Chapter 8

Krylov subspaces

8.1 Introduction

In the power method or in the inverse vector iteration we computed, up to normalization,
sequences of the form

x, Ax, A%x, . ..
The information available at the k-th step of the iteration is the single vector x¥) =
AFx /|| A¥x||. One can pose the question if discarding all the previous information {X(O), e x(k_l)}

is not a too big waste of information. This question is not trivial to answer. On one hand
there is a big increase of memory requirement, on the other hand exploiting all the infor-
mation computed up to a certain iteration step can give much better approximations to
the searched solution. As an example, let us consider the symmetric matrix

2 -1
5|1 2 -1
T:<51> €R50X50.
T
-1 2 -1
- _1 2 -
the lowest eigenvalue of which is around 1. Let us choose x = [1,...,1]* and compute the

first three iterates of inverse vector iteration, x, 7~ !x, and 7~2x. We denote their Rayleigh

k k k
PO I A N
10.541456 | 10.541456

1.012822 | 1.009851  62.238885
0.999822 | 0.999693  9.910156  147.211990

w N R

Table 8.1: Ritz values 29§-k) vs. Rayleigh quotients p(¥) of inverse vector iterates.

quotients by p™M, p) and p®), respectively. The Ritz values 19§-k), 1 < j <k, obtained
with the Rayleigh-Ritz procedure with Kj(x) = span(x, T 'x,..., T 7*x), k = 1,2,3,
are given in Table 8.1. The three smallest eigenvalues of T are 0.999684, 3.994943, and
8.974416. The approximation errors are thus p®) —\; ~ 0.000'14 and 19%3) — A1 ~ 0.000009,
which is 15 times smaller.

These results immediately show that the cost of three matrix vector multiplications
can be much better exploited than with (inverse) vector iteration. We will consider in this
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136 CHAPTER 8. KRYLOV SUBSPACES

section a kind of space that is very often used in the iterative solution of linear systems
as well as of eigenvalue problems.

8.2 Definition and basic properties
Definition 8.1 The matrix
(8.1) K™(x) = K™(x, A) := [x, Ax, ..., A"~ Dx] ¢ Fxm

generated by the vector x € F” is called a Krylov matrix. Its columns span the Krylov
(sub)space

8.2 X) = X, = span ¢ X, Ax, A°x, ..., “Ux,=R(K™(x)) C F".

The Arnoldi and Lanczos algorithms are methods to compute an orthonormal basis
of the Krylov space. Let

{x, Ax, ..., Ak_lx] =QWR®

be the QR factorization of the Krylov matrix K" (x). The Ritz values and Ritz vectors
of A in this space are obtained by means of the k x k eigenvalue problem

(8.3) Q®* 4QMy — ykly,

If (19§k), y;) is an eigenpair of (8.3) then (ﬁ§k), Q®y,) is a Ritz pair of A in K™(x).
The following properties of Krylov spaces are easy to verify [1, p.238]

1. Scaling. K™ (x,A) = K™(ax,A), o, #0.
2. Translation. K™ (x, A — oI) = K™ (x, A).
3. Change of basis. If U is unitary then UX™(U*x,U*AU) = K™ (x, A).
In fact,
K™(x, A) = [x, Ax, ..., A" Vx]
= U[U*x, (U*AUU*x, ..., (U*AU)™ 1U*x],
=UK™U*x,U"AU).
Notice that the scaling and translation invariance hold only for the Krylov subspace, not
for the Krylov matrices.
What is the dimension of K™ (x)? It is evident that for n x n matrices A the columns
of the Krylov matrix K""!(x) are linearly dependent. (A subspace of F" cannot have a
dimension bigger than n.) On the other hand if u is an eigenvector corresponding to the

eigenvalue A then Au = Au and, by consequence, K?(u) = span{u, Au} = span{u} =
Kl(u). So, there is a smallest m, 1 < m < n, depending on x such that

K'x) 2K (x) G - 2 K™ (x) = K™ (x) = -+
For this number m,

(8.4) K1 (x) = [x, Ax, ..., A™x] € Frxm+l
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has linearly dependant columns, i.e., there is a nonzero vector a € F™*! such that
(8.5) Kpy1(x)a=p(A)x =0, p(A) =ap+ar A+ +apA™.

The polynomial p()) is called the minimal polynomial of A relativ to x. By construction,
the highest order coefficient a,, # 0.

If A is diagonalizable, then the degree of the minimal polynomial relativ to x has a
simple geometric meaning (which does not mean that it is easily checked). Let

1

m
x:Zui:[ul,...,um] I
i=1 1

where the u; are eigenvectors of A, Au; = A\ju;, and \; # \; for i # j. Notice that we
have arranged the eigenvectors such that the coefficients in the above sum are all unity.
Now we have

)\k
m 1
AkX:Z)\fui:[ul,...,um] )
i=1 e
and, by consequence,
i—1
. 1oXy A o A
KJX:[UI’...,um] . . .2 . 2‘
E(mej

Since matrices of the form

IO VEERRRD
IRD CHERRRID V-
. . . EIFSXS, /\Z'#Aj fori;éj,
D VD Vs

so-called Vandermonde matrices, are nonsingular if the \; are different (their determinant
equals J[;,;(Ai — Aj)) the Krylov matrices K”(x) are nonsingular for j < m. Thus for
diagonalizable matrices A we have

dim K7 (x, A) = min{j,m}

where m is the number of eigenvectors needed to represent x. The subspace K™ (x) is the
smallest invariant space that contains x.

8.3 Polynomial representation of Krylov subspaces

In this section we assume A to be Hermitian. Let s € K/(x). Then

j—1
(8.6) s = Z ciA'x = w(A)x, m(x) = Z cix’
=0 ‘
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Let P; be the space of polynomials of degree < j. Then (8.6) becomes

(87) /Cj(X) = {’R’(A)X ‘ T e Pj—l} .
Let m be the smallest index for which K™ (x) = K™*!(x). Then, for j < m the mapping
pil 5 chfl — ZCiAiX € K’ (x)

is bijective, while it is only surjective for j > m.
Let Q € F™J be a matrix with orthonormal columns that span K7(x), and let A" =
Q*AQ. The spectral decomposition

A/X/ZX/@7 XI*X/:L sziag(ﬂiﬂ”'vﬂj)v

of A’ provides the Ritz values of A in K7(x). The columns y; of Y = QX' are the Ritz
vectors.
By construction the Ritz vectors are mutually orthogonal. Furthermore,

(8.8) Ayi —diyi L K (x)
because

Q" (AQx, — Qx}v9;) = Q" AQx, — x}v; = A'x; — x9; = 0.
It is easy to represent a vector in K/ (x) that is orthogonal to y;.

Lemma 8.2 Let (¥;,y:), 1 <i < j be Ritz values and Ritz vectors of A in K’(x),j < m.
Let we Pj_1. Then

(8.9) wAx Ly, <= w()=0.
Proof. “=" Let first w € P; with w(z) = (x — ¥y)m(x), ™ € Pj_;. Then

Viw(A)x =y (A — 9 I)m(A)x, here we use that A = A*

(8.8)

(8.10)
= (Ayr — Opyr) ' m(A)x =0,

whence (8.9) is sufficient.
“«<=" Let now

ICj(X) DS = {T(A)X ’ T E ]P)j_l,T(ﬁk) = 0}, T(ﬂk) = (a; — Q9k)¢(x), ’(ﬁ € ]P’j_g
= (A= 9D {v(A)x[y € Pj_o}
= (A - 9K (x).

Sk has dimension j — 1 and yy, according to (8.10) is orthogonal to Sk. As the dimension

of a subspace of K7(x) that is orthogonal to yy is j — 1, it must coincide with Si. These

elements have the form that is claimed by the Lemma. [ |
Next we define the polynomials

J j
= [Ie -0 em mi = 55 =Tl ern
#

S
T

Then the Ritz vector yj can be represented in the form

 omp(A)x
(8.11) Vi = TrnAx]
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as m(§) = 0 for all ¥;,7 # k. According to Lemma 8.2 7;(A)x is perpendicular to all y;
with ¢ # k. Further,

(8.12) B = ||p(A)x| = min {||w(A)x|| | w € P; monic}.

(A polynomial in P; is monic if its highest coefficients a; = 1.) By the first part of
Lemma 8.2 pu(A)x € K7T1(x) is orthogonal to K7(x). As each monic w € P; can be
written in the form

w(§) = &) +v(&),  YePj,

we have

lo(A)x[|* = [|p(A)x[|* + e (A)x]]?,

as P(A)x € K7(x). Because of property (8.12) u is called the minimal polynomial of x
of degree j. (In (8.5) we constructed the minimal polynomial of degree m in which case

Let uy,--- ,u,, be the eigenvectors of A corresponding to A1 < --- < A, that span
K™(x). We collect the first ¢ of them in the matrix U; := [uy,...,w;]. Let ||x|| = 1. Let
¢ = Z(x,u;) and ¢ := Z(x,U;U}x) (< ¢). (Remember that U;U;x is the orthogonal
projection of x on R(Uj;).)

et UU (I - UU?)
iV X — UUy )X
g = and h:= —— .
IU:U7 ]| I(I = VU7 )|l
Then we have
[UU%|| = cosy, [T = UU7)x|| = sinp.

The following Lemma will be used for the estimation of the difference ﬁz(j ) A; of the
desired eigenvalue and its approximation from the Krylov subspace.

Lemma 8.3 ([1, p.241]) For each m € P;_1 and each i < j < m the Rayleigh quotient

(m(A)x)"(A = ) (r(A)x)
I (A)x]*

p(m(A)x; A—NI) = =p(r(A)x; A) — N\

satisfies the inequality

(8.13) p(r(A)x; A = M) < (o — A) {bm@/’ W%H] g

cosp ()
Proof. With the definitions of g and h from above we have
x =U;Ux+ (I —U;U)x = cosy g + sin h.
which is an orthogonal decomposition. As R(U;) is invariant under A,
s:=m(A)x = cosy m(A)g + siny 7(A)h
is an orthogonal decomposition of s. Thus,

cos? ) g*(A — \I)g + sin? ¢ h*(A — N, I)h

) T(A)x; A—NI) =
(8.14)  p(n(A) ) I (A)x||?

Since A1 < Ay < --+ < Ay, We have
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(i) v*(A—=NI)v <0 for all ve R(U;),

(i) w*(A = NDw < (A — Xi)||w|)? for all w € R(U;)™.

Setting v = m(A)g and w = m(A)h we obtain from (8.14)

. |7 (A)h|?
pls; A — AiI) < sin 1 (A — AL
I (A)x|?
With
sl = | (A)x|* = 7 (\) (x"w)* = 7(A;) cos®
=1
we obtain the claim. ]

8.4 Error bounds of Saad

The error bounds to be presented have been published by Saad [2]. We follow the presen-

tation in Parlett [1]. The error bounds for ﬁgj ) _ A; are obtained by carefully selecting the
polynomial 7 in Lemma 8.3. Of course we would like 7(A) to be as small as possible and
m(A;) to be as large as possible. First, by the definition of h, we have

AT = GUHX]P I (A) S ()
(1 = U;U7)x||? IS () w2

mo o (wrx)2m (A
SRR a0 e a2
Zl:i—i—l (uZ‘x) i<I<m X1 <A<Am

I (A)hlJ*

N

The last inequality is important! In this step the search of a maximum in a few selected
points (Aj+1, - .., Am) is replaced by a search of a maximum in a whole interval containing
these points. Notice that A; is outside of this interval. Among all polynomials of a given

degree that take a given fixed value m()\;) the Chebyshev polynomial have the smallest

maximum. As 7910 ) is a Ritz value, we know from the monotonicity principle 2.17 that

0< 99—\,

Further, from the definition of ﬁgj ) (as an eigenvalue of A in the subspace K’(x)),
191(]') —Xi <p(s,A—X\I) provided thats Ly;, 1 <[<i—1.
According to Lemma 8.2 s = m(A)x is orthogonal on yq,...,y;—1, if 7 has the form
(€)= (€ —9) - (€ —9P)w(e), wePs
With this choice of m we get

Im(A)Bl _ (A= 97'D- (A= 0P D) (bl _ A =9} w()

< - - < - max .
S TN TN T | S 9 A =Adn w(Ai)
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This expression should be as small as possible. Now we have

Ti—i(As [Aig1, Am
‘w(/\)’ )\H_?%E}é)\m J ( [ +1 ])

s daA A WD DO Pt Am))
1
Tj—i(Nis [Aig1, Am))
1 Aig1 — i

To0+2) T A=

Tj_;(1427) is the value of the Chebyshev polynomial corresponding to the normal interval

[—1, 1]. The point 1 + 27 is obtained if the affine transformation

2A = Aiy1 — Am
Ai — Ait1

[>\i+17>\m] SN — € [—1, 1}

is applied to A;.
Thus we have proved the first part of the following

Theorem 8.4 [2] Let ﬁgj), . ,19§-j) be the Ritz values of A in KJ(x) and let (\,v;), | =
1,...,m, be the eigenpairs of A (in K™(x)). Then for all i < j we have

. 3 /\1,719(]‘) )\ o )\
8.15 0<99 —x < (A, — A\, Smd)_ =1 ! _ Al = A
( ) — 7 1—( m Z) COSQO 11]_1(1_’_2’}/) ) PY )\m_>\i+17
and
il
) S LLoAi—N
(8.16) tan Z(u;, projektion of u; on K7) < sin g L=l

“cosep Tj_i(142v)
Proof. For proving the second part of the Theorem we write
x = gcos £(x,U;—1U;"_1x) + u; cos Z(x,u;) +hsin Z(x, U;U; %) .
—— ——
¥ P
We choose 7 such that (A1) =--- = 7(Ai—1) = 0. Then.

s =7m(A)x = m(\)u; cosp + m(A)hsingy
is an orthogonal decomposition of s. By consequence,

sin ¢ [|w(A)h]]

tan £ i) = .
() = o O]

The rest is similar as above. ]
Remark 8.1. Theorem 8.4 does not give bounds for the angle between Z(u;,y;), an angle
that would be more interesting than the abstract angle between u; and its projection on
K7(x). Tt is possible however to show that [1, p. 246]

J

)2 sin Z(u;, projection of u; onto K7)
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B; is the number that appeared earlier in the discussion after Lemma 8.2, and

() in ()
) = min |\; — Vg
Vi o | |

a

Theorem 8.4 can easily be rewritten to give error bounds for A\, — 295? ), Am—1 — 2953_) 1>
etc.

We see from this Theorem that the eigenvalues at the beginning and at the end of
the spectrum are approximated the quickest. For the first eigenvalue the bound (8.15)

simplifies a little,

, tan? A2 — A1
817) 0<9Y — A\ < (O —Ny) ——— FL - : — /(x, ).
(8.17) 0<d; 1< ( 1) T, (15 om ) NEN TN, P (x,u1)
Analogously, for the largest eigenvalue we have
(8.18) 0 < A = 9Y < (A — A1) tan? gy, %

Tj—i(l + Z’Ym)
with
_ Az Aot and  cos =x"u
Tm = A1 — M ) Pm = m-

If the Lanczos algorithmus is applied with (A — oI)~! as with the shifted and inverted
vector iteration then we form Krylov spaces K7(x, (A — oI)™'). Here the largest eigen-
values are &+ > L > ... > Ai, AN =\ —oO.

T A X

Eq. (8.18) then becomes

11
1 1 11 tan? ¢y N v W
OST_A(J’)S(Ai_T)—AW n=1—7
)\1 19]' )\1 )\j Tj_l(l + 271) 5\2 - g
Now, we have
e 5\ 1—@ 5\
L4241 =201 +41) —1=2 3% | —1=222 Sl I Y
N A At \1—22 A1
2 j 5,
—_———
>1

Since |Tj—-1(£)| grows rapidly and monotonically outside [—1, 1] we have

~

) A
Ty (14 24) > Ty (25 — 1),
A1
and thus
2
1 1 1
(8.19) N <c| ——
Ay Ty(222 - 1)
1

With the simple inverse vector iteration we had

<N 26-1)
1 1
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In Table 8.2 the numbers
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1
7}'71(2% -1)

.\ 2(5—1
& (3-1)
Ao

for 5\2/5\1 =2, 1.1, 1.01. If this ratio is large both methods quickly provide the desired
results. If however the ratio tends to 1 then a method that computes the eigenvalues by
means of Ritz values of Krylov spaces shows an acceptable convergence behaviour whereas
vector iteration hardly improves with j. Remebre that j is the number of matrix-vector
multiplications have been executed, or, with the shift-and-invert spectral transformation,
how many systems of equations have been solved.

are compared with

X/ N i=5 j=10 j=15 j=20 j =25
50 | 3.0036c —06 | 6.6395¢ — 14 | 1.4676e — 21 | 3.2442¢ — 29 | 7.1712e — 37
: 3.9063¢ — 03 | 3.8147¢ — 06 | 3.7253¢ — 00 | 3.6380e — 12 | 3.5527¢ — 15
11 2.7152¢ — 02 | 5.4557e — 05 | 1.0814e — 07 | 2.1434e — 10 | 4.2482¢ — 13
: 1.6651e — 01 | 1.7986e — 01 | 6.9343¢ — 02 | 2.6735¢ — 02 | 1.0307e — 02
101 | 5.600de —01 | 1.0415¢ — 01 | 1.4819e — 02 | 2.0252¢ — 03 | 2.7523¢ — 04
: 0.234%¢ — 01 | 8.3602e — 01 | 7.5684e — 01 | 6.8515e — 01 | 6.2026¢ — 01

(1/T;-1(2X2/A1 — 1))

— . for varying j and ratios Ao / A
(A1/Ag)20—1)

Table 8.2: Ratio
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