV,

and MA and MB can be simply computed as W ∗AV and W ∗BV , respectively.

11.9.3 Algorithm

The Jacobi-Davidson algorithm to compute a partial QZ decomposition for a general
matrix pencil (A,B) is given in Algorithm 11.3 This algorithm attempts to compute the
generalized Schur pairs ((α, β), q), for which the ratio β/α is closest to a specified target
value τ in the complex plane. The algorithm includes restart in order to limit the dimension
of the search space, and deflation with already converged left and right Schur vectors.

To apply this algorithm we need to specify a starting vector v0, a tolerance ǫ, a target
value τ , and a number kmax that specifies how many eigenpairs near τ should be computed.
The value of jmax specifies the maximum dimension of the search subspace. If it is exceeded
then a restart takes place with a subspace of dimension jmin.

On completion the kmax generalized eigenvalues close to τ are delivered, and the cor-
responding reduced Schur form AQ = ZRA, BQ = ZRB, where Q and Z are n by kmax

orthogonal and RA, RB are kmax by kmax upper triangular. The generalized eigenvalues
are the on-diagonals of RA and RB. The computed form satisfies ‖Aqj−ZRAej‖2 = O(ǫ),
‖Bqj − ZRBej‖2 = O(ǫ), where qj is the jth column of Q.

11.10 Jacobi-Davidson for nonlinear eigenvalue problems

Nonlinear eigenvalue problems have the form

(11.45) T (λ)x = 0

where the n×n matrix T (λ) has elements that depend on the scalar parameter λ. For the
linear eigenvalue problem T (λ) = A−λB. λ is an eigenvalue of (11.45) if T (λ) is singular;
a nontrivial solution x of the singular linear system is a corresponding eigenvector.

For small problems, Newton iteration is applicable. Ruhe [9] suggests to proceed as
follows. Complement (11.45) by a normalization condition

(11.46) v∗x = 1.

Then, we solve

(11.47) P

(
x
λ

)
=

(
T (λ)x
v∗x− 1

)
=

(
0
0

)
.

11.10. JACOBI-DAVIDSON FOR NONLINEAR EIGENVALUE PROBLEMS 209

Algorithm 11.3 Jacobi–Davidson QZ method for kmax interior eigenvalues close
to τ for the generalized non-Hermitian eigenvalue problem

1: Let A,B ∈ F
n×n be non-Hermitian. This algorithm computes kmax interior eigenvalues

of αAx = βBx close to the target τ .
2: t = v0; k = 0; ν0 = 1/

√
1 + |τ |2; µ0 = −τν0; m = 0;

3: Q = []; Z = []; S = []; T = [];
4: while k < kmax do
5: Orthogonalize t := t− VmV ∗

mt
6: m = m+ 1; vm = t/‖t‖; vAm := Avm; vBm := Bvm; w := ν0v

A
m + µ0v

B
m;

7: Orthogonalize w := w − ZkZ∗
kw

8: Orthogonalize w := w −Wm−1W
∗
m−1w

9: wm = w/‖w‖;
10:

MA :=

[
MA W ∗

m−1v
A
m

w∗
mV

A
m−1 w∗

mvAm

]
; MB :=

[
MB W ∗

m−1v
B
m

w∗
mV

B
m−1 w∗

mvBm

]
;

11: Compute the QZ decomposition MASR = SLTA, MBSR = SLTB, such that
|TAi,i/TBi,i − τ | ≤ |TAi+1,i+1/T

B
i+1,i+1 − τ | /* Rayleigh Ritz step */

12: u := V sR1 ; p := Wjs
L
1 ; uA := V AsR1 ; uB := V BsR1 ; ζ = TA1,1; η = TB1,1;

13: r = ηuA − ζuB; ã = Z∗uA; b̃ = Z∗uB; r̃ = r− Z(ηã− ζb̃);
14: while ‖r̃‖ < ε do
15:

RA :=

[
RA ã
0T ζ

]
; RB :=

[
RB b̃
0T η

]
;

16: Q := [Q,u]; Z := [Z,p]; k := k + 1;
17: if k = kmax then
18: return (Q,Z,RA, RB)
19: end if
20: m := m− 1;
21: for i = 1, . . . ,m do
22: vi := V sRi+1; vAi := V AsRi+1; vBi := V BsRi+1;
23: wi := W sLi+1; sRi := sLi := ei;
24: end for
25: MA, MB is the lower m×m block of TA, TB, resp.
26: u := u1; p := w1; uA := vA1 ; uB := vb1; ζ = TA1,1; η = TB1,1;

27: r = ηuA − ζuB; ã = Z∗uA; b̃ = Z∗uB; r̃ = r− Z(ηã− ζb̃);
28: end while
29: if m ≥ mmax then
30: for i = 2, . . . ,mmin do
31: vi := V sRi ; vAi := V AsRi ; vBi := V BsRi ; wi := W sLi ;
32: end for
33: MA, MB is the leading mmin ×mmin block of TA, TB, resp.
34: v1 := u; vA1 := uA; vB1 := uB; w1 := p; m := mmin

35: end if
36: Q̃ := [Q,u]; Z̃ := [Z,p];
37: (Approximatively) solve the correction equation for t ⊥ Q̃,
38: (I − Z̃Z̃∗)(ηA− ζB)(I − Q̃Q̃∗)
39: end while

210 CHAPTER 11. THE JACOBI-DAVIDSON METHOD

For the derivative of P we obtain

P ′ =

[
T (λ) T ′(λ)x
v∗ 0

]

such that the Newton iteration becomes

(11.48)

(
xs+1

λs+1

)
=

(
xs
λs

)
−
[
T (λs) T ′(λs)xs
v∗
s 0

]−1(
T (λs)xs
v∗
sxs − 1

)

or

(11.49)

T (λs)us+1 = T ′(λs)xs,

λs+1 = λs − (v∗
sxs)/(v

∗
sxs+1),

xs+1 = C · us+1.

Here, C is some normalization constant. The vector vs may depend on the iteration step.
It can be chosen in a number of ways. It could be constant, e.g., vs = ei. This amounts
to keeping one of the constants of xs constant. Another choce is

vs = T (λs)
∗ys

where ys is an approximation to the left eigenvector y.
A Jacobi-Davidson algorithm for large nonlinear eigenvalue problems is given in Algo-

rithm 11.4. This algorithm is by Voss [14].

Algorithm 11.4 Nonlinear Jacobi–Davidson algorithm

1: Start with an initial basis V , V ∗V = I; m = 1.
2: Determine a preconditioner K ≈ T (σ), σ close to the first wanted eigenvalue.
3: while m ≤ number of wanted eigenvalues do
4: Compute an approximation to the m-th wanted eigenvalue λm and corresponding

eigenvector sm of the projected problem V ∗T (λ)V s = 0.
5: Determine the Ritz vector u = V sm and the residual r = T (λm)u
6: if ‖r‖/‖u‖ < ε then
7: Accept approximate eigenpair (λm,u); m := m+ 1;
8: Reduce the search space V if necessary
9: Choose an approximation (λm,u) to the next eigenpair.

10: Compute the residual r = T (λm)u
11: end if
12: p = T ′(σ)x;
13: (Approximatively) solve the correction equation for t,

(11.50) (I − pu∗

u∗p
)T (σ)(I − uu∗

u∗u
)t = −r, t ⊥ u.

14: Orthogonalize t := t− V V ∗t, v := t/‖t‖, and expand the subspace [V,v].
15: Determine a new preconditioner K ≈ T (λm) if necessary.
16: Update the projected problem.
17: end while

In correction equation (11.50) in Algorithm 11.4 is typically solved to low accuracy by
a preconditioned GMRES iteration where the preconditioner has the form

(11.51) (I − pu∗

u∗p
)K(I − uu∗

u∗u
), K ≈ T (σ).

BIBLIOGRAPHY 211

Bibliography

[1] R. Barret, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadel-
phia, PA, 1994. (Available from Netlib at URL http://www.netlib.org/templates/

index.html).

[2] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and cor-
responding eigenvectors of large real-symmetric matrices, J. Comp. Phys., 17 (1975),
pp. 87–94.

[3] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Jacobi–Davidson
style QR and QZ algorithms for the partial reduction of matrix pencils, SIAM J. Sci.
Comput., 20 (1998), pp. 94–125.

[4] R. Geus, The Jacobi–Davidson algorithm for solving large sparse symmetric eigen-
value problems, PhD Thesis No. 14734, ETH Zürich, 2002. (Available at URL
http://e-collection.ethbib.ethz.ch/show?type=diss&nr=14734).

[5] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins
University Press, Baltimore, MD, 2nd ed., 1989.

[6] C. G. J. Jacobi, Über ein leichtes Verfahren die in der Theorie der Säcularstörungen
vorkommenden Gleichungen numerisch aufzulösen, J. reine angew. Math., 30 (1846),
pp. 51–95.

[7] R. B. Morgan, Davidson’s method and preconditioning for generalized eigenvalue
problems, J. Comp. Phys., 89 (1990), pp. 241–245.

[8] R. B. Morgan and D. S. Scott, Generalizations of Davidson’s method for comput-
ing eigenvalues of sparse symmetric matrices, SIAM J. Sci. Stat. Comput., 7 (1986),
pp. 817–825.

[9] A. Ruhe, Algorithms for the nonlinear eigenvalue problem, SIAM J. Numer. Anal.,
10 (1973), pp. 674–689.

[10] G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and H. A. van der

Vorst, Jacobi–Davidson type methods for generalized eigenproblems and polynomial
eigenproblems, BIT, 36 (1996), pp. 595–633.

[11] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi–Davidson iteration method
for linear eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425.

[12] G. L. G. Sleijpen and H. A. van der Vorst, Jacobi–Davidson method, in Tem-
plates for the solution of Algebraic Eigenvalue Problems: A Practical Guide, Z. Bai,
J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., SIAM, Philadelphia,
PA, 2000, pp. 238–246.

[13] G. W. Stewart, Matrix Algorithms II: Eigensystems, SIAM, Philadelphia, PA, 2001.

[14] H. Voss, A Jacobi–Davidson method for nonlinear eigenproblems, in Computational
Science – ICCS 2004, G. D. van Albada, M. Bubak, P. M. A. Sloot, and J. J. Dongarra,
eds., Berlin, 2004, Springer, pp. 34–41. (Lecture Notes in Computer Science, 3037).

212 CHAPTER 11. THE JACOBI-DAVIDSON METHOD

