
Chapter 8

Krylov subspaces

8.1 Introduction

In the power method or in the inverse vector iteration we computed, up to normalization,
sequences of the form

x, Ax, A2x, . . .

The information available at the k-th step of the iteration is the single vector x(k) =
Akx/‖Akx‖. One can pose the question if discarding all the previous information

{
x(0), . . . ,x(k−1)

}
is not a too big waste of information. This question is not trivial to answer. On one hand
there is a big increase of memory requirement, on the other hand exploiting all the infor-
mation computed up to a certain iteration step can give much better approximations to
the searched solution. As an example, let us consider the symmetric matrix

T =
(

51
π

)2




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2



∈ R50×50.

the lowest eigenvalue of which is around 1. Let us choose x = [1, . . . , 1]∗ and compute the
first three iterates of inverse vector iteration, x, T−1x, and T−2x. We denote their Rayleigh

k ρ(k) ϑ
(k)
1 ϑ

(k)
2 ϑ

(k)
3

1 10.541456 10.541456
2 1.012822 1.009851 62.238885
3 0.999822 0.999693 9.910156 147.211990

Table 8.1: Ritz values ϑ(k)
j vs. Rayleigh quotients ρ(k) of inverse vector iterates.

quotients by ρ(1), ρ(2), and ρ(3), respectively. The Ritz values ϑ(k)
j , 1 ≤ j ≤ k, obtained

with the Rayleigh-Ritz procedure with Kk(x) = span(x, T−1x, . . . , T 1−kx), k = 1, 2, 3,
are given in Table 8.1. The three smallest eigenvalues of T are 0.999684, 3.994943, and
8.974416. The approximation errors are thus ρ(3)−λ1 ≈ 0.000′14 and ϑ(3)

1 −λ1 ≈ 0.000′009,
which is 15 times smaller.

These results immediately show that the cost of three matrix vector multiplications
can be much better exploited than with (inverse) vector iteration. We will consider in this
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section a kind of space that is very often used in the iterative solution of linear systems
as well as of eigenvalue problems.

8.2 Definition and basic properties

Definition 8.1 The matrix

(8.1) Km(x) = Km(x, A) := [x, Ax, . . . ,A(m−1)x] ∈ Fn×m

generated by the vector x ∈ Fn is called a Krylov matrix. Its columns span the Krylov
(sub)space

(8.2) Km(x) = Km(x, A) := span
{
x, Ax,A2x, . . . , A(m−1)x

}
= R (Km(x)) ⊂ Fn.

The Arnoldi and Lanczos algorithms are methods to compute an orthonormal basis
of the Krylov space. Let

[
x, Ax, . . . , Ak−1x

]
= Q(k)R(k)

be the QR factorization of the Krylov matrix Km(x). The Ritz values and Ritz vectors
of A in this space are obtained by means of the k × k eigenvalue problem

(8.3) Q(k)∗AQ(k)y = ϑ(k)y.

If (ϑ(k)
j ,yj) is an eigenpair of (8.3) then (ϑ(k)

j ,Q(k)yj) is a Ritz pair of A in Km(x).
The following properties of Krylov spaces are easy to verify [1, p.238]

1. Scaling. Km(x, A) = Km(αx, βA), α, β 6= 0.

2. Translation. Km(x, A− σI) = Km(x, A).

3. Change of basis. If U is unitary then UKm(U∗x, U∗AU) = Km(x, A).

In fact,

Km(x, A) = [x, Ax, . . . , A(m−1)x]

= U [U∗x, (U∗AU)U∗x, . . . , (U∗AU)m−1U∗x],
= UKm(U∗x, U∗AU).

Notice that the scaling and translation invariance hold only for the Krylov subspace, not
for the Krylov matrices.

What is the dimension of Km(x)? It is evident that for n× n matrices A the columns
of the Krylov matrix Kn+1(x) are linearly dependent. (A subspace of Fn cannot have a
dimension bigger than n.) On the other hand if u is an eigenvector corresponding to the
eigenvalue λ then Au = λu and, by consequence, K2(u) = span{u, Au} = span{u} =
K1(u). So, there is a smallest m, 1 ≤ m ≤ n, depending on x such that

K1(x)⊂6=K2(x)⊂6= · · ·⊂6= Km(x) = Km+1(x) = · · ·

For this number m,

(8.4) Km+1(x) = [x, Ax, . . . , Amx] ∈ Fn×m+1
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has linearly dependant columns, i.e., there is a nonzero vector a ∈ Fm+1 such that

(8.5) Km+1(x)a = p(A)x = 0, p(λ) = a0 + a1λ+ · · ·+ amλ
m.

The polynomial p(λ) is called the minimal polynomial of A relativ to x. By construction,
the highest order coefficient am 6= 0.

If A is diagonalizable, then the degree of the minimal polynomial relativ to x has a
simple geometric meaning (which does not mean that it is easily checked). Let

x =
m∑

i=1

ui = [u1, . . . ,um]




1
...
1


 ,

where the ui are eigenvectors of A, Aui = λiui, and λi 6= λj for i 6= j. Notice that we
have arranged the eigenvectors such that the coefficients in the above sum are all unity.
Now we have

Akx =
m∑

i=1

λki ui = [u1, . . . ,um]



λk1
...
λkm


 ,

and, by consequence,

Kjx = [u1, . . . ,um]︸ ︷︷ ︸
∈Cn×m




1 λ1 λ2
1 · · · λj−1

1

1 λ2 λ2
2 · · · λj−1

2
...

...
...

. . .
...

1 λm λ2
m · · · λj−1

m




︸ ︷︷ ︸
∈Cm×j

.

Since matrices of the form



1 λ1 · · · λs−1
1

1 λ2 · · · λs−1
2

...
...

. . .
...

1 λs · · · λs−1
m


 ∈ F

s×s, λi 6= λj for i 6= j,

so-called Vandermonde matrices, are nonsingular if the λi are different (their determinant
equals

∏
i6=j(λi − λj)) the Krylov matrices Kj(x) are nonsingular for j ≤ m. Thus for

diagonalizable matrices A we have

dim Kj(x, A) = min{j,m}

where m is the number of eigenvectors needed to represent x. The subspace Km(x) is the
smallest invariant space that contains x.

8.3 Polynomial representation of Krylov subspaces

In this section we assume A to be Hermitian. Let s ∈ Kj(x). Then

(8.6) s =
j−1∑

i=0

ciA
ix = π(A)x, π(x) =

j−1∑

i=0

cixi.
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Let Pj be the space of polynomials of degree ≤ j. Then (8.6) becomes

(8.7) Kj(x) = {π(A)x | π ∈ Pj−1} .
Let m be the smallest index for which Km(x) = Km+1(x). Then, for j ≤ m the mapping

Pj−1 3
∑

ciξ
i →

∑
ciA

ix ∈ Kj(x)

is bijective, while it is only surjective for j > m.
Let Q ∈ Fn×j be a matrix with orthonormal columns that span Kj(x), and let A′ =

Q∗AQ. The spectral decomposition

A′X ′ = X ′Θ, X ′∗X ′ = I, Θ = diag(ϑi, . . . , ϑj),

of A′ provides the Ritz values of A in Kj(x). The columns yi of Y = QX ′ are the Ritz
vectors.

By construction the Ritz vectors are mutually orthogonal. Furthermore,

(8.8) Ayi − ϑiyi ⊥ Kj(x)

because
Q∗(AQx′i −Qx′iϑi) = Q∗AQx′i − x′iϑi = A′x′i − x′iϑi = 0.

It is easy to represent a vector in Kj(x) that is orthogonal to yi.

Lemma 8.2 Let (ϑi,yi), 1 ≤ i ≤ j be Ritz values and Ritz vectors of A in Kj(x), j ≤ m.
Let ω ∈ Pj−1. Then

(8.9) ω(A)x ⊥ yk ⇐⇒ ω(ϑk) = 0.

Proof. “=⇒” Let first ω ∈ Pj with ω(x) = (x− ϑk)π(x), π ∈ Pj−1. Then

(8.10)
y∗kω(A)x = y∗k(A− ϑkI)π(A)x, here we use that A = A∗

= (Ayk − ϑkyk)
∗π(A)x

(8.8)
= 0,

whence (8.9) is sufficient.
“⇐=” Let now

Kj(x) ⊃ Sk := {τ(A)x | τ ∈ Pj−1, τ(ϑk) = 0} , τ(ϑk) = (x− ϑk)ψ(x), ψ ∈ Pj−2

= (A− ϑkI) {ψ(A)x|ψ ∈ Pj−2}
= (A− ϑkI)Kj−1(x).

Sk has dimension j − 1 and yk, according to (8.10) is orthogonal to Sk. As the dimension
of a subspace of Kj(x) that is orthogonal to yk is j − 1, it must coincide with Sk. These
elements have the form that is claimed by the Lemma.

Next we define the polynomials

µ(ξ) :=
j∏

i=1

(ξ − ϑi) ∈ Pj , πk(ξ) :=
µ(ξ)

(ξ − ϑk)
=

j∏

i=1
i6=k

(ξ − ϑi) ∈ Pj−1.

Then the Ritz vector yk can be represented in the form

(8.11) yk =
πk(A)x
‖πk(A)x‖ ,
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as πk(ξ) = 0 for all ϑi, i 6= k. According to Lemma 8.2 πk(A)x is perpendicular to all yi
with i 6= k. Further,

(8.12) βj := ‖µ(A)x‖ = min {‖ω(A)x‖ | ω ∈ Pj monic} .

(A polynomial in Pj is monic if its highest coefficients aj = 1.) By the first part of
Lemma 8.2 µ(A)x ∈ Kj+1(x) is orthogonal to Kj(x). As each monic ω ∈ Pj can be
written in the form

ω(ξ) = µ(ξ) + ψ(ξ), ψ ∈ Pj−1,

we have
‖ω(A)x‖2 = ‖µ(A)x‖2 + ‖ψ(A)x‖2,

as ψ(A)x ∈ Kj(x). Because of property (8.12) µ is called the minimal polynomial of x
of degree j. (In (8.5) we constructed the minimal polynomial of degree m in which case
βm = 0.)

Let u1, · · · ,um be the eigenvectors of A corresponding to λ1 < · · · < λm that span
Km(x). We collect the first i of them in the matrix Ui := [u1, . . . ,ui]. Let ‖x‖ = 1. Let
ϕ := ∠(x,ui) and ψ := ∠(x, UiU∗i x) (≤ ϕ). (Remember that UiU∗i x is the orthogonal
projection of x on R(Ui).)

Let
g :=

UiU
∗
i x

‖UiU∗i x‖
and h :=

(I − UiU
∗
i )x

‖(I − UiU∗i )x‖
.

Then we have
‖UiU∗i x‖ = cosψ, ‖(I− UiU

∗
i )x‖ = sinψ.

The following Lemma will be used for the estimation of the difference ϑ(j)
i − λi of the

desired eigenvalue and its approximation from the Krylov subspace.

Lemma 8.3 ([1, p.241]) For each π ∈ Pj−1 and each i ≤ j ≤ m the Rayleigh quotient

ρ(π(A)x;A− λiI) =
(π(A)x)∗(A− λiI)(π(A)x)

‖π(A)x‖2 = ρ(π(A)x;A)− λi

satisfies the inequality

(8.13) ρ(π(A)x;A− λiI) ≤ (λm − λi)
[

sinψ
cosϕ

‖π(A)h‖
π(λi)

]2

.

Proof. With the definitions of g and h from above we have

x = UiU
∗
i x + (I − UiU

∗
i )x = cosψ g + sinψ h.

which is an orthogonal decomposition. As R(Ui) is invariant under A,

s := π(A)x = cosψ π(A)g + sinψ π(A)h

is an orthogonal decomposition of s. Thus,

(8.14) ρ(π(A)x;A− λiI) =
cos2 ψ g∗(A− λiI)g + sin2 ψ h∗(A− λiI)h

‖π(A)x‖2 .

Since λ1 < λ2 < · · · < λm, we have
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(i) v∗(A− λiI)v ≤ 0 for all v ∈ R(Ui),

(ii) w∗(A− λiI)w ≤ (λm − λi)‖w‖2 for all w ∈ R(Ui)
⊥.

Setting v = π(A)g and w = π(A)h we obtain from (8.14)

ρ(s;A− λiI) ≤ sin2 ψ (λm − λi)
‖π(A)h‖2

‖π(A)x‖2 .

With

‖s‖2 = ‖π(A)x‖2 =
m∑

l=1

π2(λl)(x∗ul)
2 ≥ π2(λi) cos2 ϕ

we obtain the claim.

8.4 Error bounds of Saad

The error bounds to be presented have been published by Saad [2]. We follow the presen-
tation in Parlett [1]. The error bounds for ϑ(j)

i −λi are obtained by carefully selecting the
polynomial π in Lemma 8.3. Of course we would like π(A) to be as small as possible and
π(λi) to be as large as possible. First, by the definition of h, we have

‖π(A)h‖2 =
‖π(A)(I − UiU

∗
i )x‖2

‖(I − UiU∗i )x‖2 =
‖π(A)

∑m
l=i+1(u

∗
l x)ul‖2

‖∑m
l=i+1(u

∗
l x)ul‖2

=
∑m

l=i+1(u
∗
l x)2π2(λl)∑m

l=i+1 (u∗l x)2
≤ max

i<l≤m
π2(λl) ≤ max

λi+1≤λ≤λm

π2(λ).

The last inequality is important! In this step the search of a maximum in a few selected
points (λi+1, . . . , λm) is replaced by a search of a maximum in a whole interval containing
these points. Notice that λi is outside of this interval. Among all polynomials of a given
degree that take a given fixed value π(λi) the Chebyshev polynomial have the smallest
maximum. As ϑ(j)

i is a Ritz value, we know from the monotonicity principle 2.17 that

0 ≤ ϑ
(j)
i − λi.

Further, from the definition of ϑ(j)
i (as an eigenvalue of A in the subspace Kj(x)),

ϑ
(j)
i − λi ≤ ρ(s, A− λiI) provided that s ⊥ yl, 1 ≤ l ≤ i− 1.

According to Lemma 8.2 s = π(A)x is orthogonal on y1, . . . ,yi−1, if π has the form

π(ξ) = (ξ − ϑ
(j)
1 ) · · · (ξ − ϑ

(j)
i−1)ω(ξ), ω ∈ Pj−i.

With this choice of π we get

‖π(A)h‖
π(λi)

≤ ‖(A− ϑ
(j)
1 I) · · · (A− ϑ

(j)
i−1I)‖ · ‖ω(A)h‖

|(λi − ϑ
(j)
1 )| · · · |(λi − ϑ

(j)
i−1)| · |ω(λi)|

≤
i−1∏

l=1

λm − ϑ
(j)
l

λi − ϑ
(j)
l

max
λi+1≤λ≤λm

ω(λ)
ω(λi)

.
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This expression should be as small as possible. Now we have

min
ω∈Pj−1

max
λi+1≤λ≤λm

|ω(λ)|
|ω(λi)| =

max
λi+1≤λ≤λm

Tj−i(λ; [λi+1, λm])

Tj−i(λi; [λi+1, λm])

=
1

Tj−i(λi; [λi+1, λm])

=
1

Tj−i(1 + 2γ)
, γ =

λi+1 − λi
λm − λi+1

.

Tj−i(1+2γ) is the value of the Chebyshev polynomial corresponding to the normal interval
[−1, 1]. The point 1 + 2γ is obtained if the affine transformation

[λi+1, λm] 3 λ −→ 2λ− λi+1 − λm
λi − λi+1

∈ [−1, 1]

is applied to λi.
Thus we have proved the first part of the following

Theorem 8.4 [2] Let ϑ(j)
1 , . . . , ϑ

(j)
j be the Ritz values of A in Kj(x) and let (λl,ul), l =

1, . . . ,m, be the eigenpairs of A (in Km(x)). Then for all i ≤ j we have

(8.15) 0 ≤ ϑ
(j)
i − λi ≤ (λm − λi)




sinψ
cosϕ

·

i−1∏
l=1

λm−ϑ(j)
l

λi−ϑ(j)
l

Tj−i(1 + 2γ)




2

, γ =
λi+1 − λi
λm − λi+1

,

and

(8.16) tan∠(ui, projektion of ui on Kj) ≤ sinψ
cosϕ

·

i−1∏
l=1

λm−λl
λi−λl

Tj−i(1 + 2γ)
.

Proof. For proving the second part of the Theorem we write

x = g cos∠(x, Ui−1U
∗
i−1x) + ui cos∠(x,ui)︸ ︷︷ ︸

ϕ

+h sin∠(x, UiU∗i x)︸ ︷︷ ︸
ψ

.

We choose π such that π(λ1) = · · · = π(λi−1) = 0. Then.

s = π(A)x = π(λi)ui cosϕ+ π(A)h sinψ

is an orthogonal decomposition of s. By consequence,

tan∠(s,ui) =
sinψ ‖π(A)h‖
cosϕ |π(λi)| .

The rest is similar as above.
Remark 8.1. Theorem 8.4 does not give bounds for the angle between ∠(ui,yi), an angle
that would be more interesting than the abstract angle between ui and its projection on
Kj(x). It is possible however to show that [1, p. 246]

sin∠(ui,yi) ≤
√√√√1 +

β2
j

γ
(j)
i

2 sin∠(ui, projection of ui onto Kj)
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βj is the number that appeared earlier in the discussion after Lemma 8.2, and

γ
(j)
i = min

s6=i
|λi − ϑ(j)

s |

Theorem 8.4 can easily be rewritten to give error bounds for λm − ϑ
(j)
j , λm−1 − ϑ

(j)
j−1,

etc.
We see from this Theorem that the eigenvalues at the beginning and at the end of

the spectrum are approximated the quickest. For the first eigenvalue the bound (8.15)
simplifies a little,

(8.17) 0 ≤ ϑ
(j)
1 − λ1 ≤ (λm − λ1)

tan2 ϕ1

Tj−i(1 + 2γ1)
2 , γ1 =

λ2 − λ1

λm − λ2
, ϕ1 = ∠(x,u1).

Analogously, for the largest eigenvalue we have

(8.18) 0 ≤ λm − ϑ
(j)
j ≤ (λm − λ1) tan2 ϕm

1
Tj−i(1 + 2γm)2

,

with
γm =

λm − λm−1

λm−1 − λ1
, and cosϕm = x∗um.

If the Lanczos algorithmus is applied with (A − σI)−1 as with the shifted and inverted
vector iteration then we form Krylov spaces Kj(x, (A− σI)−1). Here the largest eigen-
values are 1

λ̂1
≥ 1

λ̂2
≥ · · · ≥ 1

λ̂j
, λ̂i = λi − σ.

Eq. (8.18) then becomes

0 ≤ 1

λ̂1

− 1

ϑ̂
(j)
j

≤ (
1

λ̂1

− 1

λ̂j
)

tan2 ϕ1

Tj−1(1 + 2γ̂1)
2 , γ̂1 =

1
λ̂1
− 1

λ̂2

1
λ̂2
− 1

λ̂j

.

Now, we have

1 + 2γ̂1 = 2(1 + γ̂1)− 1 = 2




1
λ̂1
− 1

λ̂j

1
λ̂2
− 1

λ̂j


− 1 = 2

λ̂2

λ̂1




1− λ̂1

λ̂j

1− λ̂2

λ̂j




︸ ︷︷ ︸
>1

−1 ≥ 2
λ̂2

λ̂1

− 1 > 1.

Since |Tj−1(ξ)| grows rapidly and monotonically outside [−1, 1] we have

Tj−1(1 + 2γ̂1) ≥ Tj−1(2
λ̂2

λ̂1

− 1),

and thus

(8.19)
1

λ̂1

− 1

ϑ̂
(j)
1

≤ c1


 1

Tj−1(2 λ̂2

λ̂1
− 1)




2

With the simple inverse vector iteration we had

(8.20)
1

λ̂1

− 1

λ̂
(j)
1

≤ c2

(
λ̂1

λ̂2

)2(j−1)
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In Table 8.2 the numbers 
 1

Tj−1(2 λ̂2

λ̂1
− 1)




2

are compared with (
λ̂1

λ̂2

)2(j−1)

for λ̂2/λ̂1 = 2, 1.1, 1.01. If this ratio is large both methods quickly provide the desired
results. If however the ratio tends to 1 then a method that computes the eigenvalues by
means of Ritz values of Krylov spaces shows an acceptable convergence behaviour whereas
vector iteration hardly improves with j. Remebre that j is the number of matrix-vector
multiplications have been executed, or, with the shift-and-invert spectral transformation,
how many systems of equations have been solved.

λ̂2/λ̂1 j = 5 j = 10 j = 15 j = 20 j = 25

2.0 3.0036e− 06
3.9063e− 03

6.6395e− 14
3.8147e− 06

1.4676e− 21
3.7253e− 09

3.2442e− 29
3.6380e− 12

7.1712e− 37
3.5527e− 15

1.1 2.7152e− 02
4.6651e− 01

5.4557e− 05
1.7986e− 01

1.0814e− 07
6.9343e− 02

2.1434e− 10
2.6735e− 02

4.2482e− 13
1.0307e− 02

1.01 5.6004e− 01
9.2348e− 01

1.0415e− 01
8.3602e− 01

1.4819e− 02
7.5684e− 01

2.0252e− 03
6.8515e− 01

2.7523e− 04
6.2026e− 01

Table 8.2: Ratio (1/Tj−1(2λ̂2/λ̂1 − 1))2

(λ̂1/λ̂2)2(j−1)
for varying j and ratios λ̂2/λ̂1.
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