
Chapter 1

Introduction

Before we start with the subject of this notes we want to show how one actually arrives at
large eigenvalue problems in practice. In the following, we restrict ourselves to problems
from physics [4, 7] and computer science.

1.1 What makes eigenvalues interesting?

In physics, eigenvalues are usually connected to vibrations. Objects like violin strings,
drums, bridges, sky scrapers can swing. They do this at certain frequencies. And in some
situations they swing so much that they are destroyed. On November 7, 1940, the Tacoma
narrows bridge collapsed, less than half a year after its opening. Strong winds excited the
bridge so much that the platform in reinforced concrete fell into pieces. A few years ago
the London millennium footbridge started wobbling in a way that it had to be closed. The
wobbling had been excited by the pedestrians passing the bridge. These are prominent
examples of vibrating structures.

But eigenvalues appear in many other places. Electric fields in cyclotrones, a special
form of particle accelerators, have to vibrate in a precise manner, in order to accelerate the
charged particles that circle around its center. The solutions of the Schrödinger equation
from quantum physics and quantum chemistry have solutions that correspond to vibrations
of the, say, molecule it models. The eigenvalues correspond to energy levels that molecule
can occupy.

Many characteristic quantities in science are eigenvalues:

• decay factors,

• frequencies,

• norms of operators (or matrices),

• singular values,

• condition numbers.

In the sequel we give a number of examples that show why computing eigenvalues is
important. At the same time we introduce some notation.
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1.2 Example 1: The vibrating string

1.2.1 Problem setting

Let us consider a string as displayed in Fig. 1.1. The string is clamped at both ends,

u

x
L0

u(x,t)

Figure 1.1: A vibrating string clamped at both ends.

at x = 0 and x = L. The x-axis coincides with the string’s equilibrium position. The
displacement of the rest position at x, 0 < x < L, and time t is denoted by u(x, t).

We will assume that the spatial derivatives of u are not very large:
∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

is small.

This assumption entails that we may neglect terms of higher order.
Let v(x, t) be the velocity of the string at position x and at time t. Then the kinetic

energy of a string section ds of mass dm = ρ ds is given by

(1.1) dT =
1

2
dm v2 =

1

2
ρ ds

(

∂u

∂t

)2

.

From Fig. 1.2 we see that ds2 = dx2 +
(

∂u
∂x

)2
dx2 and thus

ds

dx
=

√

1 +

(

∂u

∂x

)2

= 1 +
1

2

(

∂u

∂x

)2

+ higher order terms.

Plugging this into (1.1) and omitting also the second order term (leaving just the number
1) gives

dT =
ρ dx

2

(

∂u

∂t

)2

.

The kinetic energy of the whole string is obtained by integrating over its length,

T =

∫ L

0
dT (x) =

1

2

∫ L

0
ρ(x)

(

∂u

∂t

)2

dx

The potential energy of the string has two components
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ds

dx

Figure 1.2: A vibrating string, local picture.

1. the stretching times the exerted strain τ .

τ

∫ L

0
ds − τ

∫ L

0
dx = τ

∫ L

0





√

1 +

(

∂u

∂x

)2

− 1



 dx

= τ

∫ L

0

(

1

2

(

∂u

∂x

)2

+ higher order terms

)

dx

2. exterior forces of density f

−
∫ L

0
fudx

Summing up, the kinetic energy of the string becomes

(1.2) V =

∫ L

0

(

τ

2

(

∂u

∂x

)2

− fu

)

dx

To consider the motion (vibration) of the string in a certain time interval t1 ≤ t ≤ t2 we
form the integral

(1.3)

I(u) =

∫ t2

t1

(T − V ) dt

=
1

2

∫ t2

t1

∫ L

0

[

ρ(x)

(

∂u

∂t

)2

− τ

(

∂u

∂x

)2

− fu

]

dx dt

Here functions u(x, t) are admitted that are differentiable with respect to x and t and
satisfy the boundary conditions (BC) that correspond to the clamping,

(1.4) u(0, t) = u(L, t) = 0, t1 ≤ t ≤ t2,

as well as given initial conditions and end conditions,

(1.5)
u(x, t1) = u1(x),
u(x, t2) = u2(x),

0 < x < L.
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According to the principle of Hamilton a mechanical system with kinetic energy T and
potential energy V behaves in a time interval t1 ≤ t ≤ t2 for given initial and end positions
such that

I =

∫ t2

t1

Ldt, L = T − V,

is minimized.
Let u(x, t) be such that I(u) ≤ I(w) for all w, that satisfy the initial, end, and

boundary conditions. Let w = u + ε v with

v(0, t) = v(L, t) = 0, v(x, t1) = v(x, t2) = 0.

v is called a variation. We now consider I(u + ε v) as a function of ε. Then we have the
equivalence

I(u) minimal ⇐⇒ dI
dε

(u) = 0 for all admitted v.

Plugging u + ε v into eq. (1.3) we obtain

(1.6)

I(u + ε v) =
1

2

t2
∫

t1

L
∫

0

[

ρ(x)

(

∂(u + ε v)

∂t

)2

− τ

(

∂(u + ε v)

∂x

)2

− 2f(u + ε v)

]

dx dt

= I(u) + ε

t2
∫

t1

L
∫

0

[

ρ(x)
∂u

∂t

∂v

∂t
− τ

∂u

∂x

∂v

∂x
+ 2fv

]

dx dt + O(ε2).

Thus,
∂I

∂ε
=

∫ t2

t1

∫ L

0

[

−ρ
∂2u

∂t2
+ τ

∂2u

∂x2
+ 2 f

]

v dx dt = 0

for all admissible v. Therefore, the bracketed expression must vanish,

(1.7) −ρ
∂2u

∂t2
+ τ

∂2u

∂x2
+ 2 f = 0.

This last differential equation is named Euler-Lagrange equation.
Next we want to solve a differential equation of the form

(1.8)
−ρ(x)∂

2u
∂t2

+ ∂
∂x

(

p(x)∂u
∂x

)

+ q(x)u(x, t) = 0.

u(0, t) = u(1, t) = 0

which is a generalization of the Euler-Lagrange equation (1.7) Here, ρ(x) plays the role of
a mass density, p(x) of a locally varying elasticity module. We do not specify initial and
end conditions for the moment.

From physics we know that ρ(x) > 0 and p(x) > 0 for all x. These properties are of
importance also from a mathematical view point! For simplicity, we assume that ρ(x) = 1.

1.2.2 The method of separation of variables

For the solution u in (1.8) we make the ansatz

(1.9) u(x, t) = v(t)w(x).
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Here, v is a function that depends only on the time t, while w depends only on the spacial
variable x. With this ansatz (1.8) becomes

(1.10) v′′(t)w(x) − v(t)(p(x)w′(x))′ + q(x)v(t)w(x) = 0.

Now we separate the variables depending on t from those depending on x,

v′′(t)
v(t)

=
1

w(x)
(p(x)w′(x))′ + q(x).

This equation holds for any t and x. We can vary t and x independently of each other
without changing the value on each side of the equation. Therefore, each side of the
equation must be equal to a constant value. We denote this value by −λ. Thus, from the
left side we obtain the equation

(1.11) −v′′(t) = λv(t).

This equation has the well-known solution v(t) = a · cos(
√

λt) + b · sin(
√

λt) where λ > 0
is assumed. The right side of (1.10) gives a so-called Sturm-Liouville problem

(1.12) −(p(x)w′(x))′ + q(x)w(x) = λw(x), w(0) = w(1) = 0

A value λ for which (1.12) has a non-trivial solution w is called an eigenvalue; w is a
corresponding eigenfunction. It is known that all eigenvalues of (1.12) are positive. By
means of our ansatz (1.9) we get

u(x, t) = w(x)
[

a · cos(
√

λt) + b · sin(
√

λt)
]

as a solution of (1.8). It is known that (1.12) has infinitely many real positive eigenvalues
0 < λ1 ≤ λ2 ≤ · · · , (λk −→

k→∞
∞). (1.12) has a non-zero solution, say wk(x) only for these

particular values λk. Therefore, the general solution of (1.8) has the form

(1.13) u(x, t) =

∞
∑

k=0

wk(x)
[

ak · cos(
√

λk t) + bk · sin(
√

λk t)
]

.

The coefficients ak and bk are determined by initial and end conditions. We could, e.g.,
require that

u(x, 0) =

∞
∑

k=0

akwk(x) = u0(x),

∂u

∂t
(x, 0) =

∞
∑

k=0

√

λk bkwk(x) = u1(x),

where u0 and u1 are given functions. It is known that the wk form an orthogonal basis in
the space of square integrable functions L2(0, 1). Therefore, it is not difficult to compute
the coefficients ak and bk.

In concluding, we see that the difficult problem to solve is the eigenvalue problem (1.12).
Knowing the eigenvalues and eigenfunctions the general solution of the time-dependent
problem (1.8) is easy to form.

Eq. (1.12) can be solved analytically only in very special situation, e.g., if all coefficients
are constants. In general a numerical method is needed to solve the Sturm-Liouville
problem (1.12).
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1.3 Numerical methods for solving 1-dimensional problems

In this section we consider three methods to solve the Sturm-Liouville problem.

1.3.1 Finite differences

We approximate w(x) by its values at the discrete points xi = ih, h = 1/(n + 1), i =
1, . . . , n.

x
L0 x x x

i−1 i i+1

Figure 1.3: Grid points in the interval (0, L).

At point xi we approximate the derivatives by finite differences. We proceed as
follows. First we write

d

dx
g(xi) ≈

g(xi+ 1

2

) − g(xi+ 1

2

)

h
.

For g = pdw
dx we get

g(xi+ 1

2

) = p(xi+ 1

2

)
w(xi+1) − w(xi)

h
and finally, for i = 1, . . . , n,

− d

dx

(

p
dw

dx
(xi)

)

≈ −1

h

[

p(xi+ 1

2

)
w(xi+1) − w(xi)

h
− p(xi− 1

2

)
w(xi) − w(xi−1)

h

]

=
1

h2

[

p(xi− 1

2

)wi−1 + (p(xi− 1

2

) + p(xi+ 1

2

))wi − p(xi+ 1

2

)wi+1

]

.

Note that at the interval endpoints w0 = wn+1 = 0.
We can collect all equations in a matrix equation,













p(x 1

2

)+p(x 3

2

)

h2 + q(x1) −p(x 3

2

)

−p(x 3

2

)
p(x 3

2

)+p(x 5

2

)

h2 + q(x2) −p(x 5

2

)

−p(x 5

2

)
. . .

. . .



























w1

w2

w3
...

wn















= λ















w1

w2

w3
...

wn















or, briefly,

(1.14) Aw = λw.

By construction, A is symmetric and tridiagonal. One can show that it is positive definite
as well.

1.3.2 The finite element method

We write (1.12) in the form

Find a twice differentiable function w with w(0) = w(1) = 0 such that

∫ 1

0

[

−(p(x)w′(x))′ + q(x)w(x) − λw(x)
]

φ(x)dx = 0

for all smooth functions φ that satisfy φ(0) = φ(1) = 0.
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To relax the requirements on w we integrate by parts and get the new so-called weak
form of the problem:

Find a differentiable function w with w(0) = w(1) = 0 such that

(1.15)

∫ 1

0

[

p(x)w(x)′φ′(x) + q(x)w(x)φ(x) − λw(x)φ(x)
]

dx = 0

for all differentiable functions φ that satisfy φ(0) = φ(1) = 0.

Remark: Requiring differentiability is too strong and does not lead to a mathematically
suitable formulation. In particular, the test functions that will be used below are not
differentiable in the classical sense. It is more appropriate to require w and φ to be weakly
differentiable. In terms of Sobolev spaces: w,φ ∈ H1

0 ([0, 1]). An introduction to Sobolev
spaces is, however, beyond the scope of these notes.

x
L0 x x x

i−1 i i+1

1Ψi

Figure 1.4: A basis function of the finite element space: a hat function.

We now write w as the linear combination

(1.16) w(x) =

n
∑

i=1

ξi Ψi(x),

where

(1.17) Ψi(x) =

(

1 − |x − xi|
h

)

+

= max{0, 1 − |x − xi|
h

},

is the function that is linear in each interval (xi, xi+1) and satisfies

Ψi(xk) = δik :=

{

1, i = k,
0, i 6= k.

An example of such a basis function, a so-called hat function, is given in Fig. 1.4.
We now replace w in (1.15) by the linear combination (1.16), and replace testing

‘against all φ’ by testing against all Ψj. In this way (1.15) becomes

∫ 1

0

(

−p(x)(

n
∑

i=1

ξi Ψ
′
i(x))Ψ′

j(x) + (q(x) − λ)

n
∑

i=1

ξi Ψi(x)Ψj(x)

)

dx, for all j,

or,

(1.18)
n
∑

i=1

ξi

∫ 1

0

(

p(x)Ψ′
i(x)Ψ′

j(x) + (q(x) − λ)Ψi(x)Ψj(x)
)

dx = 0, for all j.
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These last equations are called the Rayleigh–Ritz–Galerkin equations. Unknown are
the n values ξi and the eigenvalue λ. In matrix notation (1.18) becomes

(1.19) Ax = λMx

with

aij =

∫ 1

0

(

p(x)Ψ′
iΨ

′
j + q(x)ΨiΨj

)

dx and mij =

∫ 1

0
ΨiΨj dx

For the specific case p(x) = 1 + x and q(x) = 1 we get

akk =

∫ kh

(k−1)h

[

(1 + x)
1

h2
+

(

x − (k − 1)h

h

)2
]

dx

+

∫ (k+1)h

kh

[

(1 + x)
1

h2
+

(

(k + 1)h − x

h

)2
]

dx = 2(n + 1 + k) +
2

3

1

n + 1

ak,k+1 =

∫ (k+1)h

kh

[

(1 + x)
1

h2
+

(k + 1)h − x

h
· x − kh

h

]

dx = −n − 3

2
− k +

1

6

1

n + 1

In the same way we get

M =
1

6(n + 1)













4 1

1 4
. . .

. . .
. . . 1
1 4













Notice that both matrices A and M are symmetric tridiagonal and positive definite.

1.3.3 Global functions

Formally we proceed as with the finite element method. But now we choose the Ψk(x) to
be functions with global support. We could, e.g., set

Ψk(x) = sin kπx,

functions that are differentiable and satisfy the homogeneous boundary conditions. The Ψk

are eigenfunctions of the nearby problem −u′′(x) = λu(x), u(0) = u(1) = 0 corresponding
to the eigenvalue k2π2. The elements of matrix A are given by

akk =

∫ 1

0

[

(1 + x)k2π2 cos2 kπx + sin2 kπx
]

dx =
3

4
k2π2 +

1

2
,

akj =

∫ 1

0

[

(1 + x)kjπ2 cos kπx cos jπx + sin kπx sin jπx
]

dx

=
kj(k2 + j2)((−1)k+j − 1)

(k2 − j2)2
, k 6= j.

1.3.4 A numerical comparison

We consider the above 1-dimensional eigenvalue problem

(1.20) −((1 + x)w′(x))′ + w(x) = λw(x), w(0) = w(1) = 0,

and solve it with the finite difference and finite element methods as well as with the global
functions method. The results are given in Table 1.1.
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Clearly the global function method is the most powerful of them all. With 80 basis
functions the eigenvalues all come right. The convergence rate is exponential.

With the finite difference and finite element methods the eigenvalues exhibit quadratic
convergence rates. If the mesh width h is reduced by a factor of q = 2, the error in the
eigenvalues is reduced by the factor q2 = 4.

1.4 Example 2: The heat equation

The instationary temperature distribution u(x, t) in an insulated container satisfies the
equations

(1.21)

∂u(x, t)

∂t
− ∆u(x, t) = 0, x ∈ Ω, t > 0,

∂u(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

Here Ω is a 3-dimensional domain1with boundary ∂Ω. u0(x),x = (x1, x2, x3)
T ∈ R

3, is a

given bounded, sufficiently smooth function. ∆u =
∑ ∂2u

∂xi
2 is called the Laplace operator

and ∂u
∂n denotes the derivative of u in direction of the outer normal vector n. To solve the

heat equation the method of separation of variables is employed. We write u in the
form

(1.22) u(x, t) = v(t)w(x).

If a constant λ can be found such that

(1.23)

∆w(x) + λw(x) = 0, w(x) 6= 0, x in Ω,

∂w(x, t)

∂n
= 0, x on ∂Ω,

then the product u = vw is a solution of (1.21) if and only if

(1.24)
dv(t)

dt
+ λv(t) = 0,

the solution of which has the form a·exp(−λt). By separating variables, the problem (1.21)
is divided in two subproblems that are hopefully easier to solve. A value λ, for which (1.23)
has a nontrivial (i.e. a nonzero) solution is called an eigenvalue; w then is called a corre-
sponding eigenfunction.

If λn is an eigenvalue of problem (1.23) with corresponding eigenfunction wn, then

e−λntwn(x)

is a solution of the first two equations in (1.21). It is known that equation (1.23) has
infinitely many real eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · , (λn −→

t→∞
∞). Multiple eigenvalues are

counted according to their multiplicity. An arbitrary bounded piecewise continuous func-
tion can be represented as a linear combination of the eigenfunctions w1, w2, . . .. Therefore,
the solution of (1.21) can be written in the form

(1.25) u(x, t) =
∞
∑

n=1

cne−λntwn(x),

1In the sequel we understand a domain to be bounded and simply connected.
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Finite difference method

k λk(n = 10) λk(n = 20) λk(n = 40) λk(n = 80)

1 15.245 15.312 15.331 15.336
2 56.918 58.048 58.367 58.451
3 122.489 128.181 129.804 130.236
4 206.419 224.091 229.211 230.580
5 301.499 343.555 355.986 359.327
6 399.367 483.791 509.358 516.276
7 492.026 641.501 688.398 701.185
8 578.707 812.933 892.016 913.767
9 672.960 993.925 1118.969 1153.691

10 794.370 1179.947 1367.869 1420.585

Finite element method

k λk(n = 10) λk(n = 20) λk(n = 40) λk(n = 80)

1 15.447 15.367 15.345 15.340
2 60.140 58.932 58.599 58.511
3 138.788 132.657 130.979 130.537
4 257.814 238.236 232.923 231.531
5 426.223 378.080 365.047 361.648
6 654.377 555.340 528.148 521.091
7 949.544 773.918 723.207 710.105
8 1305.720 1038.433 951.392 928.983
9 1702.024 1354.106 1214.066 1178.064

10 2180.159 1726.473 1512.784 1457.733

Global function method

k λk(n = 10) λk(n = 20) λk(n = 40) λk(n = 80)

1 15.338 15.338 15.338 15.338
2 58.482 58.480 58.480 58.480
3 130.389 130.386 130.386 130.386
4 231.065 231.054 231.053 231.053
5 360.511 360.484 360.483 360.483
6 518.804 518.676 518.674 518.674
7 706.134 705.631 705.628 705.628
8 924.960 921.351 921.344 921.344
9 1186.674 1165.832 1165.823 1165.822

10 1577.340 1439.083 1439.063 1439.063

Table 1.1: Numerical solutions of problem (1.20)
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where the coefficients cn are determined such that

(1.26) u0(x) =
∞
∑

n=1

cnwn(x).

The smallest eigenvalue of (1.23) is λ1 = 0 with w1 = 1 and λ2 > 0. Therefore we see
from (1.25) that

(1.27) u(x, t) −→
t→∞

c1.

Thus, in the limit (i.e., as t goes to infinity), the temperature will be constant in the whole
container. The convergence rate towards this equilibrium is determined by the smallest
positive eigenvalue λ2 of (1.23):

‖u(x, t) − c1‖ = ‖
∞
∑

n=2

cne−λntwn(x)‖ ≤
∞
∑

n=2

|e−λnt|‖cnwn(x)‖

≤ e−λ2t
∞
∑

n=2

‖cnwn(x)‖ ≤ e−λ2t‖u0(x)‖.

Here we have assumed that the value of the constant function w1(x) is set to unity.

1.5 Example 3: The wave equation

The air pressure u(x, t) in a volume with acoustically “hard” walls satisfies the equations

∂2u(x, t)

∂t2
− ∆u(x, t) = 0, x ∈ Ω, t > 0,(1.28)

∂u(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0,(1.29)

u(x, 0) = u0(x), x ∈ Ω,(1.30)

∂u(x, 0)

∂t
= u1(x), x ∈ Ω.(1.31)

Sound propagates with the speed −∇u, i.e. along the (negative) gradient from high to
low pressure.

To solve the wave equation we proceed as with the heat equation in section 1.4: sepa-
ration of u according to (1.22) leads again to equation (1.23) but now together with

(1.32)
d2v(t)

dt2
+ λv(t) = 0.

We know this equation from the analysis of the vibrating sting, see (1.11). From there we
know that the general solution of the wave equation has the form

(1.13) u(x, t) =
∞
∑

k=0

wk(x)
[

ak · cos(
√

λk t) + bk · sin(
√

λk t)
]

.

where the wk, k = 1, 2, . . . are the eigenfunctions of the eigenvalue problem (1.23). The
coefficients ak and bk are determined by eqrefeq:wave3 and eqrefeq:wave4.
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If a harmonic oscillation is forced on the system, an inhomogeneous problem

(1.33)
∂2u(x, t)

∂t2
− ∆u(x, t) = f(x, t),

is obtained. The boundary and initial conditions are taken from (1.28)–(1.31). This
problem can be solved by setting

(1.34)

u(x, t) :=

∞
∑

n=1

ṽn(t)wn(x),

f(x, t) :=
∞
∑

n=1

φn(t)wn(x).

With this approach, ṽn has to satisfy equation

(1.35)
d2ṽn

dt2
+ λnṽn = φn(t).

If φn(t) = a sin ωt, then the solution becomes

(1.36) ṽn = An cos
√

λnt + Bn sin
√

λnt +
1

λn − ω2
a sin ωt.

An and Bn are real constants that are determined by the initial conditions. If ω gets close
to

√
λ1, then the last term can be very large. In the limit, if ω =

√
λn, ṽn gets the form

(1.37) ṽn = An cos
√

λnt + Bn sin
√

λnt + at sin ωt.

In this case, ṽn is not bounded in time anymore. This phenomenon is called resonance.
Often resonance is not desirable; it may, e.g., mean the blow up of some structure. In
order to prevent resonances eigenvalues have to be known. Possible remedies are changing
the domain (the structure).
Remark 1.1. Vibrating membranes satisfy the wave equation, too. In general the boundary
conditions are different from (1.29). If the membrane (of a drum) is fixed at its boundary,
the condition

(1.38) u(x, t) = 0

is imposed. This boundary conditions is called Dirichlet boundary conditions. The bound-
ary conditions in (1.21) and (1.29) are called Neumann boundary conditions. Combinations
of these two can occur.

1.6 Numerical methods for solving the Laplace eigenvalue

problem in 2D

In this section we again consider the eigenvalue problem

(1.39) −∆u(x) = λu(x), x ∈ Ω,

with the more general boundary conditions

(1.40) u(x) = 0, x ∈ C1 ⊂ ∂Ω,
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(1.41)
∂u

∂n
(x) + α(x)u(x) = 0, x ∈ C2 ⊂ ∂Ω.

Here, C1 and C2 are disjoint subsets of ∂Ω with C1 ∪ C2 = ∂Ω. We restrict ourselves in
the following on two-dimensional domains and write (x, y) instead of (x1, x2).

In general it is not possible to solve a problem of the Form (1.39)–(1.41) exactly
(analytically). Therefore one has to resort to numerical approximations. Because we
cannot compute with infinitely many variables we have to construct a finite-dimensional
eigenvalue problem that represents the given problem as well as possible, i.e., that yields
good approximations for the desired eigenvalues and eigenvectors. Since finite-dimensional
eigenvalue problem only have a finite number of eigenvalues one cannot expect to get good
approximations for all eigenvalues of (1.39)–(1.41).

Two methods for the discretization of eigenvalue problems of the form (1.39)–(1.41)
are the Finite Difference Method [1, 6] and the Finite Element Method (FEM) [5, 8]. We
deal with these methods in the following subsections.

1.6.1 The finite difference method

In this section we just want to mediate some impression what the finite difference method
is about. Therefore we assume for simplicity that the domain Ω is a square with sides of
length 1: Ω = (0, 1) × (0, 1). We consider the eigenvalue problem

(1.42)

−∆u(x, y) = λu(x, y), 0 < x, y < 1

u(0, y) = u(1, y) = u(x, 0) = 0, 0 < x, y < 1,

∂u
∂n

(x, 1) = 0, 0 < x < 1.

This eigenvalue problem occurs in the computation of eigenfrequencies and eigenmodes of
a homogeneous quadratic membrane with three fixed and one free side. It can be solved
analytically by separation of the two spatial variables x and y. The eigenvalues are

λk,l =

(

k2 +
(2l − 1)2

4

)

π2, k, l ∈ N,

and the corresponding eigenfunctions are

uk,l(x, y) = sin kπx sin
2l − 1

2
πy.

In the finite difference method one proceeds by defining a rectangular grid with grid
points (xi, yj), 0 ≤ i, j ≤ N . The coordinates of the grid points are

(xi, yj) = (ih, jh), h = 1/N.

By a Taylor expansion one can show for sufficiently smooth functions u that

−∆u(x, y) =
1

h2
(4u(x, y) − u(x − h, y) − u(x + h, y) − u(x, y − h) − u(x, y + h))

+ O(h2).

It is therefore straightforward to replace the differential equation ∆u(x, y)+λu(x, y) =
0 by a difference equation at the interior grid points

(1.43) 4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = λh2ui,j, 0 < i, j < N.
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We consider the unknown variables ui,j as approximations of the eigenfunctions at the
grid points (i, j):

(1.44) ui,j ≈ u(xi, xj).

The Dirichlet boundary conditions are replaced by the equations

(1.45) ui,0 = ui,N = u0,i, 0 < i < N.

At the points at the upper boundary of Ω we first take the difference equation (1.43)

(1.46) 4ui,N − ui−1,N − ui+1,N − ui,N−1 − ui,N+1 = λh2ui,N , 0 ≤ i ≤ N.

The value ui,N+1 corresponds to a grid point outside of the domain! However the Neumann
boundary conditions suggest to reflect the domain at the upper boundary and to extend the
eigenfunction symmetrically beyond the boundary. This procedure leads to the equation
ui,N+1 = ui,N−1. Plugging this into (1.46) and multiplying the new equation by the factor
1/2 gives

(1.47) 2ui,N − 1

2
ui−1,N − 1

2
ui+1,N − ui,N−1 =

1

2
λh2ui,N , 0 < i < N.

In summary, from (1.43) and (1.47), taking into account that (1.45) we get the matrix
equation

(1.48)











































4 −1 0 −1
−1 4 −1 0 −1

0 −1 4 0 0 −1
−1 0 0 4 −1 0 −1

−1 0 −1 4 −1 0 −1
−1 0 −1 4 0 0 −1

−1 0 0 4 −1 0 −1
−1 0 −1 4 −1 0 −1

−1 0 −1 4 0 0 −1
−1 0 0 2 −1

2 0
−1 0 −1

2 2 −1
2

−1 0 −1
2 2





















































































u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

u3,1

u3,2

u3,3

u4,1

u4,2

u4,3











































= λh2











































1
1

1
1

1
1

1
1

1
1
2

1
2

1
2





















































































u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

u3,1

u3,2

u3,3

u4,1

u4,2

u4,3











































.
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For arbitrary N > 1 we define

ui :=











ui,1

ui,2
...

ui,N−1











∈ R
N−1,

T :=













4 −1

−1 4
. . .

. . .
. . . −1
−1 4













∈ R
(N−1)×(N−1),

I :=











1
1

. . .

1











∈ R
(N−1)×(N−1).

In this way we obtain from (1.43), (1.45), (1.47) the discrete eigenvalue problem

(1.49)













T −I

−I T
. . .

. . .
. . . −I
−I 1

2T























u1
...

u3

u4











= λh2











I
. . .

I
1
2I





















u1
...

uN−1

uN











of size N × (N − 1). This is a matrix eigenvalue problem of the form

(1.50) Ax = λMx,

where A and M are symmetric and M additionally is positive definite. If M is the identity
matrix is, we call (1.50) a special and otherwise a generalized eigenvalue problem. In these
lecture notes we deal with numerical methods, to solve eigenvalue problems like these.

In the case (1.49) it is easy to obtain a special (symmetric) eigenvalue problem by a
simple transformation: By left multiplication by









I
I

I √
2I









we obtain from (1.49)

(1.51)









T −I
−I T −I

−I T −
√

2I

−
√

2I T

















u1

u2

u3
1√
2
u4









= λh2









u1

u2

u3
1√
2
u4









.

A property common to matrices obtained by the finite difference method are its spar-
sity. Sparse matrices have only very few nonzero elements.

In real-world applications domains often cannot be covered easily by a rectangular
grid. In this situation and if boundary conditions are complicated the method of finite
differences can be difficult to implement.

Because of this the finite element method is often the method of choice.
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1.6.2 The finite element method (FEM)

Let (λ, u) ∈ R × V be an eigenpair of problem (1.39)–(1.41). Then

(1.52)

∫

Ω
(∆u + λu)v dx dy = 0, ∀v ∈ V,

where V is vector space of bounded twice differentiable functions that satisfy the boundary
conditions (1.40)–(1.41). By partial integration (Green’s formula) this becomes

(1.53)

∫

Ω
∇u∇v dx dy +

∫

∂Ω
α u v ds = λ

∫

Ω
u v dx dy, ∀v ∈ V,

or

(1.54) a(u, v) = (u, v), ∀v ∈ V

where

a(u, v) =

∫

Ω

∇u∇v dx dy +

∫

∂Ω

αu v ds, and (u, v) =

∫

Ω
u v dx dy.

We complete the space V with respect to the Sobolev norm [8, 2]
√

∫

Ω
(u2 + |∇u|2) dx dy

to become a Hilbert space H [2, 10]. H is the space of quadratic integrable functions with
quadratic integrable first derivatives that satisfy the Dirichlet boundary conditions (1.40)

u(x, y) = 0 (x, y) ∈ C1.

(Functions in H in general no not satisfy the so-called natural boundary conditions (1.41).)
One can show [10] that the eigenvalue problem (1.39)–(1.41) is equivalent with the eigen-
value problem

(1.55)
Find (λ, u) ∈ R × H such that
a(u, v) = λ(u, v) ∀v ∈ H.

(The essential point is to show that the eigenfunctions of (1.55) are elements of V .)

The Rayleigh–Ritz–Galerkin method

In the Rayleigh–Ritz–Galerkin method one proceeds as follows: A set of linearly indepen-
dent functions

(1.56) φ1(x, y), · · · , φn(x, y) ∈ H,

are chosen. These functions span a subspace S of H. Then, problem (1.55) is solved where
H is replaced by S.

(1.57)
Find (λ, u) ∈ R × S such that
a(u, v) = λ(u, v) ∀v ∈ S.

With the Ritz ansatz [5]

(1.58) u =

n
∑

i=1

xiφi,
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equation (1.57) becomes

(1.59)
Find (λ,x) ∈ R × R

n such that
n
∑

i=1
xia(φi, v) = λ

n
∑

i=1
xi(φi, v), ∀v ∈ S.

Eq. (1.59) must hold for all v ∈ S, in particular for v = φ1, · · · , φn. But since the
φi, 1 ≤ i ≤ n, form a basis of S, equation (1.59) is equivalent with

(1.60)

n
∑

i=1

xia(φi, φj) = λ

n
∑

i=1

xi(φi, φj), 1 ≤ j ≤ n.

This is a matrix eigenvalue problem of the form

(1.61) Ax = λMx

where

(1.62) x =







x1
...

xn






, A =







a11 · · · a1n
...

. . .
...

an1 · · · ann






, M =







m11 · · · m1n
...

. . .
...

mn1 · · · mnn







with

aij = a(φi, φj) =

∫

Ω
∇φi ∇φj dx dy +

∫

∂Ω
α φi φj ds

and

mij = (φi, φj) =

∫

Ω
φi φj dx dy.

The finite element method (FEM) is a special case of the Rayleigh–Ritz method.
In the FEM the subspace S and in particular the basis {φi} is chosen in a particularly
clever way. For simplicity we assume that the domain Ω is a simply connected domain
with a polygonal boundary, c.f. Fig 1.5. (This means that the boundary is composed of
straight line segments entirely.) This domain is now partitioned into triangular subdomains

Figure 1.5: Triangulation of a domain Ω
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T1, · · · , TN , so-called elements, such that

(1.63)
Ti ∩ Tj = ∅, i 6= j,
⋃

e
Te = Ω.

Finite element spaces for solving (1.39)–(1.41) are typically composed of functions that
are continuous in Ω and are polynomials on the individual subdomains Te. Such functions
are called piecewise polynomials. Notice that this construction provides a subspace of the
Hilbert space H but not of V , i.e., the functions in the finite element space are not very
smooth and the natural boundary conditions are not satisfied.

An essential issue is the selection of the basis of the finite element space S. If S1 ⊂ H
is the space of continuous, piecewise linear functions (the restriction to Te is a polynomial
of degree 1) then a function in S1 is uniquely determined by its values at the vertices of the
triangles. Let these nodes, except those on the boundary portion C1, be numbered from
1 to n, see Fig. 1.6. Let the coordinates of the i-th node be (xi, yi). Then φi(x, y) ∈ S1 is
defined by

7 9

211411

15 19 23 26

17 20 24 27
29

28

2522
18

12

8
4

16

13

10

6

3

5
2

1

Figure 1.6: Numbering of nodes on Ω (piecewise linear polynomials)

(1.64) φi((xj , yj)) := δij =

{

1 i = j
0 i 6= j

A typical basis function φi is sketched in Figure 1.7.

Figure 1.7: A piecewise linear basis function (or hat function)
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Another often used finite element element space is S2 ⊂ H, the space of continuous,
piecewise quadratic polynomials. These functions are (or can be) uniquely determined by
their values at the vertices and and edge midpoints of the triangle. The basis functions
are defined according to (1.64). There are two kinds of basis functions φi now, first those
that are 1 at a vertex and second those that are 1 in an edge midpoint, cf. Fig. 1.8. One

Figure 1.8: A piecewise quadratic basis function corresponding to a edge midpoint [3]

immediately sees that for most i 6= j

(1.65) a(φi, φj) = 0, (φi, φj) = 0.

Therefore the matrices A and M in (1.61) will be sparse. The matrix M is positive
definite as

(1.66) xT Mx =

N
∑

i,j=1

xixjmij =

N
∑

i,j=1

xixj(φi, φj) = (u, u) > 0, u =

N
∑

i=1

xiφi 6= 0,

because the φi are linearly independent and because ||u|| =
√

(u, u) is a norm. Similarly
it is shown that

xT Ax ≥ 0.

It is possible to have xTAx = 0 for a nonzero vector x. This is the case if the constant
function u = 1 is contained in S. This is the case if Neumann boundary conditions ∂u

∂n = 0
are posed on the whole boundary ∂Ω. Then,

u(x, y) = 1 =
∑

i

φi(x, y),

i.e., we have xTAx = 0 for x = [1, 1, . . . , 1].

1.6.3 A numerical example

We want to determine the acoustic eigenfrequencies and corresponding modes in the inte-
rior of a car. This is of interest in the manufacturing of cars, since an appropriate shape of
the form of the interior can suppress the often unpleasant droning of the motor. The prob-
lem is three-dimensional, but by separation of variables the problem can be reduced to two
dimensions. If rigid, acoustically hard walls are assumed, the mathematical model of the
problem is again the Laplace eigenvalue problem (1.23) together with Neumann boundary
conditions. The domain is given in Fig. 1.9 where three finite element triangulations are
shown with 87 (grid1), 298 (grid2), and 1095 (grid3) vertices (nodes), respectively. The
results obtained with piecewise linear polynomials are listed in Table 1.2. From the results
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Figure 1.9: Three meshes for the car length cut

we notice the quadratic convergence rate. The smallest eigenvalue is always zero. The
corresponding eigenfunction is the constant function. This function can be represented
exactly by the finite element spaces, whence its value is correct (up to rounding error).

The fourth eigenfunction of the acoustic vibration problem is displayed in Fig. 1.10.
The physical meaning of the function value is the difference of the pressure at a given
location to the normal pressure. Large amplitudes thus means that the corresponding
noise is very much noticable.

1.7 Cavity resonances in particle accelerators

The Maxwell equations in vacuum are given by

curl E(x, t) = −∂B

∂t
(x, t), (Faraday’s law)

curl H(x, t) =
∂D

∂t
(x, t) + j(x, t), (Maxwell–Ampère law)

div D(x, t) = ρ(x, t), (Gauss’s law)

div B(x, t) = 0. (Gauss’s law – magnetic)

where E is the electric field intensity, D is the electric flux density, H is the magnetic
field intensity, B is the magnetic flux density, j is the electric current density, and ρ is the
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Finite element method

k λk(grid1) λk(grid2) λk(grid3)

1 0.0000 -0.0000 0.0000
2 0.0133 0.0129 0.0127
3 0.0471 0.0451 0.0444
4 0.0603 0.0576 0.0566
5 0.1229 0.1182 0.1166
6 0.1482 0.1402 0.1376
7 0.1569 0.1462 0.1427
8 0.2162 0.2044 0.2010
9 0.2984 0.2787 0.2726
10 0.3255 0.2998 0.2927

Table 1.2: Numerical solutions of acoustic vibration problem

 

 

−0.1

−0.05

0

0.05

Figure 1.10: Fourth eigenmode of the acoustic vibration problem
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electric charge density. Often the “optical” problem is analyzed, i.e. the situation when
the cavity is not driven (cold mode), hence j and ρ are assumed to vanish.

Again by separating variables, i.e. assuming a time harmonic behavior f the fields, e.g.,

E(x, t) = e(x)eiωt

using the constitutive relations

D = ǫE, B = µH, j = σE,

one obtains after elimination of the magnetic field intensity the so called time-harmonic
Maxwell equations

(1.67)

curl µ−1curl e(x) = λ ǫ e(x), x ∈ Ω,

div ǫ e(x) = 0, x ∈ Ω,

n× e = 0, x ∈ ∂Ω.

Here, additionally, the cavity boundary ∂Ω is assumed to be perfectly electrically conduct-
ing, i.e. E(x, t) × n(x) = 0 for x ∈ ∂Ω.

The eigenvalue problem (1.67) is a constrained eigenvalue problem. Only functions
are taken into account that are divergence-free. This constraint is enforced by Lagrange
multipliers. A weak formulation of the problem is then

Find (λ, e, p) ∈ R × H0(curl; Ω) × H1
0 (Ω) such that e 6= 0 and

(a) (µ−1curl e, curl Ψ) + (grad p,Ψ) = λ(ǫ e,Ψ), ∀Ψ ∈ H0(curl; Ω),
(b) (e,grad q) = 0, ∀q ∈ H1

0 (Ω).

With the correct finite element discretization this problem turns in a matrix eigenvalue
problem of the form

[

A C
CT O

] [

x
y

]

= λ

[

M O
O O

] [

x
y

]

.

The solution of this matrix eigenvalue problem correspond to vibrating electric fields.

1.8 Spectral clustering

This section is based on a tutorial by von Luxburg [9].
The goal of clustering is to group a given set of data points x1, . . . , xn into k clusters

such that members from the same cluster are (in some sense) close to each other and
members from different clusters are (in some sense) well separated from each other.

A popular approach to clustering is based on similarity graphs. For this purpose, we
need to assume some notion of similarity s(xi, xj) ≥ 0 between pairs of data points xi

and xj. An undirected graph G = (V,E) is constructed such that its vertices correspond
to the data points: V = {x1, . . . , xn}. Two vertices xi, xj are connected by an edge if
the similarity sij between xi and xj is sufficiently large. Moreover, a weight wij > 0 is
assigned to the edge, depending on sij. If two vertices are not connected we set wij = 0.
The weights are collected into a weighted adjacency matrix

W =
(

wij

)n

i,j=1
.

There are several possibilities to define the weights of the similarity graph associated
with a set of data points and a similarity function:
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fully connected graph All points with positive similarity are connected with each other
and we simply set wij = s(xi, xj). Usually, this will only result in reasonable clusters
if the similarity function models locality very well. One example of such a similarity

function is the Gaussian s(xi, xj) = exp
(

− ‖xi−xj‖2

2σ2

)

, where ‖xi−xj‖ is some distance
measure (e.g., Euclidean distance) and σ is some parameter controlling how strongly
locality is enforced.

k-nearest neighbors Two vertices xi, xj are connected if xi is among the k-nearest
neighbors of xj or if xj is among the k-nearest neighbors of xi (in the sense of
some distance measure). The weight of the edge between connected vertices xi, xj

is set to the similarity function s(xi, xj).

ǫ-neighbors Two vertices xi, xj are connected if their pairwise distance is smaller than
ǫ for some parameter ǫ > 0. In this case, the weights are usually chosen uniformly,
e.g., wij = 1 if xi, xj are connected and wij = 0 otherwise.

Assuming that the similarity function is symmetric (s(xi, xj) = s(xj , xi) for all xi, xj) all
definitions above give rise to a symmetric weight matrix W . In practice, the choice of the
most appropriate definition depends – as usual – on the application.

1.8.1 The Graph Laplacian

In the following we construct the so called graph Laplacian, whose spectral decomposition
will later be used to determine clusters. For simplicity, we assume the weight matrix W
to be symmetric. The degree of a vertex xi is defined as

(1.68) di =

n
∑

j=1

wij .

In the case of an unweighted graph, the degree di amounts to the number of vertices
adjacent to vi (counting also vi if wii = 1). The degree matrix is defined as

D = diag(d1, d2, . . . , dn).

The graph Laplacian is then defined as

(1.69) L = D − W.

By (1.68), the row sums of L are zero. In other words, Le = 0 with e the vector of all
ones. This implies that 0 is an eigenvalue of L with the associated eigenvector e. Since L
is symmetric all its eigenvalues are real and one can show that 0 is the smallest eigenvalue;
hence L is positive semidefinite. It may easily happen that more than one eigenvalue is
zero. For example, if the set of vertices can be divided into two subsets {x1, . . . , xk},
{xk+1, . . . , xn}, and vertices from one subset are not connected with vertices from the
other subset, then

L =

(

L1 0
0 L2

)

,

where L1, L2 are the Laplacians of the two disconnected components. Thus L has two
eigenvectors

( e
0

)

and
(0

e

)

with eigenvalue 0. Of course, any linear combination of these
two linearly independent eigenvectors is also an eigenvector of L.
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The observation above leads to the basic idea behind spectral graph partitioning: If
the vertices of the graph decompose into k connected components V1, . . . , Vk there are k
zero eigenvalues and the associated invariant subspace is spanned by the vectors

(1.70) χV1
, χV2

, . . . , χVk
,

where χVj
is the indicator vector having a 1 at entry i if xi ∈ Vj and 0 otherwise.

1.8.2 Spectral Clustering

On a first sight, it may seem that (1.70) solves the graph clustering problem. One simply
computes the eigenvectors belonging to the k zero eigenvalues of the graph Laplacian
and the zero structure (1.70) of the eigenvectors can be used to determine the vertices
belonging to each component. Each component gives rise to a cluster.

This tempting idea has two flaws. First, one cannot expect the eigenvectors to have
the structure (1.70). Any computational method will yield an arbitrary eigenbasis, e.g.,
arbitrary linear combinations of χV1

, χV2
, . . . , χVk

. In general, the method will compute
an orthonormal basis U with

(1.71) U =
(

v1, . . . , vk

)

Q,

where Q is an arbitrary orthogonal k×k matrix and vj = χVj
/|Vj | with the cardinality |Vj |

of Vj . Second and more importantly, the goal of graph clustering is not to detect connected
components of a graph.2 Requiring the components to be completely disconnected to each
other is too strong and will usually not lead to a meaningful clustering. For example,
when using a fully connected similarity graph only one eigenvalue will be zero and the
corresponding eigenvector e yields one component, which is the graph itself! Hence, instead
of computing an eigenbasis belonging to zero eigenvalues, one determines an eigenbasis
belonging to the k smallest eigenvalues.

Example 1.1 200 real numbers are generated by superimposing samples from 4 Gaussian
distributions with 4 different means:

m = 50; randn(’state’,0);

x = [2+randn(m,1)/4;4+randn(m,1)/4;6+randn(m,1)/4;8+randn(m,1)/4];

The following two figures show the histogram of the distribution of the entries of x and the
eigenvalues of the graph Laplacian for the fully connected similarity graph with similarity

function s(xi, xj) = exp
(

− |xi−xj |2
2

)

:
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2There are more efficient algorithms for finding connected components, e.g., breadth-first and depth-first

search.
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As expected, one eigenvalue is (almost) exactly zero. Additionally, the four smallest
eigenvalues have a clearly visible gap to the other eigenvalues. The following four figures
show the entries of the 4 eigenvectors belonging to the 4 smallest eigenvalues of L:
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On the one hand, it is clearly visible that the eigenvectors are well approximated by linear
combinations of indicator vectors. On the other hand, none of the eigenvectors is close to
an indicator vector itself and hence no immediate conclusion on the clusters is possible.

To solve the issue that the eigenbasis (1.71) may be transformed by an arbitrary orthogonal
matrix, we “transpose” the basis and consider the row vectors of U :

UT =
(

u1, u2, . . . , un

)

, ui ∈ R
k.

If U contained indicator vectors then each of the small vectors ui would be a unit vector
ej for some 1 ≤ j ≤ k (possibly divided by |Vj|). In particular, the ui would separate very
well into k different clusters. The latter property does not change if the vectors ui undergo
an orthogonal transformation QT . Hence, applying a clustering algorithm to u1, . . . , un

allows us to detect the membership of ui independent of the orthogonal transformation.
The key point is that the small vectors u1, . . . , un are much better separated than the
original data x1, . . . , xn. Hence, much simpler algorithm can be used for clustering. One
of the most basic algorithms is k-means clustering. Initially, this algorithm assigns each
ui randomly3 to a cluster ℓ with 1 ≤ ℓ ≤ k and then iteratively proceeds as follows:

1. Compute cluster centers cℓ as cluster means:

cℓ =
∑

i in cluster ℓ

ui

/

∑

i in cluster ℓ

1.

2. Assign each ui to the cluster with the nearest cluster center.

3. Goto Step 1.

The algorithm is stopped when the assigned clusters do not change in an iteration.

Example 1.1 ctd. The k-means algorithm applied to the eigenbasis from Example 1.1
converges after 2 iterations and results in the following clustering:

3For unlucky choices of random assignments the k-means algorithm may end up with less than k clusters.

A simple albeit dissatisfying solution is to restart k-means with a different random assignment.
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1.8.3 Normalized Graph Laplacians

It is sometimes advantageous to use a normalized Laplacian

(1.72) D−1L = I − D−1W

instead of the standard Laplacians. Equivalently, this means that we compute the eigen-
vectors belonging to the smallest eigenvalues of the generalized eigenvalue problem λD −
W . Alternatively, one may also compute the eigenvalues from the symmetric matrix
D−1/2WD−1/2 but the eigenvectors need to be adjusted to compensate this transforma-
tion.

Example 1.1 ctd. The eigenvalues of the normalized Laplacian for Example 1.1 are
shown below:
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In comparison to the eigenvalues of the standard Laplacian, the four smallest eigenvalues
of the are better separated from the rest. Otherwise, the shape of the eigenvectors is
similar and the resulting clustering is identical with the one obtained with the standard
Laplacian.

1.9 Other Sources of Eigenvalue Problems

The selection of applications above may lead to the impression that eigenvalue problems
in practice virtually always require the computation of the smallest eigenvalues of a sym-
metric matrix. This is not the case. For example, a linear stability analysis requires the
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computation of all eigenvalues on or close to the imaginary axis of a nonsymmetric matrix.
Computational methods for decoupling the stable/unstable parts of a dynamical system
require the computation of all eigenvalues in the left and/or right half of the complex
plane. The principal component analysis (PCA), which plays an important role in a large
variety of applications, requires the computation of the largest eigenvalues (or rather sin-
gular values). As we will see in the following chapters, the region of eigenvalues we are
interested in determines the difficulty of the eigenvalue problem to a large extent (along
with the matrix order and structure). It should also guide the choice of algorithm for
solving an eigenvalue problem.
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Chapter 2

Basics

2.1 Notation

The fields of real and complex numbers are denoted by R and C, respectively. Elements
in R and C, scalars, are denoted by lowercase letters, a, b, c, . . ., and α, β, γ, . . .

Vectors are denoted by boldface lowercase letters, a, b, c, . . ., and α, β, γ, . . . We
denote the space of vectors of n real components by R

n and the space of vectors of n
complex components by C

n.

(2.1) x ∈ R
n ⇐⇒ x =











x1

x2
...

xn











, xi ∈ R.

We often make statements that hold for real or complex vectors or matrices. Then we
write, e.g., x ∈ F

n.
The inner product of two n-vectors in C is defined as

(2.2) (x,y) =

n
∑

i=1

xiȳi = y∗x,

that is, we require linearity in the first component and anti-linearity in the second.
y∗ = (ȳ1, ȳ2, . . . , ȳn) denotes conjugate transposition of complex vectors. To simplify

notation we denote real transposition by an asterisk as well.

Two vectors x and y are called orthogonal, x ⊥ y, if x∗y = 0.
The inner product (2.2) induces a norm in F,

(2.3) ‖x‖ =
√

(x,x) =

(

n
∑

i=1

|xi|2
)1/2

.

This norm is often called Euclidean norm or 2-norm.
The set of m-by-n matrices with components in the field F is denoted by F

m×n,

(2.4) A ∈ F
m×n ⇐⇒ A =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn











, aij ∈ F.

29
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The matrix A∗ ∈ F
n×m,

(2.5) A∗ =











ā11 ā21 . . . ām1

ā12 ā22 . . . ām2
...

...
...

ā1n ā2n . . . ānm











is the Hermitian transpose of A. Notice, that with this notation n-vectors can be
identified with n-by-1 matrices.

The following classes of square matrices are of particular importance:

• A ∈ F
n×n is called Hermitian if and only if A∗ = A.

• A real Hermitian matrix is called symmetric.

• U ∈ F
n×n is called unitary if and only if U−1 = U∗.

• Real unitary matrices are called orthogonal.

We define the norm of a matrix to be the norm induced by the vector norm (2.3),

(2.6) ‖A‖ := max
x 6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖.

The condition number of a nonsingular matrix is defined as κ(A) = ‖A‖‖A−1‖. It is easy
to show that if U is unitary then ‖Ux‖ = ‖x‖ for all x. Thus the condition number of a
unitary matrix is 1.

2.2 Statement of the problem

The (standard) eigenvalue problem is as follows.

Given a square matrix A ∈ F
n×n.

Find scalars λ ∈ C and vectors x ∈ C
n, x 6= 0, such that

(2.7) Ax = λx,

i.e., such that

(2.8) (A − λI)x = 0

has a nontrivial (nonzero) solution.

So, we are looking for numbers λ such that A − λI is singular.

Definition 2.1 Let the pair (λ,x) be a solution of (2.7) or (2.8), respectively. Then

• λ is called an eigenvalue of A,

• x is called an eigenvector corresponding to λ

• (λ,x) is called eigenpair of A.

• The set σ(A) of all eigenvalues of A is called spectrum of A.
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• The set of all eigenvectors corresponding to an eigenvalue λ together with the vector
0 form a linear subspace of C

n called the eigenspace of λ. As the eigenspace of λ
is the null space of λI − A we denote it by N (λI − A).

• The dimension of N (λI − A) is called geometric multiplicity g(λ) of λ.

• An eigenvalue λ is a zero of the characteristic polynomial

χ(λ) := det(λI − A) = λn + an−1λ
n−1 + · · · + a0.

The multiplicity of λ as a zero of χ is called the algebraic multiplicity m(λ) of λ.
We will later see that

1 ≤ g(λ) ≤ m(λ) ≤ n, λ ∈ σ(A), A ∈ F
n×n.

Remark 2.1. A nontrivial solution solution y of

(2.9) y∗A = λy∗

is called left eigenvector corresponding to λ. A left eigenvector of A is a right eigenvector
of A∗, corresponding to the eigenvalue λ̄, A∗y = λ̄y.

Problem 2.2 Let x be a (right) eigenvector of A corresponding to an eigenvalue λ and
let y be a left eigenvector of A corresponding to a different eigenvalue µ 6= λ. Show that
x∗y = 0.

Remark 2.2. Let A be an upper triangular matrix,

(2.10) A =











a11 a12 . . . a1n

a22 . . . a2n

. . .
...

ann











, aik = 0 for i > k.

Then we have

det(λI − A) =

n
∏

i=1

(λ − aii).

Problem 2.3 Let λ = aii, 1 ≤ i ≤ n, be an eigenvalue of A in (2.10). Can you give a
corresponding eigenvector? Can you explain a situation where g(λ) < m(λ)?

The (generalized) eigenvalue problem is as follows.

Given two square matrices A,B ∈ F
n×n.

Find scalars λ ∈ C and vectors x ∈ C, x 6= 0, such that

(2.11) Ax = λBx,

or, equivalently, such that

(2.12) (A − λB)x = 0

has a nontrivial solution.
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Definition 2.4 Let the pair (λ,x) be a solution of (2.11) or (2.12), respectively. Then

• λ is called an eigenvalue of A relative to B,

• x is called an eigenvector of A relative to B corresponding to λ.

• (λ,x) is called an eigenpair of A relative to B,

• The set σ(A;B) of all eigenvalues of (2.11) is called the spectrum of A relative
to B.

• Let B be nonsingular. Then

(2.13) Ax = λBx ⇐⇒ B−1Ax = λx

• Let both A and B be Hermitian, A = A∗ and B = B∗. Let further be B positive
definite and B = LL∗ be its Cholesky factorization. Then

(2.14) Ax = λBx ⇐⇒ L−1AL−∗y = λy, y = L∗x.

• Let A be invertible. Then Ax = 0 implies x = 0. That is, 0 6∈ σ(A;B). Therefore,

(2.15) Ax = λBx ⇐⇒ µx = A−1Bx, µ =
1

λ

• Difficult situation: both A and B are singular.

1. Let, e.g.,

A =

(

1 0
0 0

)

, B =

(

0 0
0 1

)

.

Then,

Ae2 = 0 = 0 · Be2 = 0 · e2

Ae1 = e1 = λBe1 = λ0

So 0 is an eigenvalue of A relative to B.

As in (2.15) we may swap the roles of A and B. Then

Be1 = 0 = µAe1 = 0e1.

So, µ = 0 is an eigenvalue of B relative to A. We therefore say, informally, that
λ = ∞ is an eigenvalue of A relative to B. So, σ(A;B) = {0,∞}.

2. Let

A =

(

1 0
0 0

)

, B =

(

1 0
0 0

)

= A.

Then,

Ae1 = 1 · Be1,

Ae2 = 0 = λBe2 = λ0, for all λ ∈ C.

Therefore, in this case, σ(A;B) = C.
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2.3 Similarity transformations

Definition 2.5 A matrix A ∈ F
n×n is similar to a matrix C ∈ F

n×n, A ∼ C, if and only
if there is a nonsingular matrix S such that

(2.16) S−1AS = C.

The mapping A −→ S−1AS is called a similarity transformation.

Theorem 2.6 Similar matrices have equal eigenvalues with equal multiplicities. If (λ,x)
is an eigenpair of A and C = S−1AS then (λ, S−1x) is an eigenpair of C.

Proof. Ax = λx and C = S−1AS imply that

CS−1x = S−1ASS−1x = S−1λx.

Hence, A and C have equal eigenvalues and their geometric multiplicity is not changed by
the similarity transformation. From

det(λI − C) = det(λS−1S − S−1AS)

= det(S−1(λI − A)S) = det(S−1) det(λI − A) det(S) = det(λI − A)

it follows that the characteristic polynomials of A and C are equal and hence also the
algebraic eigenvalue multiplicities are equal.

Definition 2.7 Two matrices A and B are called unitarily similar if S in (2.16) is
unitary. If the matrices are real the term orthogonally similar is used.

Unitary similarity transformations are very important in numerical computations. Let
U be unitary. Then ‖U‖ = ‖U−1‖ = 1, the condition number of U is therefore κ(U) = 1.
Hence, if C = U−1AU then C = U∗AU and ‖C‖ = ‖A‖. In particular, if A is disturbed
by δA (e.g., roundoff errors introduced when storing the entries of A in finite-precision
arithmetic) then

U∗(A + δA)U = C + δC, ‖δC‖ = ‖δA‖.

Hence, errors (perturbations) in A are not amplified by a unitary similarity transformation.
This is in contrast to arbitrary similarity transformations. However, as we will see later,
small eigenvalues may still suffer from large relative errors.

Another reason for the importance of unitary similarity transformations is the preser-
vation of symmetry: If A is symmetric then U−1AU = U∗AU is symmetric as well.

For generalized eigenvalue problems, similarity transformations are not so crucial since
we can operate with different matrices from both sides. If S and T are nonsingular

Ax = λBx ⇐⇒ TAS−1Sx = λTBS−1Sx.

This sometimes called equivalence transformation of A,B. Thus, σ(A;B) = σ(TAS−1, TBS−1).
Let us consider a special case: let B be invertible and let B = LU be the LU-factorization
of B. Then we set S = U and T = L−1 and obtain TBU−1 = L−1LUU−1 = I. Thus,
σ(A;B) = σ(L−1AU−1, I) = σ(L−1AU−1).
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2.4 Schur decomposition

Theorem 2.8 (Schur decomposition) If A ∈ C
n×n then there is a unitary matrix

U ∈ C
n×n such that

(2.17) U∗AU = T

is upper triangular. The diagonal elements of T are the eigenvalues of A.

Proof. The proof is by induction. For n = 1, the theorem is obviously true.

Assume that the theorem holds for matrices of order ≤ n − 1. Let (λ,x), ‖x‖ = 1, be
an eigenpair of A, Ax = λx. We construct a unitary matrix U1 with first column x (e.g.
the Householder reflector U1 with U1x = e1). Partition U1 = [x, U ]. Then

U∗
1 AU1 =

[

x∗Ax x∗AU

U
∗
Ax U

∗
AU

]

=

[

λ × · · · ×
0 Â

]

as Ax = λx and U
∗
x = 0 by construction of U1. By assumption, there exists a unitary

matrix Û ∈ C
(n−1)×(n−1) such that Û∗ÂÛ = T̂ is upper triangular. Setting U := U1(1⊕Û),

we obtain (2.17).

Notice , that this proof is not constructive as we assume the knowledge of an eigenpair
(λ,x). So, we cannot employ it to actually compute the Schur form. The QR algorithm
is used for this purpose. We will discuss this basic algorithm in Chapter 3.

Let U∗AU = T be a Schur decomposition of A with U = [u1,u2, . . . ,un]. The Schur
decomposition can be written as AU = UT . The k-th column of this equation is

(2.18) Auk = λuk +
k−1
∑

i=1

tikui, λk = tkk.

This implies that

(2.19) Auk ∈ span{u1, . . . ,uk}, ∀k.

Thus, the first k Schur vectors u1, . . . ,uk form an invariant subspace1 for A. From
(2.18) it is clear that the first Schur vector is an eigenvector of A. The other columns of U ,
however, are in general not eigenvectors of A. Notice, that the Schur decomposition is not
unique. In the proof we have chosen any eigenvalue λ. This indicates that the eigenvalues
can be arranged in any order in the diagonal of T . This also indicates that the order with
which the eigenvalues appear on T ’s diagonal can be manipulated.

Problem 2.9 Let

A =

[

λ1 α
0 λ2

]

.

Find an orthogonal 2 × 2 matrix Q such that

Q∗AQ =

[

λ2 β
0 λ1

]

.

Hint: the first column of Q must be the (normalized) eigenvector of A with eigenvalue λ2.

1A subspace V ⊂ F
n is called invariant for A if AV ⊂ V.
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2.5 The real Schur decomposition

Real matrices can have complex eigenvalues. If complex eigenvalues exist, then they occur
in complex conjugate pairs! That is, if λ is an eigenvalue of the real matrix A, then also λ̄
is an eigenvalue of A. The following theorem indicates that complex computation can be
avoided.

Theorem 2.10 (Real Schur decomposition) If A ∈ R
n×n then there is an orthogonal

matrix Q ∈ R
n×n such that

(2.20) QT AQ =











R11 R12 · · · R1m

R22 · · · R2m

. . .
...

Rmm











is upper quasi-triangular. The diagonal blocks Rii are either 1 × 1 or 2 × 2 matrices. A
1× 1 block corresponds to a real eigenvalue, a 2× 2 block corresponds to a pair of complex
conjugate eigenvalues.

Remark 2.3. The matrix
[

α β
−β α

]

, α, β ∈ R,

has the eigenvalues α + iβ and α − iβ.
Proof. Let λ = α + iβ, β 6= 0, be an eigenvalue of A with eigenvector x = u + iv. Then
λ̄ = α− iβ is an eigenvalue corresponding to x̄ = u− iv. To see this we first observe that

Ax = A(u + iv) = Au + iAv,

λx = (α + iβ)(u + iv) = (αu − βv) + i(βu − αv).

Thus,
Ax̄ = A(u − iv) = Au− iAv,

= (αu − βv) − i(βu + αv)

= (α − iβ)u − i(α − iβ)v = (α − iβ)(u − iv) = λ̄x̄.

Now, the actual proof starts. Let k be the number of complex conjugate pairs. We prove
the theorem by induction on k.

First we consider the case k = 0. In this case A has real eigenvalues and eigenvectors.
It is clear that we can repeat the proof of the Schur decomposition of Theorem 2.8 in real
arithmetic to get the decomposition (2.17) with U ∈ R

n×n and T ∈ R
n×n. So, there are n

diagonal blocks Rjj in (2.20) all of which are 1 × 1.
Let us now assume the the theorem is true for all matrices with fewer than k complex

conjugate pairs. Then, with λ = α + iβ, β 6= 0 and x = u + iv, as previously, we have

A[u,v] = [u,v]

[

α β
−β α

]

.

Let {x1,x2} be an orthonormal basis of span([u,v]). Then, since u and v are linearly
independent2, there is a nonsingular 2 × 2 real square matrix C with

[x1,x2] = [u,v]C.

2If u and v were linearly dependent then it follows that β must be zero.
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Now,

A[x1,x2] = A[u,v]C = A[u,v]

[

α β
−β α

]

C

= [x1,x2]C
−1

[

α β
−β α

]

C =: [x1,x2]S.

S and

[

α β
−β α

]

are similar and therefore have equal eigenvalues. Now we construct an

orthogonal matrix [x1,x2,x3, . . . ,xn] =: [x1,x2,W ]. Then

[

[x1,x2],W
]T

A
[

[x1,x2],W
]

=





xT
1

xT
2

W T





[

[x1,x2]S,AW
]

=

[

S [x1,x2]
T AW

O W TAW

]

.

The matrix W TAW has less than k complex-conjugate eigenvalue pairs. Therefore, by
the induction assumption, there is an orthogonal Q2 ∈ R

(n−2)×(n−2) such that the matrix

QT
2 (W T AW )Q2

is quasi-triangular. Thus, the orthogonal matrix

Q = [x1,x2,x3, . . . ,xn]

(

I2 O
O Q2

)

transforms A similarly to quasi-triangular form.

2.6 Hermitian matrices

Definition 2.11 A matrix A ∈ F
n×n is Hermitian if

(2.21) A = A∗.

The Schur decomposition for Hermitian matrices is particularly simple. We first note
that A being Hermitian implies that the upper triangular Λ in the Schur decomposition
A = UΛU∗ is Hermitian and thus diagonal. In fact, because

Λ = Λ∗ = (U∗AU)∗ = U∗A∗U = U∗AU = Λ,

each diagonal element λi of Λ satisfies λi = λi. So, Λ has to be real. In summary have the
following result.

Theorem 2.12 (Spectral theorem for Hermitian matrices) Let A be Hermitian.
Then there is a unitary matrix U and a real diagonal matrix Λ such that

(2.22) A = UΛU∗ =
n
∑

i=1

λiuiu
∗
i .

The columns u1, . . . ,un of U are eigenvectors corresponding to the eigenvalues λ1, . . . , λn.
They form an orthonormal basis for F

n.
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The decomposition (2.22) is called a spectral decomposition of A.
As the eigenvalues are real we can sort them with respect to their magnitude. We can,

e.g., arrange them in ascending order such that λ1 ≤ λ2 ≤ · · · ≤ λn.
If λi = λj , then any nonzero linear combination of ui and uj is an eigenvector corre-

sponding to λi,

A(uiα + ujβ) = uiλiα + ujλjβ = (uiα + ujβ)λi.

However, eigenvectors corresponding to different eigenvalues are orthogonal. Let Au = uλ
and Av = vµ, λ 6= µ. Then

λu∗v = (u∗A)v = u∗(Av) = u∗vµ,

and thus
(λ − µ)u∗v = 0,

from which we deduce u∗v = 0 as λ 6= µ.
In summary, the eigenvectors corresponding to a particular eigenvalue λ form a sub-

space, the eigenspace {x ∈ F
n, Ax = λx} = N (A − λI). They are perpendicular to the

eigenvectors corresponding to all the other eigenvalues. Therefore, the spectral decompo-
sition (2.22) is unique up to ± signs if all the eigenvalues of A are distinct. In case of
multiple eigenvalues, we are free to choose any orthonormal basis for the corresponding
eigenspace.
Remark 2.4. The notion of Hermitian or symmetric has a wider background. Let 〈x,y〉
be an inner product on F

n. Then a matrix A is symmetric with respect to this inner
product if 〈Ax,y〉 = 〈x, Ay〉 for all vectors x and y. For the ordinary Euclidean inner
product (x,y) = x∗y we arrive at the element-wise Definition 2.6 if we set x and y equal
to coordinate vectors.

It is important to note that all the properties of Hermitian matrices that we will derive
subsequently hold similarly for matrices symmetric with respect to a certain inner product.

Example 2.13 We consider the one-dimensional Sturm-Liouville eigenvalue problem

(2.23) −u′′(x) = λu(x), 0 < x < π, u(0) = u(π) = 0,

that models the vibration of a homogeneous string of length π that is clamped at both
ends. The eigenvalues and eigenvectors or eigenfunctions of (2.23) are

λk = k2, uk(x) = sin kx, k ∈ N.

Let u
(n)
i denote the approximation of an (eigen)function u at the grid point xi,

ui ≈ u(xi), xi = ih, 0 ≤ i ≤ n + 1, h =
π

n + 1
.

We approximate the second derivative of u at the interior grid points by

(2.24)
1

h2
(−ui−1 + 2ui − ui+1) = λui, 1 ≤ i ≤ n.

Collecting these equations and taking into account the boundary conditions, u0 = 0 and
un+1 = 0, we get a (matrix) eigenvalue problem

(2.25) Tnx = λx
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where

Tn :=
(n + 1)2

π2



















2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2



















∈ R
n×n.

The matrix eigenvalue problem (2.25) can be solved explicitly [3, p.229]. Eigenvalues and
eigenvectors are given by

(2.26)

λ
(n)
k =

(n + 1)2

π2
(2 − 2 cos φk) =

4(n + 1)2

π2
sin2 kπ

2(n + 1)
,

u
(n)
k =

(

2

n + 1

)1/2

[sin φk, sin 2φk, . . . , sin nφk]
T , φk =

kπ

n + 1
.

Clearly, λ
(n)
k converges to λk as n → ∞. (Note that sin ξ → ξ as ξ → 0.) When we identify

u
(n)
k with the piecewise linear function that takes on the values given by u

(n)
k at the grid

points xi then this function evidently converges to sin kx.

Let p(λ) be a polynomial of degree d, p(λ) = α0 + α1λ + α2λ
2 + · · · + αdλ

d. As
Aj = (UΛU∗)j = UΛjU∗ we can define a matrix polynomial as

(2.27) p(A) =
d
∑

j=0

αjA
j =

d
∑

j=0

αjUΛjU∗ = U





d
∑

j=0

αjΛ
j



U∗.

This equation shows that p(A) has the same eigenvectors as the original matrix A. The
eigenvalues are modified though, λk becomes p(λk). Similarly, more complicated functions
of A can be computed if the function is defined on spectrum of A.

Definition 2.14 The quotient

ρ(x) :=
x∗Ax

x∗x
, x 6= 0,

is called the Rayleigh quotient of A at x.

Notice, that ρ(xα) = ρ(x), α 6= 0. Hence, the properties of the Rayleigh quotient
can be investigated by just considering its values on the unit sphere. Using the spectral
decomposition A = UΛU∗, we get

x∗Ax = x∗UΛU∗x =
n
∑

i=1

λi|u∗
i x|2.

Similarly, x∗x =
∑n

i=1 |u∗
i x|2. With λ1 ≤ λ2 ≤ · · · ≤ λn, we have

λ1

n
∑

i=1

|u∗
i x|2 ≤

n
∑

i=1

λi|u∗
i x|2 ≤ λn

n
∑

i=1

|u∗
i x|2.

So,
λ1 ≤ ρ(x) ≤ λn, for all x 6= 0.
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As

ρ(uk) = λk,

the extremal values λ1 and λn are actually attained for x = u1 and x = un, respectively.
Thus we have proved the following theorem.

Theorem 2.15 Let A be Hermitian. Then the Rayleigh quotient satisfies

(2.28) λ1 = min ρ(x), λn = max ρ(x).

As the Rayleigh quotient is a continuous function it attains all values in the closed interval
[λ1, λn].

The next theorem generalizes the above theorem to interior eigenvalues. The following
theorems is attributed to Poincaré, Fischer and Pólya.

Theorem 2.16 (Minimum-maximum principle) Let A be Hermitian. Then

(2.29) λp = min
X∈Fn×p,rank(X)=p

max
x 6=0

ρ(Xx)

Proof. Let Up−1 = [u1, . . . ,up−1]. For every X with full rank we can choose x 6= 0 such
that U∗

p−1Xx = 0. Then 0 6= z := Xx =
∑n

i=p ziui. As in the proof of the previous
theorem we obtain the inequality

ρ(z) ≥ λp.

To prove that equality holds in (2.29) we choose X = [u1, . . . ,up]. Then

U∗
p−1Xx =







1 0
. . .

...
1 0






x = 0

implies that x = ep, i.e., that z = Xx = up. So, ρ(z) = λp.

An important consequence of the minimum-maximum principle is the following

Theorem 2.17 (Monotonicity principle) Let q1, . . . ,qp be normalized, mutually or-
thogonal vectors and Q := [q1, . . . ,qp]. Let A′ := Q∗AQ ∈ F

p×p. Then the p eigenvalues
λ′

1 ≤ · · · ≤ λ′
p of A′ satisfy

(2.30) λk ≤ λ′
k, 1 ≤ k ≤ p.

Proof. Let w1, . . . ,wp ∈ F
p be the eigenvectors of A′,

(2.31) A′wi = λ′
iwi, 1 ≤ i ≤ p,

with w∗wj = δij . Then the vectors Qw1, . . . , Qwp are normalized and mutually orthogo-
nal. Therefore, we can construct a vector

x0 := a1Qw1 + · · · + akQwk, ‖x0‖ = 1,

that is orthogonal to the first k − 1 eigenvectors of A,

x∗
0xi = 0, 1 ≤ i ≤ k − 1.
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Then, with the minimum-maximum principle we have

λk = min
x6=0

x∗x1=···=x∗xk−1
=0

R(x) ≤ R(x0) = x∗
0Ax0

=

p
∑

i,j=1

āiajw
∗
i Q

∗AQwj =

k
∑

i,j=1

āiajλ
′
iδij =

k
∑

i=1

|a|2i λ′
i ≤ λ′

k.

The last inequality holds since ‖x0‖ = 1 implies
∑k

i=1|a|2i = 1.
Remark 2.5. (The proof of this statement is an exercise)

It is possible to prove the inequalities (2.30) without assuming that the q1, . . . ,qp are
orthonormal. But then one has to use the eigenvalues λ′

k of

A′x = λ′Bx, B′ = Q∗Q,

instead of (2.31).
The trace of a matrix A ∈ F

n×n is defined to be the sum of the diagonal elements of a
matrix. Matrices that are similar have equal trace. Hence, by the spectral theorem,

(2.32) trace(A) =

n
∑

i=1

aii =

n
∑

i=1

λi.

The following theorem is proved in a similar way as the minimum-maximum theorem.

Theorem 2.18 (Trace theorem)

(2.33) λ1 + λ2 + · · · + λp = min
X∈Fn×p,X∗X=Ip

trace(X∗AX)

2.7 Cholesky factorization

Definition 2.19 A Hermitian matrix is called positive definite (positive semi-definite)
if all its eigenvalues are positive (nonnegative).

For a Hermitian positive definite matrix A, the LU decomposition can be written in a
particular form reflecting the symmetry of A.

Theorem 2.20 (Cholesky factorization) Let A ∈ F
n×n be Hermitian positive definite.

Then there is a lower triangular matrix L such that

(2.34) A = LL∗.

L is unique if we choose its diagonal elements to be positive.

Proof. We prove the theorem by giving an algorithm that computes the desired factoriza-
tion.

Since A is positive definite, we have a11 = e∗1Ae1 > 0. Therefore we can form the
matrix

L1 =













l
(1)
11

l
(1)
21 1
...

. . .

l
(1)
n1 1













=















√
a11

a21√
a1,1

1

...
. . .

an1√
a1,1

1















.



2.8. THE SINGULAR VALUE DECOMPOSITION (SVD) 41

We now form the matrix

A1 = L−1
1 AL−1

1
∗

=











1 0 . . . 0

0 a22 − a21a12
a11

. . . a2n − a21a1n
a11

...
...

. . .
...

0 an2 − an1a12
a11

. . . ann − an1a1n
a11











.

This is the first step of the algorithm. Since positive definiteness is preserved by a congru-
ence transformation X∗AX (see also Theorem 2.22 below), A1 is again positive definite.
Hence, we can proceed in a similar fashion factorizing A1(2:n, 2:n), etc.

Collecting L1, L2, . . . , we obtain

I = L−1
n · · ·L−1

2 L−1
1 A(L∗

1)
−1(L∗

2)
−1 · · · (L∗

n)−1

or
(L1L2 · · ·Ln)(L∗

n · · ·L∗
2L

∗
1) = A.

which is the desired result. It is easy to see that L1L2 · · ·Ln is a triangular matrix and
that

L1L2 · · ·Ln =



















l
(1)
11

l
(1)
21 l

(2)
22

l
(1)
31 l

(2)
32 l

(3)
33

...
...

...
. . .

l
(1)
n1 l

(2)
n2 l

(3)
n3 . . . l

(n)
nn



















Remark 2.6. When working with symmetric matrices, one often stores only half of the
matrix, e.g. the lower triangle consisting of all elements including and below the diagonal.
The L-factor of the Cholesky factorization can overwrite this information in-place to save
memory.

Definition 2.21 The inertia of a Hermitian matrix is the triple (ν, ζ, π) where ν, ζ, π is
the number of negative, zero, and positive eigenvalues.

Theorem 2.22 (Sylvester’s law of inertia) If A ∈ C
n×n is Hermitian and X ∈ C

n×n

is nonsingular then A and X∗AX have the same inertia.

Proof. The proof is given, for example, in [2].
Remark 2.7. Two matrices A and B are called congruent if there is a nonsingular matrix
X such that B = X∗AX. Thus, Sylvester’s law of inertia can be stated in the following
form: The inertia is invariant under congruence transformations.

2.8 The singular value decomposition (SVD)

Theorem 2.23 (Singular value decomposition) If A ∈ C
m×n then there exist unitary

matrices U ∈ C
m×m and V ∈ C

n×n such that

(2.35) U∗AV = Σ =

(

diag(σ1, . . . , σp) 0
0 0

)

, p = min(m,n),

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.
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Proof. If A = O, the theorem holds with U = Im, V = In and Σ equal to the m × n zero
matrix.

We now assume that A 6= O. Let x, ‖x‖ = 1, be a vector that maximizes ‖Ax‖ and
let Ax = σy where σ = ‖A‖ = ‖Ax‖ and ‖y‖ = 1. As A 6= O, σ > 0. Consider the scalar
function

f(α) :=
‖A(x + αy)‖2

‖x + αy‖2
=

(x + αy)∗A∗A(x + αy)

(x + αy)∗(x + αy)

Because of the extremality of Ax, the derivative f ′(α) of f(α) must vanish at α = 0. This
holds for all y! We have

df

dα
(α) =

(x∗A∗Ay + ᾱy∗A∗Ay)‖x + αy‖2 − (x∗y + ᾱy∗y)‖A(x + αy)‖2

‖x + αy‖4

Thus, we have for all y,

df

dα
(α)

∣

∣

∣

∣

α=0

=
x∗A∗Ay‖x‖2 − x∗y‖A(x)‖2

‖x‖4
= 0.

As ‖x‖ = 1 and ‖Ax‖ = σ, we have

(x∗A∗A − σ2x∗)y = (A∗Ax − σ2x)∗y = 0, for all y,

from which

A∗Ax = σ2x

follow. Multiplying Ax = σy from the left by A∗ we get A∗Ax = σA∗y = σ2x from which

A∗y = σx

and AA∗y = σAx = σ2y follows. Therefore, x is an eigenvector of A∗A corresponding to
the eigenvalue σ2 and y is an eigenvector of AA∗ corresponding to the same eigenvalue.

Now, we construct a unitary matrix U1 with first column y and a unitary matrix V1

with first column x, U1 = [y, Ū ] and V1 = [x, V̄ ]. Then

U∗
1 AV1 =

[

y∗Ax y∗AU

U
∗
Ax U

∗
AV

]

=

[

σ σx∗U
σU

∗
y U

∗
AV

]

=

[

σ 0∗

0 Â

]

where Â = U
∗
AV .

The proof above is due to W. Gragg. It nicely shows the relation of the singular value
decomposition with the spectral decomposition of the Hermitian matrices A∗A and AA∗,

(2.36) A = UΣV ∗ =⇒ A∗A = UΣ2U∗, AA∗ = V Σ2V ∗.

Note that the proof given in [2] is shorter and may be more elegant.

The SVD of dense matrices is computed in a way that is very similar to the dense Her-
mitian eigenvalue problem. However, in the presence of roundoff error, it is not advisable
to make use of the matrices A∗A and AA∗. Instead, let us consider the (n + m)× (n + m)
Hermitian matrix

(2.37)

[

O A
A∗ O

]

.
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Making use of the SVD (2.35) we immediately get
[

O A
A∗ O

]

=

[

U O
O V

] [

O Σ
ΣT O

] [

U∗ O
O V ∗

]

.

Now, let us assume that m ≥ n. Then we write U = [U1, U2] where U1 ∈ F
m×n and

Σ =

[

Σ1

O

]

with Σ1 ∈ R
n×n. Then

[

O A
A∗ O

]

=

[

U1 U2 O
O O V

]





O O Σ1

O O O
Σ1 O O









U∗
1 O

U∗
2 O

O V ∗



 =

[

U1 O U2

O V O

]





O Σ1 O
Σ1 O O
O O O









U∗
1 O

O V ∗

U∗
2 O



 .

The first and third diagonal zero blocks have order n. The middle diagonal block has
order n − m. Now we employ the fact that

[

0 σ
σ 0

]

=
1√
2

[

1 1
1 −1

] [

σ 0
0 −σ

]

1√
2

[

1 1
1 −1

]

to obtain

(2.38)

[

O A
A∗ O

]

=

[

1√
2
U1

1√
2
U1 U2

1√
2
V − 1√

2
V O

]





Σ1 O O
O −Σ1 O
O O O











1√
2
U∗

1
1√
2
V ∗

1√
2
U∗

1 − 1√
2
V ∗

U∗
2 O






.

Thus, there are three ways how to treat the computation of the singular value decompo-
sition as an eigenvalue problem. One of the two forms in (2.36) is used implicitly in the
QR algorithm for dense matrices A, see [2],[1]. The form (2.37) is suited if A is a sparse
matrix.

2.9 Projections

Definition 2.24 A matrix P that satisfies

(2.39) P 2 = P

is called a projection.

Obviously, a projection is a square matrix. If P is a projection then Px = x for all
x in the range R(P ) of P . In fact, if x ∈ R(P ) then x = Py for some y ∈ F

n and
Px = P (Py) = P 2y = Py = x.

Example 2.25 Let

P =

(

1 2
0 0

)

.

The range of P is R(P ) = F×{0}. The effect of P is depicted in Figure 2.1: All points x
that lie on a line parallel to span{(2,−1)∗} are mapped on the same point on the x1 axis.
So, the projection is along span{(2,−1)∗} which is the null space N (P ) of P .

Example 2.26 Let x and y be arbitrary vectors such that y∗x 6= 0. Then

(2.40) P =
xy∗

y∗x

is a projection. Notice that the projector of the previous example can be expressed in the
form (2.40).
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x

x

1

2

Figure 2.1: Oblique projection of example 2.9

Problem 2.27 Let X,Y ∈ F
n×p such that Y ∗X is nonsingular. Show that

P := X(Y ∗X)−1Y ∗

is a projection.

If P is a projection then I−P is a projection as well. In fact, (I−P )2 = I−2P +P 2 =
I −2P +P = I −P . If Px = 0 then (I −P )x = x. Therefore, the range of I −P coincides
with the null space of P , R(I − P ) = N (P ). It can be shown that R(P ) = N (P ∗)⊥.

Notice that R(P )∩R(I−P ) = N (I−P )∩N (P ) = {0}. For, if Px = 0 then (I−P )x =
x, which can only be zero if x = 0. So, any vector x can be uniquely decomposed into

(2.41) x = x1 + x2, x1 ∈ R(P ), x2 ∈ R(I − P ) = N (P ).

The most interesting situation occurs if the decomposition is orthogonal, i.e., if x∗
1x2 =

0 for all x.

Definition 2.28 A matrix P is called an orthogonal projection if

(2.42)
(i) P 2 = P
(ii) P ∗ = P.

Proposition 2.29 Let P be a projection. Then the following statements are equivalent.
(i) P ∗ = P ,
(ii) R(I − P ) ⊥ R(P ), i.e. (Px)∗(I − P )y = 0 for all x,y.

Proof. (ii) follows trivially from (i) and (2.39).
Now, let us assume that (ii) holds. Then

x∗P ∗y = (Px)∗y = (Px)∗(Py + (I − P )y)

= (Px)∗(Py)

= (Px + (I − P )x)(Py) = x∗(Py).

This equality holds for any x and y and thus implies (i).

Example 2.30 Let q be an arbitrary vector of norm 1, ‖q‖ = q∗q = 1. Then P = qq∗

is the orthogonal projection onto span{q}.
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Example 2.31 Let Q ∈ F
n×p with Q∗Q = Ip. Then QQ∗ is the orthogonal projector

onto R(Q), which is the space spanned by the columns of Q.

Problem 2.32 Let Q,Q1 ∈ F
n×p with Q∗Q = Q∗

1Q1 = Ip such that R(Q) = R(Q1).
This means that the columns of Q and Q1, respectively, are orthonormal bases of the same
subspace of F

n. Show that the projector does not depend on the basis of the subspace,
i.e., that QQ∗ = Q1Q

∗
1.

Problem 2.33 Let Q = [Q1, Q2], Q1 ∈ F
n×p, Q2 ∈ F

n×(n−p) be a unitary matrix. Q1

contains the first p columns of Q, Q2 the last n − p. Show that Q1Q
∗
1 + Q2Q

∗
2 = I. Hint:

Use QQ∗ = I. Notice, that if P = Q1Q
∗
1 then I − P = Q2Q

∗
2.

Problem 2.34 What is the form of the orthogonal projection onto span{q} if the inner
product is defined as 〈x,y〉 := y∗Mx where M is a symmetric positive definite matrix?

2.10 Angles between vectors and subspaces

Let q1 and q2 be unit vectors, cf. Fig. 2.2. The length of the orthogonal projection of q2

$\mathbf{q}_1$

Figure 2.2: Angle between vectors q1 and q2

on span{q1} is given by

(2.43) c := ‖q1q1
∗q2‖ = |q1

∗q2| ≤ 1.

The length of the orthogonal projection of q2 on span{q1}⊥ is

(2.44) s := ‖(I − q1q1
∗)q2‖.

As q1q
∗
1 is an orthogonal projection we have by Pythagoras’ formula that

(2.45) 1 = ‖q2‖2 = ‖q1q1
∗q2‖2 + ‖(I − q1q1

∗)q2‖2 = s2 + c2.

Alternatively, we can conclude from (2.44) that

(2.46)

s2 = ‖(I − q1q1
∗)q2‖2

= q2
∗(I − q1q1

∗)q2

= q2
∗q2 − (q2

∗q1)(q1
∗q2)

= 1 − c2
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So, there is a number, say, ϑ, 0 ≤ ϑ ≤ π
2 , such that c = cos ϑ and s = sin ϑ. We call this

uniquely determined number ϑ the angle between the vectors q1 and q2:

ϑ = ∠(q1,q2).

The generalization to arbitrary vectors is straightforward.

Definition 2.35 The angle θ between two nonzero vectors x and y is given by

(2.47) ϑ = ∠(x,y) = arcsin

(∥

∥

∥

∥

(

I − xx∗

‖x‖2

)

y

‖y‖

∥

∥

∥

∥

)

= arccos

( |x∗y|
‖x‖‖y‖

)

.

When investigating the convergence behaviour of eigensolvers we usually show that
the angle between the approximating and the desired vector tends to zero as the number
of iterations increases. In fact it is more convenient to work with the sine of the angle.

In the formulae above we used the projections P and I−P with P = q1q1
∗. We would

have arrived at the same point if we had exchanged the roles of q1 and q2. As

‖q1q
∗
1q2‖ = ‖q2q

∗
2q1‖ = |q∗

2q1|

we get
‖(I − q1q

∗
1)q2‖ = ‖(I − q2q

∗
2)q1‖.

This immediately leads to

Lemma 2.36 sin ∠(q1,q2) = ‖q1q
∗
1 − q2q

∗
2‖.

Let now Q1 ∈ F
n×p, Q2 ∈ F

n×q be matrices with orthonormal columns, Q∗
1Q1 =

Ip, Q
∗
2Q2 = Iq. Let Si = R(Qi), then S1 and S2 are subspaces of F

n of dimension p and
q, respectively. We want to investigate how we can define a distance or an angle between
S1 and S2 [2].

It is certainly straightforward to define the angle between the subspaces S1 and S2 to
be the angle between two vectors x1 ∈ S1 and x2 ∈ S2. It is, however, not clear right-away
how these vectors should be chosen.

Figure 2.3: Two intersecting planes in 3-space

Let us consider the case of two 2-dimensional subspaces in R
3, cf. Fig. (2.3). Let

S1 = span{q1, q2} and S2 = span{q1, q3} where we assume that q∗
1q2 = q∗

1q3 = 0. We
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might be tempted to define the angle between S1 and S2 as the maximal angle between
any two vectors in S1 and S2,

(2.48) ∠(S1, S2) = max
x1∈S1

x2∈S2

∠(x1,x2).

This would give an angle of 90o as we could chose q1 in S1 and q3 in S2. This angle
would not change as we turn S2 around q1. It would even stay the same if the two planes
coincided.

What if we would take the minimum in (2.48)? This definition would be equally
unsatisfactory as we could chose q1 in S1 as well as in S2 to obtain an angle of 0o. In fact,
any two 2-dimensional subspaces in 3 dimensions would have an angle of 0o. Of course,
we would like to reserve the angle of 0o to coinciding subspaces.

A way out of this dilemma is to proceed as follows: Take any vector x1 ∈ S1 and
determine the angle between x1 and its orthogonal projection (I − Q∗

2Q2)x1 on S2. We
now maximize the angle by varying x1 among all non-zero vectors in S1. In the above
3-dimensional example we would obtain the angle between x2 and x3 as the angle between
S1 and S3. Is this a reasonable definition? In particular, is it well-defined in the sense
that it does not depend on how we number the two subspaces? Let us now assume that
S1, S2 ⊂ F

n have dimensions p and q. Formally, the above procedure gives an angle ϑ with

(2.49)

sin ϑ := max
r∈S1

‖r‖=1

‖(In − Q2Q
∗
2)r‖

= max
a∈F

p

‖a‖=1

‖(In − Q2Q
∗
2)Q1a‖

= ‖(In − Q2Q
∗
2)Q1‖.

Because In − Q2Q
∗
2 is an orthogonal projection, we get

(2.50)

‖(In − Q2Q
∗
2)Q1a‖2 = a∗Q∗

1(In − Q2Q
∗
2)(In − Q2Q

∗
2)Q1a

= a∗Q∗
1(In − Q2Q

∗
2)Q1a

= a∗(Q∗
1Q1 − Q∗

1Q2Q
∗
2Q1)a

= a∗(Ip − (Q∗
1Q2)(Q

∗
2Q1))a

= a∗(Ip − W ∗W )a

where W := Q∗
2Q1 ∈ F

q×p. With (2.49) we obtain

(2.51)

sin2 ϑ = max
‖a‖=1

a∗(Ip − W ∗W )a

= largest eigenvalue of Ip − W ∗W

= 1 − smallest eigenvalue of W ∗W.

If we change the roles of Q1 and Q2 we get in a similar way

(2.52) sin2 ϕ = ‖(In − Q1Q
∗
1)Q2‖ = 1 − smallest eigenvalue of WW ∗.

Notice, that W ∗W ∈ F
p×p and WW ∗ ∈ F

q×q and that both matrices have equal rank.
Thus, if W has full rank and p < q then ϑ < ϕ = π/2. However if p = q then W ∗W and
WW ∗ have equal eigenvalues, and, thus, ϑ = ϕ. In this most interesting case we have

sin2 ϑ = 1 − λmin(W
∗W ) = 1 − σ2

min(W ),
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where σmin(W ) is the smallest singular value of W [2, p.16].

For our purposes in the analysis of eigenvalue solvers the following definition is most
appropriate.

Definition 2.37 Let S1, S2 ⊂ F
n be of dimensions p and q and let Q1 ∈ F

n×p and
Q2 ∈ F

n×q be matrices the columns of which form orthonormal bases of S1 and S2,
respectively, i.e. Si = R(Qi), i = 1, 2. Then we define the angle ϑ, 0 ≤ ϑ ≤ π/2, between
S1 and S2 by

sin ϑ = sin ∠(S1, S2) =







√

1 − σ2
min(Q

∗
1Q2) if p = q,

1 if p 6= q.

If p = q the equations (2.49)–(2.51) imply that

(2.53)

sin2 ϑ = max
‖a‖=1

a∗(Ip − W ∗W )a = max
‖b‖=1

b∗(Ip − WW ∗)b

= ‖(In − Q2Q
∗
2)Q1‖ = ‖(In − Q1Q

∗
1)Q2‖

= ‖(Q1Q
∗
1 − Q2Q

∗
2)Q1‖ = ‖(Q1Q

∗
1 − Q2Q

∗
2)Q2‖

Let x ∈ S1 + S2. Then x = q̃1 + q̃2 with q̃i ∈ Si. We write

x = q̃1 + Q1Q
∗
1q̃2 + (In − Q1Q

∗
1)q̃2 =: q1 + q2

with q1 = Q1a and q2 = Q2b = (In − Q1Q
∗
1)Q2b. Then

‖(Q1Q
∗
1 − Q2Q

∗
2)x‖2 = ‖(Q1Q

∗
1 − Q2Q

∗
2)(Q1a + Q2b)‖2

= ‖Q1a + Q2Q
∗
2Q1a + Q2b‖2

= ‖(In − Q2Q
∗
2)Q1a + Q2b‖2

= a∗Q∗
1(In − Q2Q

∗
2)Q1a

+ 2Re(a∗Q∗
1(In − Q2Q

∗
2)Q2b) + b∗Q∗

2Q2b

sin2 ϑ = max
‖a‖=1

a∗Q∗
1(In − Q2Q

∗
2)Q1a,

= max
‖a‖=1

a∗Q∗
1(Q1Q

∗
1 − Q2Q

∗
2)Q1a,

= max
x∈S1\{0}

x∗(Q1Q
∗
1 − Q2Q

∗
2)x

x∗x
.

Thus, sin ϑ is the maximum of the Rayleigh quotient R(x) corresponding to Q1Q
∗
1−Q2Q

∗
2,

that is the largest eigenvalue of Q1Q
∗
1−Q2Q

∗
2. As Q1Q

∗
1−Q2Q

∗
2 is symmetric and positive

semi-definite, its largest eigenvalue equals its norm,

Lemma 2.38 sin ∠(S1, S2) = ‖Q2Q
∗
2 − Q1Q

∗
1‖

Lemma 2.39 ∠(S1, S2) = ∠(S1
⊥, S2

⊥).

Proof. Because

‖Q2Q
∗
2 − Q1Q

∗
1‖ = ‖(I − Q2Q

∗
2) − (I − Q1Q

∗
1)‖

the claim immediately follows from Lemma 2.38.
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