
Chapter 9

Arnoldi and Lanczos algorithms

9.1 An orthonormal basis for the Krylov space Kj(x)

The natural basis of the Krylov subspaceKj(x) = Kj(x, A) is evidently {x, Ax, . . . , Aj−1x}.
Remember that the vectors Akx converge to the direction of the eigenvector correspond-
ing to the largest eigenvalue (in modulus) of A. Thus, this basis tends to be badly
conditioned with increasing dimension j. Therefore, the straightforward procedure, the
Gram–Schmidt orthogonalization process, is applied to the basis vectors in their
natural order.

Suppose that {q1, . . . ,qi} is the orthonormal basis for Ki(x), where i ≤ j. We con-
struct the vector qj+1 by first orthogonalizing Ajx against q1, . . . ,qj ,

(9.1) yj := Ajx−
j∑

i=1

qiq∗iA
jx,

and then normalizing the resulting vector,

(9.2) qj+1 = yj/‖yj‖.
Then {q1, . . . ,qj+1} is an orthonormal basis of Kj+1(x), called in general the Arnoldi
basis or, if the matrix A is real symmetric or Hermitian, the Lanczos basis. The vectors
qi are called Arnoldi vectors or Lanczos vectors, respectively, see [6, 1].

The vector qj+1 can be computed in a more economical way since

Kj+1(x, A) = R (
[x, Ax, . . . , Ajx]

)
, (q1 = x/‖x‖) ,

= R (
[q1, Aq1, . . . , A

jq1]
)

(Aq1 = αq1 + βq2, β 6= 0),

= R (
[q1, αq1 + βq2, A(αq1 + βq2), . . . , Aj−1(αq1 + βq2)]

)
,

= R (
[q1,q2, Aq2, . . . , A

j−1q2]
)
,

...
= R ([q1,q2, . . . ,qj−1, Aqj]) .

So, instead of orthogonalizing Ajq1 against q1, . . . ,qj , we can orthogonalize Aqj

against q1, . . . ,qj to obtain qj+1. The component rj of Aqj orthogonal to q1, . . . ,qj

is given by

(9.3) rj = Aqj −
j∑

i=1

qi(qi
∗Aqj).

145

146 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS

If rj = 0 then the procedure stops which means that we have found an invariant subspace,
namely span{q1, . . . ,qj}. If ‖rj‖ > 0 we obtain qj+1 by normalizing,

(9.4) qj+1 =
rj

‖rj‖ .

Since, qj+1 and rj are aligned, we have

(9.5) q∗j+1rj = ‖rj‖ (9.3)
= q∗j+1Aqj .

The last equation holds since qj+1 (by construction) is orthogonal to all the previous
Arnoldi vectors. Let

hij = q∗iAqj .

Then, (9.3)–(9.5) can be written as

(9.6) Aqj =
j+1∑

i=1

qihij .

We collect the procedure in Algorithm 9.1

Algorithm 9.1 The Arnoldi algorithm for the computation of an orthonormal
basis of a Krylov space
1: Let A ∈ Fn×n. This algorithm computes an orthonormal basis for Kk(x).
2: q1 = x/‖x‖2;
3: for j = 1, . . . , k do
4: r := Aqj ;
5: for i = 1, . . . , j do /* Gram-Schmidt orthogonalization */
6: hij := q∗i r, r := r− qihij ;
7: end for
8: hj+1,j := ‖r‖;
9: if hj+1,j = 0 then /* Found an invariant subspace */

10: return (q1, . . . ,qj ,H ∈ Fj×j)
11: end if
12: qj+1 = r/hj+1,j ;
13: end for
14: return (q1, . . . ,qk+1, H ∈ Fk+1×k)

The Arnoldi algorithm returns if hj+1,j = 0, in which case j is the degree of the
minimal polynomial of A relative to x, cf. (8.5). This algorithm costs k matrix-vector
multiplications, n2/2 +O(n) inner products, and the same number of axpy’s.

Defining Qk = [q1, . . . ,qk], equation (9.6) can be collected for j = 1, . . . , k,

(9.7) AQk = QkHk + [0, . . . ,0︸ ︷︷ ︸
k−1 times

, qk+1hk+1,k]

Equation (9.7) is called Arnoldi relation. The construction of the Arnoldi vectors is
expensive. Most of all, each iteration step becomes more costly as the number of vectors
against which r has to be orthogonalized increases. Therefore, algorithms based on the
Arnoldi relation like GMRES or the Arnoldi algorithm itself are restarted. This in general
means that the algorithm is repeated with a initial vector that is extracted from previous
invocation of the algorithm.

9.2. ARNOLDI ALGORITHM WITH EXPLICIT RESTARTS 147

9.2 Arnoldi algorithm with explicit restarts

Algorithm 9.1 stops if hm+1,m = 0, i.e., if it has found an invariant subspace. The vectors
{q1, . . . ,qm} then form an invariant subspace of A,

AQm = QmHm, Qm = [q1, . . . ,qm].

The eigenvalues of Hm are eigenvalues of A as well and the Ritz vectors are eigenvectors
of A.

In general, we cannot afford to store the vectors q1, . . . ,qm because of limited memory
space. Furthermore, the algorithmic complexity increases linearly in the iteration number
j. The orthogonalization would cost 2nm2 floating point operations.

Often it is possible to extract good approximate eigenvectors from a Krylov space of
small dimension. We have seen, that in particular the extremal eigenvalues and corre-
sponding eigenvectors are very well approximated after a few iteration steps. So, if only a
small number of eigenpairs is desired, it is usually sufficient to get away with Krylov space
of much smaller dimension than m.

Exploiting the Arnoldi relation (9.7) we can get cheap estimates for the eigenvalue/eigen-
vector residuals. Let u(k)

i = Qks
(k)
i be a Ritz vector with Ritz value ϑ(k)

i . Then

Au(k)
i − ϑ

(k)
i u(k)

i = AQks
(k)
i − ϑ

(k)
i Qks

(k)
i = (AQk −QkHk)s

(k)
i = hk+1,kqk+1e∗ks

(k)
i .

Therefore,

(9.8) ‖(A− ϑ
(k)
i I)u(k)

i ‖2 = hk+1,k|e∗ks(k)
i |.

The residual norm is equal to the last component of s(k)
i multiplied by hk+1,k (which is

positive by construction). These residual norms are not always indicative of actual errors
in λ(k)

i , but they can be helpful in deriving stopping procedures.
We now consider an algorithm for computing some of the extremal eigenvalues of a

non-Hermitian matrix. The algorithm proceeds by computing one eigenvector or rather
Schur vector at the time. For each of them an individual Arnoldi procedure is employed.
Let us assume that we have already computed k−1 Schur vectors u1, . . .uk−1. To compute
uk we force the iterates in the Arnoldi process (the Arnoldi vectors) to be orthogonal to
Uk−1 where Uk−1 = [u1, . . .uk−1]. So, we work essentially with the matrix

(I − Uk−1U
∗
k−1)A

that has k − 1 eigenvalues zero which we of course neglect.
The procedure is given in Algorithm 9.2. The Schur vectors u1, . . .uk−1 are kept in the

search space, while the Krylov space is formed with the next approximate Schur vector.
The search space thus is

span{u1, . . .uk−1,uk, Auk, . . . A
m−kuk}.

In Algorithm 9.2 the basis vectors are denoted vj with vj = uj for j < k. The vectors
vk, . . . ,vm form an orthonormal basis of span{uk, Auk, . . . A

m−kuk}.
The matrix Hm for k = 2 has the structure

Hm =




× × × × × ×
× × × × ×

× × × ×
× × × ×

× × ×
× ×




148 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS

Algorithm 9.2 Explicitly restarted Arnoldi algorithm
1: Let A ∈ Fn×n. This algorithm computes the nev largest eigenvalues of A together with

the corresponding Schur vectors.
2: Set k = 1.
3: loop
4: for j = k, . . . ,m do /* Execute m− k steps of Arnoldi */
5: r := Aqj ;
6: for i = 1, . . . , j do
7: hij := q∗i r, r := r− qihij ;
8: end for
9: hj+1,j := ‖r‖;

10: qj+1 = r/hj+1,j ;
11: end for
12: Compute approximate eigenvector of A associated with λk and the corresponding

residual norm estimate ρk according to (9.8).
13: Orthogonalize this eigenvector (Ritz vector) against all previous vj to get the ap-

proximate Schur vector uk. Set vk := uk.
14: if ρk is small enough then /* accept eigenvalue */
15: for i = 1, . . . , k do
16: hik := v∗iAvk;
17: end for
18: Set k := k + 1.
19: if k ≥ nev then
20: return (v1, . . . ,vk, H ∈ Fk×k)
21: end if
22: end if
23: end loop

where the block in the lower right corresponds to the Arnoldi process for the Krylov space
Km−k(uk, (I − Uk−1U

∗
k−1)A).

This algorithm needs at most m basis vectors. As soon as the dimension of the search
space reaches m the Arnoldi iteration is restarted with the best approximation as the
initial vector. The Schur vectors that have already converged are locked or deflated.

9.3 The Lanczos basis

We have seen that the Lanczos basis is formally constructed in the same way as the Arnoldi
basis, however with a Hermitian matrix. It deserves a special name for the simplifications
that the symmetry entails.

By multiplying (9.7) with Q∗k from the left we get

(9.9) Q∗kAQk = Q∗kQkHk = Hk.

If A is Hermitian, then so is Hk. This means that Hk is tridiagonal. To emphasize this
matrix structure, we call this tridiagonal matrix Tk. Due to symmetry, equation (9.3)
simplifies considerably,

(9.10) rj = Aqj − qi (q∗jAqj)︸ ︷︷ ︸
αj∈R

−qj−1 (q∗j−1Aqj)︸ ︷︷ ︸
βj−1∈F

= Aqj − αjqj − βj−1qj−1.

9.3. THE LANCZOS BASIS 149

Similarly as earlier, we premultiply (9.10) by qj+1 to get

‖rj‖ = q∗j+1rj = q∗j+1(Aqj − αjqj − βj−1qj−1)

= q∗j+1Aqj = β̄j .

From this it follows that βj ∈ R. Therefore,

(9.11) βjqj+1 = rj , βj = ‖rj‖.

Collecting (9.10)–(9.11) yields

(9.12) Aqj = βj−1qj−1 + αjqj + βjqj+1.

Gathering these equations for j = 1, . . . , k we get

(9.13) AQk = Qk




α1 β1

β1 α2 β2

β2 α3
. . .

. βk−1

βk−1 αk




︸ ︷︷ ︸
Tk

+βk[0, . . . ,0,qk+1].

Tk ∈ Rk×k is real symmetric. Equation (9.13) is called Lanczos relation. Pictorially,
this is

= +Q Q

T

k k

k

kA O

The Lanczos algorithm is summarized in Algorithm 9.3. In this algorithm just the
three vectors q, r, and v are employed. In the j-th iteration step (line 8) q is assigned
qj and v stores qj−1. r stores first (line 9) Aqj − βj−1qj−1. Later (step 11), when αj

is available, it stores rj = Aqj − βj−1qj−1 − αjqj . In the computation of αj the fact is
exploited that q∗jqj−1 = 0 whence

αj = q∗jAqj = q∗j (Aqj − βj−1qj−1).

In each traversal of the j-loop a column is appended to the matrix Qj−1 to become Qj . If
the Lanczos vectors are not desired this statement can be omitted. The Lanczos vectors
are required to compute the eigenvectors of A. Algorithm 9.3 returns when j = m, where
m is the degree of the minimal polynomial of A relative to x. bm = 0 implies

(9.14) AQm = QmTm.

150 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS

Algorithm 9.3 Basic Lanczos algorithm for the computation of an orthonormal
basis for of the Krylov space Km(x)
1: Let A ∈ Fn×n be Hermitian. This algorithm computes the Lanczos relation (9.13),

i.e., an orthonormal basis Qm = [q1, . . . ,qm] for Km(x) where m is the smallest index
such that Km(x) = Km+1(x), and (the nontrivial elements of) the tridiagonal matrix
Tm.

2: q := x/‖x‖; Q1 = [q];
3: r := Aq;
4: α1 := q∗r;
5: r := r− α1q;
6: β1 := ‖r‖;
7: for j = 2, 3, . . . do
8: v = q; q := r/βj−1; Qj := [Qj−1,q];
9: r := Aq− βj−1v;

10: αj := q∗r;
11: r := r− αjq;
12: βj := ‖r‖;
13: if βj = 0 then
14: return (Q ∈ Fn×j ; α1, . . . , αj ; β1, . . . , βj−1)
15: end if
16: end for

Let (λi, si) be an eigenpair of Tm,

(9.15) Tms(m)
i = ϑ

(m)
i s(m)

i .

Then,

(9.16) AQms(m)
i = QmTms(m)

i = ϑ
(m)
i Qms(m)

i .

So, the eigenvalues of Tm are also eigenvalues of A. The eigenvector of A corresponding
to the eigenvalue ϑi is

(9.17) yi = Qms(m)
i = [q1, . . . ,qm] s(m)

i =
m∑

j=1

qjs
(m)
ji .

The cost of a single iteration step of Algorithm 9.3 does not depend on the index of
the iteration! In a single iteration step we have to execute a matrix-vector multiplication
and 7n further floating point operations.
Remark 9.1. In certain very big applications the Lanczos vectors cannot be stored for
reasons of limited memory. In this situation, the Lanczos algorithm is executed without
building the matrix Q. When the desired eigenvalues and Ritz vectors have been de-
termined from (9.15) the Lanczos algorithm is repeated and the desired eigenvectors are
accumulated on the fly using (9.17).

9.4 The Lanczos process as an iterative method

The Lanczos Algorithm 9.3 essentially determines an invariant Krylov subspace Km(x)
of Fn. More precisely, it constructs an orthonormal basis {q1, . . . ,qm} of Km(x). The

9.4. THE LANCZOS PROCESS AS AN ITERATIVE METHOD 151

projection of A onto this space is a Hessenberg or even a real tridiagonal matrix if A is
Hermitian.

We have seen in section 8.4 that the eigenvalues at the end of the spectrum are ap-
proximated very quickly in Krylov spaces. Therefore, only a very few iteration steps may
be required to get those eigenvalues (and corresponding eigenvectors) within the desired
accuracy, i.e., |ϑ(j)

i − λi| may be tiny for j ¿ m.
The Ritz values ϑ(j)

i are the eigenvalues of the tridiagonal matrices Tj that are gener-
ated element by element in the course of the Lanczos algorithm. They can be computed
efficiently by, e.g., the tridiagonal QR algorithm in O(j2) flops. The cost for computing
the eigenvalues of Tj are in general negligible compared with the cost for forming Aqj .

But how can the error |ϑ(j)
i − λi| be estimated? We will adapt the following more

general lemma to this end.

Lemma 9.1 (Eigenvalue inclusion of Krylov–Bogoliubov [5] [7, p.69]) Let A ∈ Fn×n

be Hermitian. Let ϑ ∈ R and x ∈ Fn with x 6= 0 be arbitrary. Set τ := ‖(A− ϑI)x‖/‖x‖.
Then there is an eigenvalue of A in the interval [ϑ− τ, ϑ+ τ].

Proof. Let

A = UΛU =
n∑

i=1

λiuiu∗i

be the spectral decomposition of A. Then,

(A− ϑI)x =
n∑

i=1

(λiuiu∗i − ϑuiu∗i)x =
n∑

i=1

(λi − ϑ)(u∗i x)ui.

Taking norms, we obtain

‖(A− ϑI)x‖2 =
n∑

i=1

|λi − ϑ|2|u∗i x|2 ≥ |λk − ϑ|2
n∑

i=1

|u∗i x|2 = |λk − ϑ|2‖x‖,

where λk is the eigenvalue closest to τ , i.e., |λk − ϑ| ≤ |λi − ϑ| for all i.
We want to apply this Lemma to the case where the vector is a Ritz vector y(j)

i

corresponding to the Ritz value τ = ϑ
(j)
i as obtained in the j-th step of the Lanczos

algorithm. Then,
y(j)

i = Qjs
(j)
i , Tjs

(j)
i = ϑ

(j)
i s(j)

i .

Thus, by employing the Lanczos relation (9.13),

‖Ay(j)
i − ϑ

(j)
i y(j)

i ‖ = ‖AQjs
(j)
i − ϑ

(j)
i Qjs

(j)
i ‖

= ‖(AQj −QjTj)s
(j)
i ‖

= ‖βjqj+1e∗js
(j)
i ‖ = |βj ||e∗js(j)

i | = |βj ||s(j)ji |.

s
(j)
ji is the j-th, i.e., the last element of the eigenvector matrix Sj of Tj ,

TjSj = SjΘj , Θj = diag(ϑ(j)
1 , · · · , ϑ(j)

j).

According to Lemma 9.1 there is an eigenvalue λ of A such that

(9.18) |λ− ϑ
(j)
i | ≤ βj |sji|.

152 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS

Thus, it is possible to get good eigenvalue approximations even if βj is not small! Further,
we know that [7, §11.7]

(9.19) sin∠(y(j)
i , z) ≤ βj

|sji|
γ
,

where z is the eigenvector corresponding to λ in (9.18) and γ is the gap between λ and
the next eigenvalue 6= λ of A. In an actual computation, γ is not known. Parlett suggests
to replace γ by the distance of ϑ(j)

i to the next ϑ(j)
k , k 6= i. Because the ϑ(j)

i converge to
eigenvalues of A this substitution will give a reasonable number, at least in the limit.

In order to use the estimate (9.18) we need to compute all eigenvalues of Tj and the
last row of Sj . It is possible and in fact straightforward to compute this row without the
rest of Sj . The algorithm, a simple modification of the tridiagonal QR algorithm, has been
introduced by Golub and Welsch [3] in connection with the computation of interpolation
points and weights in Gaussian integration.

A numerical example

This numerical example is intended to show that the implementation of the Lanczos algo-
rithm is not as simple as it seems from the previous. Let

A = diag(0, 1, 2, 3, 4, 100000)

and
x = (1, 1, 1, 1, 1, 1)T .

The diagonal matrix A has six simple eigenvalues and x has a non-vanishing component in
the direction of each eigenspace. Thus, the Lanczos algorithm should stop after m = n = 6
iteration steps with the complete Lanczos relation. Up to rounding error, we expect that
β6 = 0 and that the eigenvalues of T6 are identical with those of A. Let’s see what happens
if Algorithm 9.3 is applied with these input data. in the sequel we present the numbers
that we obtained with a Matlab implementation of this algorithm.

j = 1
α1 = 16668.33333333334, β1 = 37267.05429136513.

j = 2
α2 = 83333.66652666384, β2 = 3.464101610531258.

The diagonal of the eigenvalue matrix Θ2 is:

diag(Θ2) = (1.999959999195565, 99999.99989999799)T .

The last row of β2S2 is

β2S2,: = (1.4142135626139063.162277655014521) .

The matrix of Ritz vectors Y2 = Q2S2 is



−0.44722 −2.0000 · 10−05

−0.44722 −9.9998 · 10−06

−0.44721 4.0002 · 10−10

−0.44721 1.0001 · 10−05

−0.44720 2.0001 · 10−05

4.4723 · 10−10 1.0000




9.4. THE LANCZOS PROCESS AS AN ITERATIVE METHOD 153

j = 3
α3 = 2.000112002245340 β3 = 1.183215957295906.

The diagonal of the eigenvalue matrix is

diag(Θ3) = (0.5857724375775532, 3.414199561869119, 99999.99999999999)T .

The largest eigenvalue has converged already. This is not surprising as λ2/λ1 =
4 ·10−5. With simple vector iteration the eigenvalues would converge with the factor
λ2/λ1 = 4 · 10−5.

The last row of β3S3 is

β3S3,: =
(
0.8366523355001995, 0.8366677176165411, 3.741732220526109 · 10−05

)
.

The matrix of Ritz vectors Y3 = Q3S3 is



0.76345 0.13099 2.0000 · 10−10

0.53983 −0.09263 −1.0001 · 10−10

0.31622 −0.31623 −2.0001 · 10−10

0.09262 −0.53984 −1.0000 · 10−10

−0.13098 −0.76344 2.0001 · 10−10

−1.5864 · 10−13 −1.5851 · 10−13 1.00000




The largest element (in modulus) of Y T
3 Y3 is ≈ 3 · 10−12.

The Ritz vectors (and thus the Lanczos vectors qi) are mutually orthogonal up to
rounding error.

j = 4
α4 = 2.000007428756856 β4 = 1.014186947306611.

The diagonal of the eigenvalue matrix is

diag(Θ4) =




0.1560868732577987
1.999987898940119
3.843904656006355
99999.99999999999


 .

The last row of β4S4 is

β4S4,: =
(
0.46017,−0.77785,−0.46018, 3.7949 · 10−10

)
.

The matrix of Ritz vectors Y4 = Q4S4 is



−0.82515 0.069476 −0.40834 −0.18249
−0.034415 0.41262 −0.40834 −0.18243
0.37812 0.37781 −0.40834 −0.18236
0.41256 −0.034834 −0.40834 −0.18230
0.069022 −0.82520 −0.40834 −0.18223

−1.3202 · 10−04 1.3211 · 10−04 −0.40777 0.91308



.

The largest element (in modulus) of Y T
4 Y4 is ≈ 2 · 10−8.

We have β4s4,4
.= 4 · 10−10. So, according to our previous estimates (ϑ4,y4), y4 =

Y4e4 is a very good approximation for an eigenpair of A. This is in fact the case.

Notice that Y T
4 Y4 has off diagonal elements of the order 10−8. These elements are

in the last row/column of Y T
4 Y4. This means that all Ritz vectors have a small but

not negligible component in the direction of the ‘largest’ Ritz vector.

154 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS

j = 5
α5 = 2.363169101109444 β5 = 190.5668098726485.

The diagonal of the eigenvalue matrix is

diag(Θ5) =




0.04749223464478182
1.413262891598485
2.894172742223630
4.008220660846780

9.999999999999999 · 104



.

The last row of β5S5 is

β5S5,: =
(−43.570− 111.38134.0963.4957.2320 · 10−13

)
.

The matrix of Ritz vectors Y5 is



−0.98779 −0.084856 0.049886 0.017056 −1.1424 · 10−17

−0.14188 0.83594 −0.21957 −0.065468 −7.2361 · 10−18

0.063480 0.54001 0.42660 0.089943 −8.0207 · 10−18

−0.010200 −0.048519 0.87582 −0.043531 −5.1980 · 10−18

−0.0014168 −0.0055339 0.015585 −0.99269 −1.6128 · 10−17

4.3570 · 10−4 0.0011138 −0.0013409 −6.3497 · 10−4 1.0000




Evidently, the last column of Y5 is an excellent eigenvector approximation. Notice,
however, that all Ritz vectors have a relatively large (∼ 10−4) last component. This,
gives rise to quite large off-diagonal elements of Y T

5 Y5 − I5 =



2.220·10−16 −1.587·10−16 −3.430·10−12 −7.890·10−9 −7.780·10−4

−1.587·10−16 −1.110·10−16 1.283·10−12 −1.764·10−8 −1.740·10−3

−3.430·10−12 1.283·10−12 0 5.6800·10−17 −6.027·10−8

−7.890·10−9 −1.764·10−8 5.6800·10−17 −2.220·10−16 4.187·10−16

−7.780·10−4 −1.740·10−3 −6.027·10−8 4.187·10−16 −1.110·10−16



.

Similarly as with j = 4, the first four Ritz vectors satisfy the orthogonality condition
very well. But they are not perpendicular to the last Ritz vector.

j = 6
α6 = 99998.06336906151 β6 = 396.6622037049789

The diagonal of the eigenvalue matrix is

diag(Θ6) =




0.02483483859326367
1.273835519171372
2.726145019098232
3.975161765440400

9.999842654044850 · 10+4

1.000000000000000 · 10+5



.

The eigenvalues are not the exact ones, as was to be expected. We even have two
copies of the largest eigenvalue of A in Θ6! The last row of β6S6 is

β6S6,: =
(−0.20603, 0.49322, 0.49323, 0.20604, 396.66,−8.6152 · 10−15

)

9.4. THE LANCZOS PROCESS AS AN ITERATIVE METHOD 155

although theory predicts that β6 = 0. The sixth entry of β6S6 is very small, which
means that the sixth Ritz value and the corresponding Ritz vector are good approx-
imations to an eigenpair of A. In fact, eigenvalue and eigenvector are accurate to
machine precision.

β5s6,5 does not predict the fifth column of Y6 to be a good eigenvector approximation,
although the angle between the fifth and sixth column of Y6 is less than 10−3. The
last two columns of Y6 are




−4.7409 · 10−4 −3.3578 · 10−17

1.8964 · 10−3 −5.3735 · 10−17

−2.8447 · 10−3 −7.0931 · 10−17

1.8965 · 10−3 −6.7074 · 10−17

−4.7414 · 10−4 −4.9289 · 10−17

−0.99999 1.0000



.

As β6 6= 0 one could continue the Lanczos process and compute ever larger tridi-
agonal matrices. If one proceeds in this way one obtains multiple copies of certain
eigenvalues [2, 2]. The corresponding values βjs

(j)
ji will be tiny. The corresponding

Ritz vectors will be ‘almost’ linearly dependent.

From this numerical example we see that the problem of the Lanczos algorithm consists
in the loss of orthogonality among Ritz vectors which is a consequence of the loss of
orthogonality among Lanczos vectors, since Yj = QjSj and Sj is unitary (up to roundoff).

To verify this diagnosis, we rerun the Lanczos algorithm with complete reorthogonal-
ization. This procedure amounts to the Arnoldi algorithm 9.1. Ir can be accomplished by
modifying line 11 in the Lanczos algorithm 9.3, see Algorithm 9.4.

Algorithm 9.4 Lanczos algorithm with full reorthogonalization
11: r := r− αjq; r := r−Q(Q∗q);

Of course, the cost of the algorithm increases considerably. The j-th step of the
algorithm requires now a matrix-vector multiplication and (2j + O(1))n floating point
operations.

A numerical example [continued]

With matrix and initial vector as before Algorithm 9.4 gives the following numbers.

j = 1
α1 = 16668.33333333334, β1 = 37267.05429136513.

j = 2
α2 = 83333.66652666384, β2 = 3.464101610531258.

The diagonal of the eigenvalue matrix Θ2 is:

diag(Θ2) = (1.999959999195565, 99999.99989999799)T .

j = 3
α3 = 2.000112002240894 β3 = 1.183215957295905

The diagonal of the eigenvalue matrix is

diag(Θ3) = (0.5857724375677908, 3.414199561859357, 100000.0000000000)T .

156 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS

j = 4
α4 = 2.000007428719501 β4 = 1.014185105707661

diag(Θ4) =




0.1560868732475296
1.999987898917647
3.843904655996084
99999.99999999999




The matrix of Ritz vectors Y4 = Q4S4 is



−0.93229 0.12299 0.03786 −1.1767 · 10−15

−0.34487 −0.49196 −0.10234 2.4391 · 10−15

2.7058 · 10−6 −0.69693 2.7059 · 10−6 4.9558 · 10−17

0.10233 −0.49195 0.34488 −2.3616 · 10−15

−0.03786 0.12299 0.93228 1.2391 · 10−15

2.7086 · 10−17 6.6451 · 10−17 −5.1206 · 10−17 1.00000




The largest off-diagonal element of |Y T
4 Y4| is about 2 · 10−16

j = 5
α5 = 2.000009143040107 β5 = 0.7559289460488005

diag(Θ5) =




0.02483568754088384
1.273840384543175
2.726149884630423
3.975162614480485

10000.000000000000




The Ritz vectors are Y5 =



−9.91 · 10−01 −4.62 · 10−02 2.16 · 10−02 −6.19 · 10−03 −4.41 · 10−18

−1.01 · 10−01 8.61 · 10−01 −1.36 · 10−01 −3.31 · 10−02 1.12 · 10−17

7.48 · 10−02 4.87 · 10−01 4.87 · 10−01 −7.48 · 10−02 −5.89 · 10−18

−3.31 · 10−02 −1.36 · 10−01 8.61 · 10−01 −1.01 · 10−01 1.07 · 10−17

6.19 · 10−03 2.16 · 10−02 −4.62 · 10−02 −9.91 · 10−01 1.13 · 10−17

5.98 · 10−18 1.58 · 10−17 −3.39 · 10−17 −5.96 · 10−17 1.000000000000000




Largest off-diagonal element of |Y T
5 Y5| is about 10−16 The last row of β5S5 is

β5S5,: =
(−0.20603,−0.49322, 0.49322, 0.20603, 2.8687 · 10−15

)
.

j = 6
α6 = 2.000011428799386 β6 = 4.178550866749342·10−28

diag(Θ6) =




7.950307079340746·10−13

1.000000000000402
2.000000000000210
3.000000000000886
4.000000000001099
9.999999999999999·104




The Ritz vectors are very accurate. Y6 is almost the identity matrix are 1.0. The
largest off diagonal element of Y T

6 Y6 is about 10−16. Finally,

β6S6,: =
(
4.99·10−29,−2.00·10−28, 3.00·10−28,−2.00·10−28, 5.00·10−29, 1.20·10−47

)
.

9.5. AN ERROR ANALYSIS OF THE UNMODIFIED LANCZOS ALGORITHM 157

With a much enlarged effort we have obtained the desired result. Thus, the loss
of orthogonality among the Lanczos vectors can be prevented by the explicit reorthogo-
nalization against all previous Lanczos vectors. This amounts to applying the Arnoldi
algorithm. In the sequel we want to better understand when the loss of orthogonality
actually happens.

9.5 An error analysis of the unmodified Lanczos algorithm

When the quantities Qj , Tj , rj , etc., are computed numerically by using the Lanczos algo-
rithm, they can deviate greatly from their theoretical counterparts. However, despite this
gross deviation from the exact model, it nevertheless delivers fully accurate Ritz value and
Ritz vector approximations.

In this section Qj , Tj , rj etc. denote the numerically computed values and not their
theoretical counterparts. So, instead of the Lanczos relation (9.13) we write

(9.20) AQj −QjTj = rje∗j + Fj

where the matrix Fj accounts for errors due to roundoff. Similarly, we write

(9.21) Ij −Q∗jQj = C∗j + ∆j + Cj ,

where ∆j is a diagonal matrix and Cj is a strictly upper triangular matrix (with zero
diagonal). Thus, C∗j +∆j +Cj indicates the deviation of the Lanczos vectors from orthog-
onality.

We make the following assumptions

1. The tridiagonal eigenvalue problem can be solved exactly, i.e.,

(9.22) Tj = SjΘjS
∗
j , S∗j = S−1

j , Θj = diag(ϑ1, . . . , ϑj).

2. The orthogonality of the Lanczos vectors holds locally, i.e.,

(9.23) q∗i+1qi = 0, i = 1, . . . , j − 1, and r∗jqi = 0.

3. Furthermore,

(9.24) ‖qi‖ = 1.

So, we assume that the computations that we actually perform (like orthogonalizations or
solving the eigenvalue problem) are accurate. These assumptions imply that ∆j = O and
c
(j)
i,i+1 = 0 for i = 1, . . . , j − 1.

We premultiply (9.20) by Q∗j and obtain

(9.25) Q∗jAQj −Q∗jQjTj = Q∗jrje∗j +Q∗jFj

In order to eliminate A we subtract from this equation its transposed,

(9.26)

Q∗jrje∗j − ejr∗jQj = −Q∗jQjTj + TjQ
∗
jQj +Q∗jFj − F ∗j Qj ,

= (I −Q∗jQj)Tj − Tj(I −Q∗jQj) +Q∗jFj − F ∗j Qj ,

(9.21)
= (Cj + C∗j)Tj − Tj(Cj + C∗j) +Q∗jFj − F ∗j Qj ,

= (CjTj − TjCj)︸ ︷︷ ︸
upper triangular

+ (C∗j Tj − TjC
∗
j)︸ ︷︷ ︸

lower triangular

−F ∗j Qj +Q∗jFj .

158 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS

F ∗j Qj −Q∗jFj is skew symmetric. Therefore we have

F ∗j Qj −Q∗jFj = −K∗
j +Kj ,

where Kj is an upper triangular matrix with zero diagonal. Thus, (9.25) has the form



O
×
...
×

First j − 1
components
of r∗jQj .

× · · · ×︸ ︷︷ ︸ 0


 =




0 CjTj − TjCj

. . .
C∗j Tj − TjC

∗
j 0


 +




0 Kj

. . .
−K∗

j 0


 .

As the last component of Q∗jrj vanishes, we can treat these triangular matrices sepa-
rately. For the upper triangular matrices we have

Q∗jrje∗j = CjTj − TjCj +Kj .

Multiplication by s∗i and si, respectively, from left and right gives

s∗iQ
∗
j︸ ︷︷ ︸

y∗i

rj︸︷︷︸
βjqj+1

e∗jsi︸︷︷︸
sji

= s∗i (CjTj − TjCj)si + s∗iKjsi.

Let Gj := S∗i KjSi. Then we have

(9.27) βjsjiy∗i qj+1 = sjiy∗i rj = s∗iCjsiϑi − ϑis∗iCjsi + g
(j)
ii = g

(j)
ii .

We now multiply (9.25) with s∗i from the left and with sk from the right. As Qjsi = yi,
we have

y∗iAyk − y∗i ykϑk = y∗i rje∗jsk + s∗iQ
∗
jFjsk.

Now, from this equation we subtract again its transposed, such that A is eliminated,

y∗i yk(ϑi − ϑk) = y∗i rje∗jsk − y∗krje∗jsi + s∗iQ
∗
jFjsk − s∗kQ

∗
jFjsi

(9.27)
=

(
g
(j)
ii

s
(j)
ji

)
sjk −


g

(j)
kk

s
(j)
jk


 sji

+
1
2
(s∗iQ

∗
jFjsk + s∗kF

∗
j Qjsi)− 1

2
(s∗kQ

∗
jFjsi + s∗iF

∗
j Qjsk)

= g
(j)
ii

s
(j)
jk

s
(j)
ji

− g
(j)
kk

s
(j)
ji

s
(j)
jk

− (g(j)
ik − g

(j)
ki).

Thus we have proved

Theorem 9.2 (Paige, see [7, p.266]) With the above notations we have

(9.28) y(j)
i

∗
qj+1 =

g
(j)
ii

βjs
(j)
ji

(9.29) (ϑ(j)
i − ϑ

(j)
k)y(j)

i

∗
y(j)

k = g
(j)
ii

s
(j)
jk

s
(j)
ji

− g
(j)
kk

s
(j)
ji

s
(j)
jk

− (g(j)
ik − g

(j)
ki).

9.6. PARTIAL REORTHOGONALIZATION 159

We can interpret these equations in the following way.

• From numerical experiments it is known that equation (9.20) is always satisfied to
machine precision. Thus, ‖Fj‖ ≈ ε ‖A‖. Therefore, ‖Gj‖ ≈ ε ‖A‖, and, in particular,
|g(j)

ik | ≈ ε ‖A‖.

• We see from (9.28) that |y(j)
i

∗
qj+1| becomes large if βj |s(j)ji | becomes small, i.e., if

the Ritz vector y(j)
i is a good approximation of the corresponding eigenvector. Thus,

each new Lanczos vector has a significant component in the direction of converged
(‘good’) Ritz vectors.

As a consequence: convergence ⇐⇒ loss of orthogonality .

• Let |s(j)ji | ¿ |s(j)jk |, i.e., y(j)
i is a ‘good’ Ritz vector in contrast to y(j)

k that is a ‘bad’
Ritz vector. Then in the first term on the right of (9.29) two small (O(ε)) quantities
counteract each other such that the right hand side in (9.29) becomes large, O(1). If
the corresponding Ritz values are well separated, |ϑi−ϑk| = O(1), then |y∗i yk| À ε.
So, in this case also ‘bad’ Ritz vectors have a significant component in the direction
of the ‘good’ Ritz vectors.

• If |ϑi − ϑk| = O(ε) and both s(j)ji and s(j)jk are of O(ε) the s(j)ji /s
(j)
jk = O(1) such that

the right hand side of (9.29) as well as |ϑi − ϑk| is O(ε). Therefore, we must have
y(j)

i

∗
y(j)

k = O(1). So, these two vectors are almost parallel.

9.6 Partial reorthogonalization

In Section 9.4 we have learned that the Lanczos algorithm does not yield orthogonal
Lanczos vectors as it should in theory due to floating point arithmetic. In the previous
section we learned that the loss of orthogonality happens as soon as Ritz vectors have
converged accurately enough to eigenvectors. In this section we review an approach how
to counteract the loss of orthogonality without executing full reorthogonalization [8, 9].

In [7] it is shown that if the Lanczos basis is semiorthogonal, i.e., if

Wj = Q∗jQj = Ij + E, ‖E‖ < √
εM ,

then the tridiagonal matrix Tj is the projection of A onto the subspace R(Vj),

Tj = N∗
j ANj +G, ‖G‖ = O((εM)‖A‖),

where Nj is an orthonormal basis of R(Qj). Therefore, it suffices to have semiorthog-
onal Lanczos vectors for computing accurate eigenvalues. Our goal is now to enforce
semiorthogonality by monitoring the loss of orthogonality and to reorthogonalize if needed.

The computed Lanczos vectors satisfy

(9.30) βjqj+1 = Aqj − αjqj − βj−1qj−1 + fj ,

where fj accounts for the roundoff errors committed in the j-th iteration step. Let Wj =
((ωik))1≤i, k≤j . Premultiplying equation (9.30) by q∗k gives

(9.31) βjωj+1,k = q∗kAqj − αjωjk − βj−1ωj−1,k + q∗kfj .

160 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS

Exchanging indices j and k in the last equation (9.31) gives

(9.32) βkωj,k+1 = q∗jAqk − αkωjk − βk−1ωj,k−1 + q∗j fk.

By subtracting (9.32) from (9.31) we get

(9.33) βjωj+1,k = βkωj,k+1 + (αk − αj)ωjk − βk−1ωj,k−1 − βj−1ωj−1,k − q∗j fk + q∗kfj .

Given Wj we employ equation (9.33) to compute the j+1-th row of Wj+1. However,
elements ωj+1,j and ωj+1,j+1 are not defined by (9.33). We can assign values to these two
matrix entries by reasoning as follows.

• We set ωj+1,j+1 = 1 because we explicitly normalize qj+1.

• We set ωj+1,j = O(εM) because we explicitly orthogonalize qj+1 and qj .

For computational purposes, equation (9.33) is now replaced by

ω̃ = βkωj,k+1 + (αk − αj)ωjk − βk−1ωj,k−1 − βj−1ωj−1,k,

ωj+1,k = (ω̃ + sign(ω̃) 2ε‖A‖︸ ︷︷ ︸
the estimate of

q∗j fk + q∗kfj

)/βj .(9.34)

As soon as ωj+1,k >
√
εM the vectors qj and qj+1 are orthogonalized against all previous

Lanczos vectors q1, . . . ,qj−1. Then the elements of last two lines of Wj are set equal to a
number of size O(εM). Notice that only the last two rows of Wj have to be stored.

Numerical example

We perform the Lanczos algorithm with matrix

A = diag(1, 2, . . . , 50)

and initial vector
x = [1, . . . , 1]∗.

In the first experiment we execute 50 iteration steps. In Table 9.1 the base-10 logarithms
of the values |wi,j |/macheps are listed where |wi,j | = |q∗i qj |, 1 ≤ j ≤ i ≤ 50 and macheps
≈ 2.2 · 10−16. One sees how the |wi,j | steadily grow with increasing i and with increasing
|i− j|.

In the second experiment we execute 50 iteration steps with partial reorthogonalization
turned on. The estimators ωj,k are computed according to (9.33),

(9.35)

ωk,k = 1, k = 1, . . . , j
ωk,k−1 = ψk, k = 2, . . . , j

ωj+1,k =
1
βj

[βkωj,k+1 + (αk − αj)ωjk

−βk−1ωj,k−1 − βj−1ωj−1,k] + ϑi,k, 1 ≤ k ≤ j.

Here, we set ωj,0 = 0. The values ψk and ϑi,k could be defined to be random variables of
the correct magnitude, i.e., O(εk). Following a suggestion of Parlett [7] we used

ψk = ε‖A‖, ϑi,k = ε
√
‖A‖.

9.6. PARTIAL REORTHOGONALIZATION 161

0 0
0

1
1

0
1

0
1

0
1

1
0

1
0

1
1

1
0

1
0

0
1

1
0

0
0

0
1

0
1

1
0

1
1

0
1

0
0

1
0

1
1

1
0

1
0

0
1

1
1

1
0

1
0

0
1

0
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

1
0

0
0

0
1

1
1

1
1

1
0

1
1

0
1

1
0

1
1

1
1

1
1

0
0

1
0

1
0

1
0

1
1

0
1

0
1

1
1

1
0

1
1

0
1

0
1

1
1

0
1

1
1

0
1

0
1

1
1

0
1

0
0

1
1

1
1

1
0

1
1

1
0

1
1

0
0

1
0

1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
0

0
1

1
2

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

1
1

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

1
1

1
0

0
0

1
1

1
1

2
1

2
1

1
1

1
1

1
1

1
0

1
1

0
0

1
0

0
2

1
2

1
2

2
2

2
1

1
1

1
1

1
1

1
1

1
1

0
0

0
1

1
2

2
2

2
2

2
2

2
1

1
1

1
1

1
1

1
1

1
1

0
0

0
1

2
2

2
2

2
2

2
2

2
2

2
1

2
1

2
1

1
1

1
1

0
0

1
0

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
1

1
1

1
1

0
0

1
0

2
2

2
2

2
3

2
2

2
2

2
2

2
2

2
2

2
2

1
1

1
1

1
0

0
0

0
2

2
3

3
3

3
3

3
3

2
3

2
2

2
2

2
2

2
2

1
1

1
1

1
1

0
1

0
2

3
3

3
3

3
3

3
3

3
3

3
2

3
2

2
2

2
2

2
2

2
1

1
1

0
1

1
0

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
2

2
2

2
2

2
2

2
1

2
1

1
1

1
0

3
3

3
4

3
4

3
3

3
3

3
3

3
3

3
3

3
3

2
2

2
2

2
2

1
1

1
1

1
1

0
3

3
4

4
4

4
4

4
4

4
4

3
3

3
3

3
3

3
3

2
2

2
2

2
2

1
2

1
1

0
1

0
4

4
4

4
4

4
4

4
4

4
4

4
4

4
3

3
3

3
3

3
3

3
2

2
2

2
1

1
1

1
0

0
0

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
3

3
3

3
3

3
2

2
2

2
1

1
1

1
1

1
0

4
5

5
5

5
5

5
5

5
5

4
5

4
4

4
4

4
4

4
4

3
3

3
3

3
2

2
2

2
2

1
1

1
1

0
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

4
4

4
4

4
4

3
3

3
3

3
3

2
2

2
1

1
2

0
0

0
5

5
5

6
5

6
5

5
5

5
5

5
5

5
5

5
5

5
4

4
4

4
4

4
3

3
3

3
2

2
2

1
1

1
1

0
0

6
6

6
6

6
6

6
6

6
6

6
5

6
5

5
5

5
5

5
5

5
4

4
4

4
3

3
3

3
2

2
2

2
1

1
1

0
0

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

5
5

5
5

5
5

4
4

4
4

4
3

3
3

2
2

2
2

1
1

0
0

0
6

6
7

7
7

7
7

7
7

6
7

6
6

6
6

6
6

6
6

5
5

5
5

5
5

4
4

4
4

3
3

3
2

2
2

1
1

1
1

0
7

7
7

7
7

7
7

7
7

7
7

7
7

7
6

7
6

6
6

6
6

6
5

5
5

5
4

4
4

4
3

3
3

3
2

2
1

1
1

1
0

7
7

8
8

8
8

8
7

8
7

8
7

7
7

7
7

7
7

7
6

6
6

6
6

6
5

5
5

5
4

4
4

3
3

3
2

2
1

2
0

1
0

8
8

8
8

8
8

8
8

8
8

8
8

8
8

7
8

7
7

7
7

7
7

6
6

6
6

5
5

5
5

4
4

4
4

3
3

2
1

1
1

1
1

0
8

8
9

9
9

9
9

9
9

8
9

8
8

8
8

8
8

8
8

7
7

7
7

7
7

6
6

6
6

5
5

5
4

4
4

3
3

2
2

1
2

1
1

0
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
8

8
8

8
8

8
7

7
7

7
7

6
6

6
5

5
5

5
4

4
3

3
3

2
1

2
1

1
0

10
10

10
10

10
10

10
10

10
10

10
10

10
9

9
9

9
9

9
9

9
8

8
8

8
7

7
7

7
6

6
6

6
5

5
4

4
4

3
3

2
1

2
1

1
0

10
11

10
11

10
11

10
11

10
11

10
10

10
10

10
10

10
10

9
9

9
9

9
9

8
8

8
8

7
7

7
7

6
6

5
5

5
4

4
3

3
2

1
2

1
2

0
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

10
10

10
10

10
10

9
9

9
9

8
8

8
8

7
7

7
6

6
6

5
5

4
4

3
1

1
2

1
1

0
12

12
12

12
12

12
12

12
12

12
12

12
12

12
11

12
11

11
11

11
11

11
10

10
10

10
9

9
9

9
8

8
8

8
7

7
6

6
5

5
5

4
3

2
1

2
2

1
0

13
13

13
13

13
13

13
13

13
13

13
13

13
13

13
12

12
12

12
12

12
11

11
11

11
11

11
10

10
10

9
9

9
8

8
8

7
7

7
6

6
5

4
4

3
1

3
2

1
0

T
ab

le
9.

1:
M

a
t
l
a
b

de
m

o
on

th
e

lo
ss

of
or

th
og

on
al

it
y

am
on

g
L
an

cz
os

ve
ct

or
s.

U
nm

od
ifi

ed
L
an

cz
os

.
r
o
u
n
d
(
l
o
g
1
0
(
a
b
s
(
I
-
Q
∗ 5
0
Q

5
0
)
/
e
p
s
)
)

162 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS

Reorthogonalization takes place in the j-th Lanczos step if maxk(ωj+1,k) >
√

macheps.
qj+1 is orthogonalized against all vectors qk with ωj+1,k > macheps3/4. In the following
iteration step also qj+2 is orthogonalized against these vectors. In Table 9.2 the base-
10 logarithms of the values |wi,j |/macheps obtained with this procedure are listed where
|wi,j | = |q∗i qj |, 1 ≤ j ≤ i ≤ 50 and macheps ≈ 2.2 · 10−16. In Table 9.3 the base-10
logarithms of the estimates |ωi,j |/macheps are given. The estimates are too high by (only)
an order of magnitude. However, the procedure succeeds in that the resulting {qk} are
semi-orthogonal.

9.7 Block Lanczos

As we have seen, the Lanczos algorithm produces a sequence {qi} of orthonormal vec-
tors. These Lanczos vectors build an orthonormal basis for the Krylov subspace Kj(x) =
span{q1, . . . ,qj} ⊂ Rn. The restriction of A to Kj(x) is an unreduced tridiagonal ma-
trix. However the Lanczos algorithm cannot detect the multiplicity of the eigenvalues it
computes. This limitation prompted the development of the block version of the Lanc-
zos process (Block Lanczos algorithm), which is capable of determining multiplicities of
eigenvalues up to the block size.

The idea is not to start with a single vector q1 ∈ Rn but with a set of mutually
orthogonal vectors which we take as the columns of the matrix Q1 ∈ Rn×p with the block
size p > 1.

Associated with Q1 is the ‘big’ Krylov subspace

(9.36) Kjp(Q1) = span{Q1, AQ1, . . . , A
j−1Q1}.

(We suppose, for simplicity, that Aj−1Q1 has rank p. Otherwise we would have to consider
variable block sizes.)

The approach is similar to the scalar case with p = 1: Let Q1, . . . , Qj ∈ Rn×p be
pairwise orthogonal block matrices (Q∗iQk = O for i 6= k) with orthonormal columns
(Q∗iQi = Ip for all i ≤ j). Then, in the j-th iteration step, we obtain the matrix AQj

and orthogonalize it against matrices Qi, i ≤ j. The columns of the matrices are obtained
by means of the QR factorization or with the Gram–Schmidt orthonormalization process.
We obtained the following:

Algorithm 9.5 Block Lanczos algorithm
1: Choose Q1 ∈ Fn×p such that Q∗1Q1 = Ip. Set j := 0 and Fn×p 3 V := 0.

This algorithm generates a block tridiagonal matrix T̂j with the diagonal blocks Ai,
i ≤ j, the lower diagonal blocks Bi, i < j, and the Krylov basis [Q1, . . . , Qj] of Kjp(Q1).

2: for j ≥ 0 do
3: if j > 0 then
4: V =: Qj+1Bj ; /* QR decomposition */
5: V := −QjB

∗
j ;

6: end if
7: j := j + 1;
8: Aj := Q∗jV ;
9: V := V −QjAj ;

10: Test for convergence (Ritz pairs, evaluation of error)
11: end for

9.7. BLOCK LANCZOS 163

0 0
0

1
1

0
1

0
1

0
1

1
0

1
0

1
1

1
0

1
0

0
1

1
0

0
0

0
1

0
1

1
0

1
1

0
1

0
0

1
0

1
1

1
0

1
0

0
1

1
1

1
0

1
0

0
1

0
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

1
0

0
0

0
1

1
1

1
1

1
0

1
1

0
1

1
0

1
1

1
1

1
1

0
0

1
0

1
0

1
0

1
1

0
1

0
1

1
1

1
0

1
1

0
1

0
1

1
1

0
1

1
1

0
1

0
1

1
1

0
1

0
0

1
1

1
1

1
0

1
1

1
0

1
1

0
0

1
0

1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
0

0
1

1
2

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

1
1

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

1
1

1
0

0
0

1
1

1
1

2
1

2
1

1
1

1
1

1
1

1
0

1
1

0
0

1
0

0
2

1
2

1
2

2
2

2
1

1
1

1
1

1
1

1
1

1
1

0
0

0
1

1
2

2
2

2
2

2
2

2
1

1
1

1
1

1
1

1
1

1
1

0
0

0
1

2
2

2
2

2
2

2
2

2
2

2
1

2
1

2
1

1
1

1
1

0
0

1
0

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
1

1
1

1
1

0
0

1
0

2
2

2
2

2
3

2
2

2
2

2
2

2
2

2
2

2
2

1
1

1
1

1
0

0
0

0
2

2
3

3
3

3
3

3
3

2
3

2
2

2
2

2
2

2
2

1
1

1
1

1
1

0
1

0
2

3
3

3
3

3
3

3
3

3
3

3
2

3
2

2
2

2
2

2
2

2
1

1
1

0
1

1
0

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
2

2
2

2
2

2
2

2
1

2
1

1
1

1
0

3
3

3
4

3
4

3
3

3
3

3
3

3
3

3
3

3
3

2
2

2
2

2
2

1
1

1
1

1
1

0
3

3
4

4
4

4
4

4
4

4
4

3
3

3
3

3
3

3
3

2
2

2
2

2
2

1
2

1
1

0
1

0
4

4
4

4
4

4
4

4
4

4
4

4
4

4
3

3
3

3
3

3
3

3
2

2
2

2
1

1
1

1
0

0
0

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
3

3
3

3
3

3
2

2
2

2
1

1
1

1
1

1
0

4
5

5
5

5
5

5
5

5
5

4
5

4
4

4
4

4
4

4
4

3
3

3
3

3
2

2
2

2
2

1
1

1
1

0
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

4
4

4
4

4
4

3
3

3
3

3
3

2
2

2
1

1
2

0
0

0
5

5
5

6
5

6
5

5
5

5
5

5
5

5
5

5
5

5
4

4
4

4
4

4
3

3
3

3
2

2
2

1
1

1
1

0
0

6
6

6
6

6
6

6
6

6
6

6
5

6
5

5
5

5
5

5
5

5
4

4
4

4
3

3
3

3
2

2
2

2
1

1
1

0
0

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

5
5

5
5

5
5

4
4

4
4

4
3

3
3

2
2

2
2

1
1

0
0

0
6

6
7

7
7

7
7

7
7

6
7

6
6

6
6

6
6

6
6

5
5

5
5

5
5

4
4

4
4

3
3

3
2

2
2

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

3
2

2
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
3

3
2

2
1

2
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

3
3

3
3

2
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

3
3

3
3

3
3

2
2

1
2

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
3

3
3

3
4

3
3

3
3

2
1

2
1

1
0

1
1

1
0

0
0

1
0

0
0

1
0

0
0

1
0

1
1

1
1

1
1

0
1

1
0

1
0

3
3

4
4

4
4

4
4

4
4

3
3

2
1

1
1

0
0

1
1

2
1

1
1

0
1

1
1

0
1

1
1

1
1

1
1

2
1

2
1

1
1

1
2

0
3

4
4

4
4

4
4

4
4

4
4

4
3

3
2

2
2

1
1

0
2

2
2

2
1

1
2

1
2

1
2

1
1

2
2

2
2

2
2

2
2

2
1

2
2

2
4

4
4

5
5

5
5

5
5

5
5

5
4

4
4

3
2

2
2

1
1

0
3

3
3

3
3

2
2

2
2

3
2

3
2

2
2

3
3

3
3

3
3

2
3

3
3

4
5

5
5

5
6

6
6

6
6

5
5

5
5

5
5

4
3

2
2

2
1

1
0

4
4

4
4

3
3

3
3

3
3

4
3

3
3

4
4

4
4

4
4

4
4

3
4

5
5

6
6

6
6

6
7

6
7

6
6

6
6

6
6

5
5

4
4

2
2

2
2

2
0

T
ab

le
9.

2:
M

a
t
l
a
b

de
m

o
on

th
e

lo
ss

of
or

th
og

on
al

it
y

am
on

g
L
an

cz
os

ve
ct

or
s:

L
an

cz
os

w
it

h
pa

rt
ia

l
re

or
th

og
on

al
iz

at
io

n.
r
o
u
n
d
(
l
o
g
1
0
(
a
b
s
(
I
-
Q
∗ 5
0
Q

5
0
)
/
e
p
s
)
)

164 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS

02
0

0
2

0
1

0
2

0
0

1
0

2
0

1
0

1
0

2
0

0
1

0
1

0
2

0
1

0
1

0
1

0
2

0
0

1
1

1
0

1
0

2
0

1
1

1
1

1
1

1
0

2
0

1
1

1
1

1
1

1
1

0
2

0
1

1
1

1
1

1
1

1
1

0
2

0
1

1
1

1
1

1
1

1
1

1
0

2
0

1
1

1
1

1
1

1
1

1
1

1
0

2
0

1
1

1
1

1
2

1
1

1
1

1
1

0
2

0
1

1
2

1
2

1
2

1
2

1
1

1
1

0
2

0
1

2
1

2
2

2
2

2
1

2
1

1
1

1
0

2
0

1
2

2
2

2
2

2
2

2
1

2
1

2
1

1
0

2
0

1
2

2
2

2
2

2
2

2
2

2
2

1
2

1
1

0
2

0
2

2
2

2
2

2
2

2
2

2
2

2
2

1
2

1
1

0
2

0
2

2
2

2
2

2
2

2
2

2
2

2
2

2
1

2
1

1
0

2
0

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
1

2
1

1
0

2
0

2
2

2
3

2
3

2
3

2
2

2
2

2
2

2
2

2
2

1
2

0
2

0
2

2
3

3
3

3
3

3
3

2
3

2
2

2
2

2
2

2
2

1
2

0
2

0
2

3
3

3
3

3
3

3
3

3
3

3
2

3
2

2
2

2
2

2
1

2
0

2
0

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
2

2
2

2
2

2
1

2
0

2
0

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

2
3

2
2

2
2

1
2

0
2

0
3

3
4

3
4

3
4

3
4

3
3

3
3

3
3

3
3

3
3

2
2

2
2

1
2

0
2

0
3

4
4

4
4

4
4

4
4

4
4

4
3

3
3

3
3

3
3

3
2

2
2

2
1

2
0

2
0

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
3

3
3

3
3

3
2

2
2

2
1

2
0

2
0

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

3
4

3
3

3
3

2
3

2
2

1
2

0
2

0
4

4
5

5
5

5
5

5
5

4
5

4
4

4
4

4
4

4
4

3
3

3
3

3
3

2
2

1
2

0
2

0
4

5
5

5
5

5
5

5
5

5
5

5
4

5
4

4
4

4
4

4
3

3
3

3
3

3
2

2
2

2
0

2
0

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
4

5
4

4
4

4
4

4
3

3
3

3
2

2
2

2
0

2
0

5
6

5
6

6
6

6
6

5
6

5
5

5
5

5
5

5
5

4
4

4
4

4
4

3
3

3
3

2
2

2
2

0
2

0
6

6
6

6
6

6
6

6
6

6
6

6
6

5
5

5
5

5
5

5
5

4
4

4
4

3
3

3
3

2
2

2
2

0
2

0
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
5

5
5

5
5

5
4

4
4

4
4

4
3

3
2

3
2

2
0

2
0

6
6

7
7

7
7

7
7

7
7

7
6

6
6

6
6

6
6

6
5

5
5

5
5

5
4

4
4

4
3

3
3

3
2

2
0

2
0

7
7

7
7

7
7

7
7

7
7

7
7

7
7

6
7

6
6

6
6

6
6

5
5

5
5

4
4

4
4

3
3

3
3

2
2

0
2

0
7

7
8

7
8

8
8

7
8

7
7

7
7

7
7

7
7

7
7

6
6

6
6

5
5

5
5

5
5

4
4

3
3

3
3

2
2

0
2

0
8

8
8

8
8

8
8

8
8

8
8

8
8

8
7

7
7

7
7

7
7

7
6

6
6

6
5

5
5

5
4

4
4

4
3

3
2

2
0

2
0

7
7

8
8

8
8

8
7

8
7

7
7

7
7

7
7

7
7

7
6

6
6

6
5

6
5

5
5

5
4

4
3

3
4

4
3

3
2

2
0

2
0

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
3

3
4

4
4

3
3

2
2

0
2

0
2

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

2
2

2
2

2
4

4
4

4
4

4
4

3
3

2
2

0
2

0
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

4
4

4
4

4
4

4
4

4
3

3
2

2
0

2
0

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
3

4
4

5
5

5
5

5
5

5
4

4
3

4
2

3
0

2
0

4
4

5
5

5
5

5
5

5
5

5
5

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
5

4
5

5
5

5
5

5
5

5
5

5
5

4
4

3
3

0
2

0
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

4
6

5
6

6
6

6
6

6
6

5
5

5
5

4
4

3
3

0
2

0
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
5

6
6

6
6

7
6

7
6

7
6

6
6

6
5

5
4

4
3

3
0

2
0

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
6

7
6

7
7

7
7

8
7

7
7

7
7

7
6

6
6

6
5

5
3

3
0

2
0

T
able

9.3:
M

a
t
l
a
b

dem
o

on
the

loss
of

orthogonality
am

ong
L
anczos

vectors:
L
anczos

w
ith

partial
reorthogonalization.

r
o
u
n
d
(
l
o
g
1
0
(
a
b
s
(
I
-
W

5
0)
/
e
p
s
)
)

9.8. EXTERNAL SELECTIVE REORTHOGONALIZATION 165

Let Q̂j := [Q1, Q2, . . . , Qj] be the Krylov basis generated by Algorithm 9.5. Then, in
this basis, the projection of A is the block tridiagonal matrix T̂j

Q̂∗jAQ̂j = T̂j =




A1 B∗1
B1 A2

. . .
. B∗j−1

Bj−1 Aj



, Ai, Bi ∈ Rp×p.

If matrices Bi are chosen to be upper triangular, then T̂j is a band matrix with bandwidth
2p+ 1!

Similarly as in scalar case, in the j-th iteration step we obtain the equation

AQ̂j − Q̂j T̂j = Qj+1BjE
∗
j + F̂j , Ej =




O
...
O
Ip


 ,

where F̂j accounts for the effect of roundoff error. Let (ϑi,yi) be a Ritz pair of A in
Kjp(Q1). Then

yi = Q̂jsi, T̂jsi = ϑisi.

As before, we can consider the residual norm to study the accuracy of the Ritz pair (ϑi,yi)
of A

‖Ayi − ϑiyi‖ = ‖AQ̂jsi − ϑiQ̂jsi‖ ≈ ‖Qj+1BjE
∗
j si‖ =

∥∥∥∥∥∥∥
Bj



sj(p−1)+1,i

...
sjp+1,i




∥∥∥∥∥∥∥
.

We have to compute the bottom p components of the eigenvectors si in order to test for
convergence.

Similarly as in the scalar case, the mutual orthogonality of the Lanczos vectors (i.e.,
the columns of Q̂j) is lost, as soon as convergence sets in. The remedies described earlier
are available: full reorthogonalization or selective orthogonalization.

9.8 External selective reorthogonalization

If many eigenvalues are to be computed with the Lanczos algorithm, it is usually advisable
to execute shift-and-invert Lanczos with varying shifts [4].

In each new start of a Lanczos procedure, one has to prevent the algorithm from finding
already computed eigenpairs. We have encountered this problem when we tried to compute
multiple eigenpairs by simple vector iteration. Here, the remedy is the same as there. In
the second and further runs of the Lanczos algorithm, the starting vectors are made
orthogonal to the already computed eigenvectors. We know that in theory all Lanczos
vectors will be orthogonal to the previously computed eigenvectors. However, because the
previous eigenvectors have been computed only approximately the initial vectors are not
orthogonal to the true eigenvectors. Because of this and because of floating point errors
loss of orthogonality is observed. The loss of orthogonality can be monitored similarly as
with partial reorthogonalization. For details see [4].

166 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS

Bibliography

[1] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix
eigenvalue problem, Quarterly of Applied Mathematics, 9 (1951), pp. 17–29.

[2] J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric
Eigenvalue Computations, vol. 1: Theory, Birkhäuser, Boston, 1985.

[3] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math.
Comp., 23 (1969), pp. 221–230.

[4] R. Grimes, J. G. Lewis, and H. Simon, A shifted block Lanczos algorithm for
solving sparse symmetric generalized eigenproblems, SIAM J. Matrix Anal. Appl., 15
(1994), pp. 228–272.

[5] N. Krylov and N. Bogoliubov, Sur le calcul des racines de la transcendante de
Fredholm les plus voisines d’une nombre donné par les méthodes des moindres carres
et de l’algorithme variationel, Izv. Akad. Naik SSSR, Leningrad, (1929), pp. 471–488.

[6] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators, J. Res. Nat. Bureau Standards, Sec. B, 45 (1950),
pp. 255–282.

[7] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs,
NJ, 1980. (Republished by SIAM, Philadelphia, 1998.).

[8] H. Simon, Analysis of the symmetric Lanczos algorithm with reorthogonalization meth-
ods, Linear Algebra Appl., 61 (1984), pp. 101–132.

[9] , The Lanczos algorithm with partial reorthogonalization, Math. Comp., 42 (1984),
pp. 115–142.

