Chapter 9

Arnoldi and Lanczos algorithms

9.1 An orthonormal basis for the Krylov space K’(x)

The natural basis of the Krylov subspace K/ (x) = K7 (x, A) is evidently {x, Ax, ..., A7~!x}.
Remember that the vectors A¥x converge to the direction of the eigenvector correspond-
ing to the largest eigenvalue (in modulus) of A. Thus, this basis tends to be badly
conditioned with increasing dimension j. Therefore, the straightforward procedure, the
Gram—Schmidt orthogonalization process, is applied to the basis vectors in their
natural order.

Suppose that {qi,...,q;} is the orthonormal basis for K!(x), where i < j. We con-

struct the vector q; 41 by first orthogonalizing AJx against qq, . .. NeTR
(9.1) yj = A]x—Zqiqu]X,
i=1

and then normalizing the resulting vector,

(9.2) aj+1 =y;/lly;l-

Then {qi,...,qj+1} is an orthonormal basis of K/*1(x), called in general the Arnoldi
basis or, if the matrix A is real symmetric or Hermitian, the Lanczos basis. The vectors
q; are called Arnoldi vectors or Lanczos vectors, respectively, see [6, 1].

The vector q;41 can be computed in a more economical way since

leH(X,A):R(X,Ax,...,ij]), (a1 =x/|x]]),

ai, Aqi, ..., Aqy)) (Aq1 = aq1 + Bqz, B #0),
a1, aqi + Bas, Alagr + Baz), . .., A7 (aqr + Bas)])

a1, d2, Aqo, ..., AV q)),

= R([q17q27 cee 7qj—1)qu]) .

So, instead of orthogonalizing A’q; against qi,...,q;, we can orthogonalize Aq;
against qi,...,q; to obtain q;1i1. The component r; of Aq; orthogonal to qi,...,q;
is given by

J
(9:3) r; = Aq; — Y _ aqi(qi"Agy).
i=1
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146 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS
If r; = 0 then the procedure stops which means that we have found an invariant subspace,
namely span{qi,...,q;}. If [|r;]| > 0 we obtain q;41 by normalizing,

r
(9.4) Qj+1 =
’ [l

Since, q;+1 and r; are aligned, we have

* (93) &
(9.5) a1 = [Irsl] =" qj144;.

The last equation holds since qj41 (by construction) is orthogonal to all the previous
Arnoldi vectors. Let

hi; = q; Aq;.
Then, (9.3)-(9.5) can be written as
J+1
(9.6) Agj = qihi;.
i=1

We collect the procedure in Algorithm 9.1

Algorithm 9.1 The Arnoldi algorithm for the computation of an orthonormal
basis of a Krylov space

1: Let A € F**™, This algorithm computes an orthonormal basis for KF(x).
> qr = x/ ||l

3: for j=1,...,k do

4:  r:= Aqj;

5:. fori=1,...,j do /* Gram-Schmidt orthogonalization */
6: hij :=qlr, r:=r—q;h;

7. end for

8 hjy1; = |rlf;

9: if hjy1; =0 then /* Found an invariant subspace */

10: return (qi,...,q;, H € F7*J)

11:  end if

120 g1 =1/hjr1;

13: end for

14: return (qu,...,qpr1, H € FFTIXE)

The Arnoldi algorithm returns if hjiq; = 0, in which case j is the degree of the
minimal polynomial of A relative to x, cf. (8.5). This algorithm costs k matrix-vector
multiplications, n?/2 + O(n) inner products, and the same number of _axpy’s.

Defining Qx = [qu, - - ., qx], equation (9.6) can be collected for j =1,...,k,

(9.7) AQr = QrHp +[0,...,0, dpg1hpr1k]
——

k—1 times

Equation (9.7) is called Arnoldi relation. The construction of the Arnoldi vectors is
expensive. Most of all, each iteration step becomes more costly as the number of vectors
against which r has to be orthogonalized increases. Therefore, algorithms based on the
Arnoldi relation like GMRES or the Arnoldi algorithm itself are restarted. This in general
means that the algorithm is repeated with a initial vector that is extracted from previous
invocation of the algorithm.
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9.2 Arnoldi algorithm with explicit restarts

Algorithm 9.1 stops if hp41,m = 0, i.e., if it has found an invariant subspace. The vectors
{q1,...,9m} then form an invariant subspace of A,

AQm = QmHy,, Qm = [(ha .. 7q77’L]'

The eigenvalues of H,, are eigenvalues of A as well and the Ritz vectors are eigenvectors
of A.

In general, we cannot afford to store the vectors qi, . . ., qm because of limited memory
space. Furthermore, the algorithmic complexity increases linearly in the iteration number
j. The orthogonalization would cost 2nm? floating point operations.

Often it is possible to extract good approximate eigenvectors from a Krylov space of
small dimension. We have seen, that in particular the extremal eigenvalues and corre-
sponding eigenvectors are very well approximated after a few iteration steps. So, if only a
small number of eigenpairs is desired, it is usually sufficient to get away with Krylov space
of much smaller dimension than m.

Exploiting the Arnoldi relation (9.7) we can get cheap estimates for the eigenvalue/eigen-

vector residuals. Let ugk) = kagk) be a Ritz vector with Ritz value ﬁgk). Then

Aul™ — 9P = 4Qs™ — 9P QusM = (AQk — QrHYS = hit el
Therefore,
(9.8) I(4 =" D 2 = b legs().

The residual norm is equal to the last component of sl(»k) multiplied by hjy1 5 (which is

positive by construction). These residual norms are not always indicative of actual errors
in )\Ek), but they can be helpful in deriving stopping procedures.

We now consider an algorithm for computing some of the extremal eigenvalues of a
non-Hermitian matrix. The algorithm proceeds by computing one eigenvector or rather
Schur vector at the time. For each of them an individual Arnoldi procedure is employed.
Let us assume that we have already computed k—1 Schur vectors uy,...u;_1. To compute
uy, we force the iterates in the Arnoldi process (the Arnoldi vectors) to be orthogonal to
U1 where Ug_1 = [uy,...ux_1]. So, we work essentially with the matrix

(I = Up—1U;_1)A

that has k — 1 eigenvalues zero which we of course neglect.

The procedure is given in Algorithm 9.2. The Schur vectors uy,...ug_1 are kept in the
search space, while the Krylov space is formed with the next approximate Schur vector.
The search space thus is

—k
span{uy,...ux_1,ug, Aug, ... A" u}.

In Algorithm 9.2 the basis vectors are denoted v; with v; = u; for j < k. The vectors
Vi, ..., Vny form an orthonormal basis of span{ug, Aug, .. .Am’kuk}.
The matrix H,, for kK = 2 has the structure

X X
X

X X[ X X

X X XX X
X X X XX X
X X X XX X
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Algorithm 9.2 Explicitly restarted Arnoldi algorithm

1: Let A € F™*™. This algorithm computes the ne, largest eigenvalues of A together with
the corresponding Schur vectors.

2: Set k= 1.

3: loop

4:  for j=k,...,m do /* Execute m — k steps of Arnoldi */
5: r:= Aqj;

6: fort=1,...,57 do

7 hij = q;-kI‘7 r.=r— QihijS

8: end for

9: hj+1,; = [|r[l;

10: Qj+1 =1/hjt1;

11: end for

12:  Compute approximate eigenvector of A associated with A and the corresponding
residual norm estimate py according to (9.8).

13:  Orthogonalize this eigenvector (Ritz vector) against all previous v; to get the ap-
proximate Schur vector ug. Set vi := uy.

14:  if py is small enough then /* accept eigenvalue */

15: fort=1,...,k do

16: hii = VfAVk;

17: end for

18: Set k:=k+ 1.

19: if kK > ney then

20: return (vy,..., vy, H € FF¥F)
21: end if

22:  end if

23: end loop

where the block in the lower right corresponds to the Arnoldi process for the Krylov space
ICm,k(uk, (I — Uk—lU;:_l)A)-

This algorithm needs at most m basis vectors. As soon as the dimension of the search
space reaches m the Arnoldi iteration is restarted with the best approximation as the
initial vector. The Schur vectors that have already converged are locked or deflated.

9.3 The Lanczos basis

We have seen that the Lanczos basis is formally constructed in the same way as the Arnoldi
basis, however with a Hermitian matrix. It deserves a special name for the simplifications
that the symmetry entails.

By multiplying (9.7) with Q; from the left we get

(9.9) QrAQ) = Q1.QrHy = Hy.

If A is Hermitian, then so is Hj. This means that H} is tridiagonal. To emphasize this

matrix structure, we call this tridiagonal matrix T;. Due to symmetry, equation (9.3)

simplifies considerably,

(9.10) rj = Aq; — q; (4j Aq;) —q;-1 (qj_1 Aq;) = Aq; — ajq; — Bj-1q;-1.
—— ——

o €ER Bj—1€F
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Similarly as earlier, we premultiply (9.10) by q;4+1 to get

vl = dji1ry = dj 41 (Adj — ajq; — Bj-19;-1)
= q;+1qu = 05;-

From this it follows that 3; € R. Therefore,

(9.11) Biqj+1 = Ty, Bi = [Irjll-
Collecting (9.10)-(9.11) yields

(9.12) Aqj = fj-19j-1 + @jd; + 59541

Gathering these equations for j =1,..., k we get

ar By
B1 az [
(9.13) AQk = Q P2 az . +6,[0, ..., 0, qrs1]-
' ' Br-1
Br-1 g

Ty

Ty, € RF** is real symmetric. Equation (9.13) is called Lanczos relation. Pictorially,
this is

T

The Lanczos algorithm is summarized in Algorithm 9.3. In this algorithm just the
three vectors q, r, and v are employed. In the j-th iteration step (line 8) q is assigned
q; and v stores g;j_i. r stores first (line 9) Aq; — Bj—1q;—1. Later (step 11), when «;
is available, it stores r; = Aq; — $j-19—1 — a;q;. In the computation of o; the fact is
exploited that q;qu_l = 0 whence

aj = q;Aq; = q;(Aq; — Bj-195-1).

In each traversal of the j-loop a column is appended to the matrix ();—1 to become @Q;. If
the Lanczos vectors are not desired this statement can be omitted. The Lanczos vectors
are required to compute the eigenvectors of A. Algorithm 9.3 returns when j = m, where
m is the degree of the minimal polynomial of A relative to x. b, = 0 implies

(9.14) AQm = Qme-
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Algorithm 9.3 Basic Lanczos algorithm for the computation of an orthonormal
basis for of the Krylov space K™ (x)

1: Let A € F"*" be Hermitian. This algorithm computes the Lanczos relation (9.13),
i.e., an orthonormal basis @Q,, = [q1,. .., qQm] for K™ (x) where m is the smallest index
such that K™ (x) = K™*1(x), and (the nontrivial elements of) the tridiagonal matrix
T,

2 q:=x/|x[; Qi =Id];

3: r:= Aq;

4: ay :=q'r;

5 r:=r—oq;

6 B 1= vl

7. for j =2,3,...do

8 v=q; q:=r/Fj1; Q;:=I[Qj1,4q];
9: r:=Aq—fFj1v;

10: o :=q'r;

11: r:=r—;q;

12 8= el

13: if 8; =0 then

14: return (QEFan; Qag, ..., 04 ﬁhn-yﬁj—l)
15:  end if

16: end for

Let (\;,s;) be an eigenpair of T),,

(9.15) Tmsgm) _ 19Z(m)sz(m).
Then,
(9.16) AQus!™ = QuTs!™ = 9™ Q™.

So, the eigenvalues of T}, are also eigenvalues of A. The eigenvector of A corresponding
to the eigenvalue ¢; is

(9.17) yi=Qus™ = [ar,....qmlsi™ = q;si.
j=1

The cost of a single iteration step of Algorithm 9.3 does not depend on the index of

the iteration! In a single iteration step we have to execute a matrix-vector multiplication
and 7n further floating point operations.
Remark 9.1. In certain very big applications the Lanczos vectors cannot be stored for
reasons of limited memory. In this situation, the Lanczos algorithm is executed without
building the matrix ). When the desired eigenvalues and Ritz vectors have been de-
termined from (9.15) the Lanczos algorithm is repeated and the desired eigenvectors are
accumulated on the fly using (9.17). O

9.4 The Lanczos process as an iterative method

The Lanczos Algorithm 9.3 essentially determines an invariant Krylov subspace K™ (x)
of F". More precisely, it constructs an orthonormal basis {qi,...,qm} of K™(x). The
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projection of A onto this space is a Hessenberg or even a real tridiagonal matrix if A is
Hermitian.

We have seen in section 8.4 that the eigenvalues at the end of the spectrum are ap-
proximated very quickly in Krylov spaces. Therefore, only a very few iteration steps may
be required to get those eigenvalues (and corresponding eigenvectors) within the desired
accuracy, i.e., |19§]) — Ai| may be tiny for j < m.

The Ritz values 191(] ) are the eigenvalues of the tridiagonal matrices T} that are gener-
ated element by element in the course of the Lanczos algorithm. They can be computed
efficiently by, e.g., the tridiagonal QR algorithm in O(j2) flops. The cost for computing
the eigenvalues of T} are in general negligible compared with the cost for forming Aq;.

But how can the error ng )~ Ai| be estimated? We will adapt the following more
general lemma to this end.

Lemma 9.1 (Eigenvalue inclusion of Krylov—Bogoliubov [5] [7, p.69]) Let A € F"*"
be Hermitian. Let 9 € R and x € F™ with x # 0 be arbitrary. Set 7 := [|[(A — I)x]/||x]|-
Then there is an eigenvalue of A in the interval [§ — 1,9 + T].

Proof. Let
i=1

be the spectral decomposition of A. Then,

n n

(A—0Dx =) (Awuj — dwu))x = (A — 9)(ujx)u,.

=1 =1

Taking norms, we obtain
n n
I(A = 9D)x[* =D I\ = 9P i > A =97 Y [uix]* = [\ — 9],
i=1 i=1

where A is the eigenvalue closest to 7, i.e., [\x — 9| < |A\; — 9] for all 4. u
We want to apply this Lemma to the case where the vector is a Ritz vector yl(j )
corresponding to the Ritz value 7 = 192(»] )

algorithm. Then,

as obtained in the j-th step of the Lanczos

yz(j) _ stl(j)7 Tjsz(‘j) _ ﬁgj)sz(j)'
Thus, by employing the Lanczos relation (9.13),
|4y =0y = 1|AQ;s” — 0 Q8|
= 1(AQ; - QT
= 1Bja511€55¢" | = 18;lejs”] = 15115571
s%) is the j-th, i.e., the last element of the eigenvector matrix S; of T},

T;; = 8;0;,  ©; =diag(¥{,--- ,0).
According to Lemma 9.1 there is an eigenvalue A of A such that

(9.18) A =99 < B)lsjil.
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Thus, it is possible to get good eigenvalue approximations even if 3; is not small! Further,
we know that [7, §11.7]

(9.19) sin A(ygj),z) < ﬁj’Sf;A,

where z is the eigenvector corresponding to A in (9.18) and + is the gap between A and
the next eigenvalue # A of A. In an actual computation, v is not known. Parlett suggests
to replace v by the distance of 19? ) to the next 1912‘7 ), k # i. Because the 795] ) converge to
eigenvalues of A this substitution will give a reasonable number, at least in the limit.

In order to use the estimate (9.18) we need to compute all eigenvalues of T; and the
last row of S;. It is possible and in fact straightforward to compute this row without the
rest of S;. The algorithm, a simple modification of the tridiagonal QR algorithm, has been
introduced by Golub and Welsch [3] in connection with the computation of interpolation
points and weights in Gaussian integration.

A numerical example

This numerical example is intended to show that the implementation of the Lanczos algo-
rithm is not as simple as it seems from the previous. Let

A = diag(0, 1,2, 3, 4,100000)
and
x=(1,1,1,1,1,1)T.

The diagonal matrix A has six simple eigenvalues and x has a non-vanishing component in
the direction of each eigenspace. Thus, the Lanczos algorithm should stop afterm =n =6
iteration steps with the complete Lanczos relation. Up to rounding error, we expect that
B¢ = 0 and that the eigenvalues of T are identical with those of A. Let’s see what happens
if Algorithm 9.3 is applied with these input data. in the sequel we present the numbers
that we obtained with a MATLAB implementation of this algorithm.

a1 = 16668.33333333334, (31 = 37267.05429136513.

ag = 83333.66652666384, B2 = 3.464101610531258.

The diagonal of the eigenvalue matrix ©s is:
diag(©3) = (1.999959999195565, 99999.99989999799)" .
The last row of (3255 is
B2, = (1.4142135626139063.162277655014521) .
The matrix of Ritz vectors Yo = (0259 is

—0.44722  —2.0000 - 1079
—0.44722  —9.9998 - 10796
—0.44721 4.0002 - 10~10
—0.44721 1.0001 - 1079°
—0.44720 2.0001 - 1079
4.4723 10710 1.0000
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a3 = 2.000112002245340 B3 = 1.183215957295906.

The diagonal of the eigenvalue matrix is
diag(©3) = (0.5857724375775532, 3.414199561869119, 99999.99999999999)T .

The largest eigenvalue has converged already. This is not surprising as \y/A; =
4-1075. With simple vector iteration the eigenvalues would converge with the factor
Ao/A1 =4-107°.

The last row of 3353 is
B3S3,. = (0.8366523355001995, 0.8366677176165411, 3.741732220526109 - 10’05) .
The matrix of Ritz vectors Y3 = (03573 is

0.76345 0.13099 2.0000 - 1010
0.53983 —0.09263 —1.0001 - 10710
0.31622 —0.31623 —2.0001 - 10~10
0.09262 —0.53984 —1.0000 - 10710
—0.13098 —0.76344 2.0001 - 1010

—1.5864 - 10713 —1.5851-1013 1.00000

The largest element (in modulus) of Y'Y3 is &~ 3 - 10712,

The Ritz vectors (and thus the Lanczos vectors q;) are mutually orthogonal up to
rounding error.

j=4

oy = 2.000007428756856 B4 = 1.014186947306611.

The diagonal of the eigenvalue matrix is

0.1560868732577987
1.999987898940119
3.843904656006355
99999.99999999999

diag(©4) =

The last row of (3454 is
BaSy. = (0.46017, —0.77785, —0.46018,3.7949 - 10~ 17) .
The matrix of Ritz vectors Yy = (454 is

—0.82515 0.069476 —0.40834 —0.18249
—0.034415 0.41262 —0.40834 —0.18243
0.37812 0.37781 —0.40834 —0.18236
0.41256 —0.034834  —0.40834 —0.18230
0.069022 —0.82520 —0.40834 —0.18223

—1.3202-107% 1.3211-107% —0.40777 0.91308

The largest element (in modulus) of Y'Yy is ~ 2- 1075,

We have 34544 = 4-1071%. So, according to our previous estimates (94,y4), y14 =
Yiey is a very good approximation for an eigenpair of A. This is in fact the case.

Notice that YY) has off diagonal elements of the order 107%. These elements are
in the last row/column of Y;'Y;. This means that all Ritz vectors have a small but
not negligible component in the direction of the ‘largest’ Ritz vector.



154 CHAPTER 9. ARNOLDI AND LANCZOS ALGORITHMS

a5 = 2.363169101109444 (G5 = 190.5668098726485.

The diagonal of the eigenvalue matrix is

0.04749223464478182
1.413262891598485
diag(©s) = 2.894172742223630
4.008220660846780
9.999999999999999 - 10*

The last row of (3555 is
3555, = (—43.570 — 111.38134.0963.4957.2320 - 10~ 1?) .

The matrix of Ritz vectors Y5 is

—0.98779 —0.084856 0.049886 0.017056 —1.1424-107Y7
—0.14188 0.83594 —0.21957 —0.065468 —~7.2361-10718
0.063480 0.54001 0.42660 0.089943 —8.0207 - 10718
—0.010200  —0.048519 0.87582 —0.043531 —5.1980- 10718
—0.0014168 —0.0055339  0.015585 —0.99269 —~1.6128 - 1077
4.3570-10~%  0.0011138  —0.0013409 —6.3497- 1074 1.0000

Evidently, the last column of Y5 is an excellent eigenvector approximation. Notice,
however, that all Ritz vectors have a relatively large (~ 10~%) last component. This,
gives rise to quite large off-diagonal elements of Y5TY5 —I5=

2.220-10716  —1.587-10716 —3.430-10~'? —7.890-10~°? —7.780-107%
—1.587-10716  —1.110-10"'¢ 1.283-107'2 —1.764-10~% —1.740-1073
—3.430-10712  1.283-10~12 0 5.6800-10717  —6.027-1078
—7.890-107% —1.764-10"% 5.6800-10~'7 —2.220-10"'6  4.187-10716
—7.780-10%* —1.740-10~% —6.027-107%  4.187-10~16 —1.110-10"16

Similarly as with j = 4, the first four Ritz vectors satisfy the orthogonality condition
very well. But they are not perpendicular to the last Ritz vector.

J=6
o = 99998.06336906151 B = 396.6622037049789

The diagonal of the eigenvalue matrix is

0.02483483859326367
1.273835519171372
2.726145019098232
3.975161765440400

9.999842654044850 - 104
1.000000000000000 - 10+5

diag(O¢) =

The eigenvalues are not the exact ones, as was to be expected. We even have two
copies of the largest eigenvalue of A in ©g! The last row of (4Sg is

B6S6,: = (—0.20603,0.49322, 0.49323, 0.20604, 396.66, —8.6152 - 10_15)
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although theory predicts that g = 0. The sixth entry of 35S is very small, which
means that the sixth Ritz value and the corresponding Ritz vector are good approx-
imations to an eigenpair of A. In fact, eigenvalue and eigenvector are accurate to
machine precision.

Bs56,5 does not predict the fifth column of Y5 to be a good eigenvector approximation,
although the angle between the fifth and sixth column of Yj is less than 1073, The
last two columns of Yy are

—4.7409-107%* —3.3578 - 1017
1.8964-1073 —5.3735-10"17
—2.8447-107% —7.0931-10"17
1.8965-1073 —6.7074 - 10717
—4.7414-10* —4.9289- 10717
—0.99999 1.0000

As (B¢ # 0 one could continue the Lanczos process and compute ever larger tridi-

agonal matrices. If one proceeds in this way one obtains multiple copies of certain
eigenvalues [2, 2]. The corresponding values ﬂjs%) will be tiny. The corresponding

Ritz vectors will be ‘almost’ linearly dependent.

From this numerical example we see that the problem of the Lanczos algorithm consists

in the loss of orthogonality among Ritz vectors which is a consequence of the loss of
orthogonality among Lanczos vectors, since Y; = ;5 and \S; is unitary (up to roundoff).

To verify this diagnosis, we rerun the Lanczos algorithm with complete reorthogonal-

ization. This procedure amounts to the Arnoldi algorithm 9.1. Ir can be accomplished by
modifying line 11 in the Lanczos algorithm 9.3, see Algorithm 9.4.

Algorithm 9.4 Lanczos algorithm with full reorthogonalization

1l: r:=r —qjq; r:=r—Q(Q*q);

Of course, the cost of the algorithm increases considerably. The j-th step of the

algorithm requires now a matrix-vector multiplication and (2j + O(1))n floating point
operations.

A numerical example [continued]

With matrix and initial vector as before Algorithm 9.4 gives the following numbers.

j=1

o1 = 16668.33333333334, (31 = 37267.05429136513.

j=2

g = 83333.66652666384, B2 = 3.464101610531258.

The diagonal of the eigenvalue matrix ©s is:

diag(©2) = (1.999959999195565, 99999.99989999799)T .

j=3

a3 = 2.000112002240894 B3 = 1.183215957295905

The diagonal of the eigenvalue matrix is

diag(©3) = (0.5857724375677908, 3.414199561859357, 100000.0000000000)T .
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g = 2.000007428719501 B4 = 1.014185105707661

0.1560868732475296
1.999987898917647
3.843904655996084
99999.99999999999

The matrix of Ritz vectors Yy = (0454 is

diag(©4) =

—0.93229 0.12299 0.03786 —1.1767-10~1°
—0.34487 —0.49196 —0.10234  2.4391-10~1°
2.7058 - 10~6 —0.69693 2.7059-107%  4.9558 - 1017
0.10233 —0.49195 0.34488 —2.3616-10"1°
—0.03786 0.12299 0.93228  1.2391-10"1%°
2.7086 - 10717 6.6451- 10717 —5.1206-10~17 1.00000

The largest off-diagonal element of |Y,I'Yy| is about 2 - 10716

j=5
as = 2.000009143040107 S5 = 0.7559289460488005
0.02483568754088384
1.273840384543175
diag(©s) = | 2.726149884630423
3.975162614480485
10000.000000000000

The Ritz vectors are Y5 =

—9.91-1079% —462-1072 2.16-1079%2 —6.19.107% —4.41-10718
—1.01-10797  861-107% —1.36-1079" —3.31-10792 1.12-10717
748-10792  4.87-107°%  4.87-107% —7.48.10792 —5.89-10718
—3.31-10792 —1.36-107% 861-1079" —1.01-10"% 1.07-10717
6.19-1079%  216-10792 —4.62-10792 —9.91.10"0 1.13-10717

598-1071%  1.58-10717 —3.39-10717 —5.96-10"17 1.000000000000000
Largest off-diagonal element of |Y5TY5| is about 10716 The last row of (3595 is

B5S5,. = (—0.20603, —0.49322, 0.49322, 0.20603, 2.8687 - 1019 .

o = 2.000011428799386 Bs = 4.178550866749342-1028

7.950307079340746-10~13
1.000000000000402
2.000000000000210
3.000000000000886
4.000000000001099
9.999999999999999-10*

diag(©g) =

The Ritz vectors are very accurate. Yg is almost the identity matrix are 1.0. The
largest off diagonal element of YGTY6 is about 10716, Finally,

BsS6,: = (4.99-107*?, —2.00-107*,3.00-10, —2.00-10~*, 5.00-107>?,1.20-107%7) ,
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With a much enlarged effort we have obtained the desired result. Thus, the loss
of orthogonality among the Lanczos vectors can be prevented by the explicit reorthogo-
nalization against all previous Lanczos vectors. This amounts to applying the Arnoldi
algorithm. In the sequel we want to better understand when the loss of orthogonality
actually happens.

9.5 An error analysis of the unmodified Lanczos algorithm

When the quantities (), T}, r;, etc., are computed numerically by using the Lanczos algo-
rithm, they can deviate greatly from their theoretical counterparts. However, despite this
gross deviation from the exact model, it nevertheless delivers fully accurate Ritz value and
Ritz vector approximations.

In this section Q;,T},r; etc. denote the numerically computed values and not their
theoretical counterparts. So, instead of the Lanczos relation (9.13) we write

(9.20) AQj — QjT; = rjej + F;
where the matrix F}; accounts for errors due to roundoff. Similarly, we write
(9.21) I; — Q;QJ = C]* + Aj + Cj,

where A; is a diagonal matrix and Cj is a strictly upper triangular matrix (with zero
diagonal). Thus, C7 +A; 4 C; indicates the deviation of the Lanczos vectors from orthog-
onality.

We make the following assumptions

1. The tridiagonal eigenvalue problem can be solved exactly, i.e.,
(9.22) T; = 5;0;5;, Sj= Sj_l, ©, = diag(vy,...,v;).
2. The orthogonality of the Lanczos vectors holds locally, i.e.,
(9.23) qi1ai=0, i=1,...,5—1, and rjq;=0.
3. Furthermore,

(9.24) laill = 1.

So, we assume that the computations that we actually perform (like orthogonalizations or
solving the eigenvalue problem) are accurate. These assumptions imply that A; = O and

W —0fori=1,...,5—1.

Cii+1 =
We premultiply (9.20) by @} and obtain
(9.25) QjAQ; — QjQ;Tj = Qjrjej + Q5 F;

In order to eliminate A we subtract from this equation its transposed,

Qirje; —e;r;Q; = —Q;Q;T; + T;Q;Q; + Q; F; — F1Qy,
= (I - Q;Q;)T; - T;(I - Q;Q;) + Q; F; — FFQj,
9.21 . . . .
(9.26) (:)(Cj"‘cj)Tj_Tj(Cj+Cj)+Qij_Fij’

= (OT,-T,0) + (GT - T,0)) ~FQ; + QF;

upper triangular lower triangular
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FrQj — Q;Fj is skew symmetric. Therefore we have
FQ; - QjF) = —K; + K;

where K is an upper triangular matrix with zero diagonal. Thus, (9.25) has the form

O A 0 CiTs = T5C; 0 K;
: _ . + :
X
—_——
First j — 1
components
of erj.

As the last component of Q%r; vanishes, we can treat these triangular matrices sepa-
rately. For the upper triangular matrices we have

Qjrje; = C;T; = T;C; + Kj.
Multiplication by s} and s;, respectively, from left and right gives

s;Q; r; eis; =s;(CiT; — T;C))s; + s Kjs;.
N NN
y; Bigj+1 Sii
Let G := S} K;S;. Then we have
(9.27) Bisjiyidje1 = sjiyirj = s;Cjsidi — Ui Csi + g = g1

We now multiply (9.25) with s} from the left and with s; from the right. As @Q;s; = y;,
we have

Vi Ayr — Viyide = yirjejsy + s;Q; Fisy.

Now, from this equation we subtract again its transposed, such that A is eliminated,

* * * * *
YiYk(¥i — Oy) = yirjesy — yiriejsi +s;Q Fys, — s Q Fs;

om (82\ ()
IR WOl AL WOl B
ji gk

1 * * * * 1 * * * *
+ §(SZ QijSk + Sij QjSi) — i(SijFjSi + SiFj stk)
() (7)
NS N . .
= 9 7 — 9 g5y — (ot — i)
(7) (4)
Sji Sk

Thus we have proved
Theorem 9.2 (Paige, see [7, p.266]) With the above notations we have
()

(9.28) ygj) qu = gii .
e
35 5

(4) (D, @) * () (')5(‘]12 (')5@ (4) (4)

(9.29) W — 9y v =g = — (g — 9i)-

i Yk T Y9 "G T Ikk ()
55 55k
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We can interpret these equations in the following way.

e From numerical experiments it is known that equation (9.20) is always satisfied to
machine precision. Thus, || Fj| = € ||A||. Therefore, |G;|| = ¢ || A, and, in particular,

19| ~ e[| A].

Sk .
e We see from (9.28) that |y£3) q;+1| becomes large if ﬂj\sg” becomes small, i.e., if
the Ritz vector ygj ) is a good approximation of the corresponding eigenvector. Thus,
each new Lanczos vector has a significant component in the direction of converged

(‘good’) Ritz vectors.

As a consequence: ’convergence <= loss of orthogonality ‘

o Let |s§]1)] < |8§-]k)|, ie., ygj) is a ‘good’ Ritz vector in contrast to y,(j) that is a ‘bad’
Ritz vector. Then in the first term on the right of (9.29) two small (O(e)) quantities
counteract each other such that the right hand side in (9.29) becomes large, O(1). If
the corresponding Ritz values are well separated, |[0; — Ux| = O(1), then |yyx| > e.
So, in this case also ‘bad’ Ritz vectors have a significant component in the direction
of the ‘good’ Ritz vectors.

o If |); — ¥;| = O(e) and both s(-]i) and sg.]k) are of O(e) the sg-]i)/s%) = O(1) such that
the right hand side of (9.29) as well as |; — ¥%| is O(e). Therefore, we must have
ygj )*y,(j ) = O(1). So, these two vectors are almost parallel.

9.6 Partial reorthogonalization

In Section 9.4 we have learned that the Lanczos algorithm does not yield orthogonal

Lanczos vectors as it should in theory due to floating point arithmetic. In the previous

section we learned that the loss of orthogonality happens as soon as Ritz vectors have

converged accurately enough to eigenvectors. In this section we review an approach how

to counteract the loss of orthogonality without executing full reorthogonalization [8, 9].
In [7] it is shown that if the Lanczos basis is semiorthogonal, i.e., if

W; ZQ;QJ'ZI]‘—FE, HEH < +\EM,
then the tridiagonal matrix 7} is the projection of A onto the subspace R(V}),
Tj = NjAN; + G, [|G]| = O((eamn)|Al),

where Nj; is an orthonormal basis of R(Q;). Therefore, it suffices to have semiorthog-

onal Lanczos vectors for computing accurate eigenvalues. Our goal is now to enforce

semiorthogonality by monitoring the loss of orthogonality and to reorthogonalize if needed.
The computed Lanczos vectors satisfy

(9.30) Biqj+1 = Aq; — a;q; — Bj—1q;-1 + 1,

where f; accounts for the roundoff errors committed in the j-th iteration step. Let W; =
((wik))1<i, k<j- Premultiplying equation (9.30) by qj gives

(9.31) Biwit1,k = drpAq; — ajwjk — Bj—iwj-1k + aif;.
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Exchanging indices j and k in the last equation (9.31) gives

(9-32) Brwjk+1 = A Adg — apwik — Br—1wjk—1 + q; k.
By subtracting (9.32) from (9.31) we get
(933)  Bjwjt1k = Bewjkt1 + (ak — j)wjr — Br—1wjk—1 — Bj—1wj—1k — djfk + qifj.

Given W; we employ equation (9.33) to compute the j+ 1-th row of W ;. However,
elements w;;1; and wji1 j+1 are not defined by (9.33). We can assign values to these two
matrix entries by reasoning as follows.

e We set wji1,+1 = 1 because we explicitly normalize q;1.

e We set wji1j = O(epr) because we explicitly orthogonalize q;j41 and g;.
For computational purposes, equation (9.33) is now replaced by

w0 = Brwj k1 + (o — j)wik — Br—1wj k-1 — Bj—1wj-1k;
(9.34) wit1k = (@ + sign(w) 2¢|| A )/ B;-
——
the estimate of
q;fy + qif;

As soon as wjq1x > /en the vectors q; and qj41 are orthogonalized against all previous
Lanczos vectors qu,...,q;j—1. Then the elements of last two lines of W; are set equal to a
number of size O(epr). Notice that only the last two rows of W; have to be stored.

Numerical example

We perform the Lanczos algorithm with matrix
A = diag(1,2,...,50)

and initial vector

In the first experiment we execute 50 iteration steps. In Table 9.1 the base-10 logarithms
of the values |w; j|/macheps are listed where |w; ;| = |qiq;|, 1 < j <4 < 50 and macheps
~ 2.2-10716. One sees how the |w; j| steadily grow with increasing i and with increasing
i =l

In the second experiment we execute 50 iteration steps with partial reorthogonalization
turned on. The estimators w;; are computed according to (9.33),

wk,k:17 kzlavj

W k—1 = Yk, k=2...,J
(9.35)

1
WitLh = 5 [Brewjks1 + (ar — aj)wjk
J

—Br—1wWjk—1 — Bj—1wj—1.k] + Vi k, 1<Ek<j.

Here, we set w;o = 0. The values v, and 9; ;, could be defined to be random variables of
the correct magnitude, i.e., O(ek). Following a suggestion of Parlett [7] we used

Ye=cellAll,  dip =eVIAl-
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Table 9.1: MATLAB demo on the loss of orthogonality among Lanczos vectors. Unmodified Lanczos. round(logl10(abs(I-Q%,Q50)/eps))
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Reorthogonalization takes place in the j-th Lanczos step if maxy(w;y1%) > y/macheps.
q,;+1 is orthogonalized against all vectors qj with w;i1 > macheps®/4. In the following
iteration step also q;i2 is orthogonalized against these vectors. In Table 9.2 the base-
10 logarithms of the values |w; j|/macheps obtained with this procedure are listed where
lw; ;| = lafq;|, 1 < j < i < 50 and macheps &~ 2.2 - 10716, In Table 9.3 the base-10
logarithms of the estimates |w; j|/macheps are given. The estimates are too high by (only)
an order of magnitude. However, the procedure succeeds in that the resulting {qx} are
semi-orthogonal.

9.7 Block Lanczos

As we have seen, the Lanczos algorithm produces a sequence {q;} of orthonormal vec-
tors. These Lanczos vectors build an orthonormal basis for the Krylov subspace K7 (x) =
span{qi,...,qj} C R™ The restriction of A to K’(x) is an unreduced tridiagonal ma-
trix. However the Lanczos algorithm cannot detect the multiplicity of the eigenvalues it
computes. This limitation prompted the development of the block version of the Lanc-
zos process (Block Lanczos algorithm), which is capable of determining multiplicities of
eigenvalues up to the block size.

The idea is not to start with a single vector q; € R™ but with a set of mutually
orthogonal vectors which we take as the columns of the matrix @1 € R™*P with the block
size p > 1.

Associated with Q1 is the ‘big’ Krylov subspace

(9.36) K7P(Q1) = span{Q1, AQ1, ..., A7 'Q1}.

(We suppose, for simplicity, that A7~1@Q1 has rank p. Otherwise we would have to consider
variable block sizes.)

The approach is similar to the scalar case with p = 1: Let Q1,...,Q; € R™? be
pairwise orthogonal block matrices (QfQr = O for ¢ # k) with orthonormal columns
(QiQ; = I, for all i < j). Then, in the j-th iteration step, we obtain the matrix AQ);
and orthogonalize it against matrices Q);, ¢ < j. The columns of the matrices are obtained
by means of the QR factorization or with the Gram—Schmidt orthonormalization process.
We obtained the following:

Algorithm 9.5 Block Lanczos algorithm
1: Choose @1 € F"*? such that Q{Q1 = I,. Set j :=0 and F**? 5V :=0.
This algorithm generates a block tridiagonal matrix T] with the diagonal blocks A;,
i < j, the lower diagonal blocks B;, i < j, and the Krylov basis [Q1, ..., Q;] of K/P(Q1).
2: for j > 0 do
3: if 7 > 0 then
4 V =: Qj+1Bj; /* QR decomposition */
5 V.= —QjB;f;
6: end if
7
8
9

J=J+1

Aj = Q;V,

V=V — QA
10:  Test for convergence (Ritz pairs, evaluation of error)
11: end for
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Lanczos with partial reorthogonalization.

MATLAB demo on the loss of orthogonality among Lanczos vectors:

Table 9.2:

round (log10 (abs (I-Q%,Q50) /eps))
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Let Qj = [Q1,Q2,...,Q;] be the Krylov basis generated by Algorithm 9.5. Then, in
this basis, the projection of A is the block tridiagonal matrix T’
Ay Bj

A A~ ~ Bl A2 ".
Q;AQ,; =T; = . ' , A, B; € RPFP,

If matrices B; are chosen to be upper triangular, then Tj is a band matrix with bandwidth
2p+ 1!
Similarly as in scalar case, in the j-th iteration step we obtain the equation

0]
AQj - QiTj = QiBjE; + Fj,  Ej= é :
Ip

where Fj accounts for the effect of roundoff error. Let (¥;,y;) be a Ritz pair of A in
K7P(Q1). Then
yi = Qjsi, Tjs; = U;s;.

As before, we can consider the residual norm to study the accuracy of the Ritz pair (9;,y;)
of A

j(p— 1)+1z
[Ay: — Diyill = [[AQjsi — V:Qjsil| = [|Qj+1 B Efsi =

Sjip+1,i

We have to compute the bottom p components of the eigenvectors s; in order to test for
convergence.

Similarly as in the scalar case, the mutual orthogonality of the Lanczos vectors (i.e.,
the columns of Q]) is lost, as soon as convergence sets in. The remedies described earlier
are available: full reorthogonalization or selective orthogonalization.

9.8 External selective reorthogonalization

If many eigenvalues are to be computed with the Lanczos algorithm, it is usually advisable
to execute shift-and-invert Lanczos with varying shifts [4].

In each new start of a Lanczos procedure, one has to prevent the algorithm from finding
already computed eigenpairs. We have encountered this problem when we tried to compute
multiple eigenpairs by simple vector iteration. Here, the remedy is the same as there. In
the second and further runs of the Lanczos algorithm, the starting vectors are made
orthogonal to the already computed eigenvectors. We know that in theory all Lanczos
vectors will be orthogonal to the previously computed eigenvectors. However, because the
previous eigenvectors have been computed only approximately the initial vectors are not
orthogonal to the true eigenvectors. Because of this and because of floating point errors
loss of orthogonality is observed. The loss of orthogonality can be monitored similarly as
with partial reorthogonalization. For details see [4].
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