
Chapter 1

Introduction

Before we start with the subject of this notes we want to show how one actually arrives at
large eigenvalue problems in practice. In the following, we restrict ourselves to problems
from physics [7, 18, 14] and computer science.

1.1 What makes eigenvalues interesting?

In physics, eigenvalues are usually related to vibrations. Objects like violin strings, drums,
bridges, sky scrapers can swing. They do this at certain frequencies. And in some situ-
ations they swing so much that they are destroyed. On November 7, 1940, the Tacoma
narrows bridge collapsed, less than half a year after its opening. Strong winds excited the
bridge so much that the platform in reinforced concrete fell into pieces. A few years ago
the London millennium footbridge started wobbling in a way that it had to be closed. The
wobbling had been excited by the pedestrians passing the bridge. These are prominent
examples of vibrating structures.

But eigenvalues appear in many other places. Electric fields in cyclotrones, a special
form of particle accelerators, have to oscillate in a precise manner, in order to accelerate the
charged particles that circle around its center. The solutions of the Schrödinger equation
from quantum physics and quantum chemistry have solutions that correspond to vibrations
of the, say, molecule it models. The eigenvalues correspond to energy levels that molecule
can occupy.

Many characteristic quantities in science are eigenvalues:

• decay factors,

• frequencies,

• norms of operators (or matrices),

• singular values,

• condition numbers.

In the sequel we give a number of examples that show why computing eigenvalues is
important. At the same time we introduce some notation.
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1.2 Example 1: The vibrating string

1.2.1 Problem setting

Let us consider a string as displayed in Fig. 1.1. The string is fixed at both ends, at x = 0

u

x
L0

u(x,t)

Figure 1.1: A vibrating string fixed at both ends.

and x = L. The x-axis coincides with the string’s equilibrium position. The displacement
of the rest position at x, 0 < x < L, and time t is denoted by u(x, t).

We will assume that the spatial derivatives of u are not very large:
∣∣∣∣
∂u

∂x

∣∣∣∣ is small.

This assumption entails that we may neglect terms of higher order.
Let v(x, t) be the velocity of the string at position x and at time t. Then the kinetic

energy of a string section ds of mass dm = ρ ds is given by

(1.1) dT =
1

2
dm v2 =

1

2
ρ ds

(
∂u

∂t

)2

.

From Fig. 1.2 we see that ds2 = dx2 +
(
∂u
∂x

)2
dx2 and thus

ds

dx
=

√

1 +

(
∂u

∂x

)2

= 1 +
1

2

(
∂u

∂x

)2

+ higher order terms.

Plugging this into (1.1) and omitting also the second order term (leaving just the number 1)
gives

dT =
ρ dx

2

(
∂u

∂t

)2

.

The kinetic energy of the whole string is obtained by integrating over its length,

T =

∫ L

0
dT (x) =

1

2

∫ L

0
ρ(x)

(
∂u

∂t

)2

dx

The potential energy of the string has two components
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ds

dx

Figure 1.2: A vibrating string, local picture.

1. the stretching times the exerted strain τ ,

τ

∫ L

0
ds− τ

∫ L

0
dx = τ

∫ L

0



√

1 +

(
∂u

∂x

)2

− 1


 dx

= τ

∫ L

0

(
1

2

(
∂u

∂x

)2

+ higher order terms

)
dx

2. exterior forces of density f ,

−
∫ L

0
fudx.

Summing up, the potential energy of the string becomes

(1.2) V =

∫ L

0

(
τ

2

(
∂u

∂x

)2

− fu
)
dx.

To consider the motion (vibration) of the string in a certain time interval t1 ≤ t ≤ t2 we
form the integral

(1.3) I(u) =

∫ t2

t1

(T − V ) dt =
1

2

∫ t2

t1

∫ L

0

[
ρ(x)

(
∂u

∂t

)2

− τ
(
∂u

∂x

)2

+ 2fu

]
dx dt

Here functions u(x, t) are admitted that are differentiable with respect to x and t and
satisfy the boundary conditions (BC) that correspond to the fixing,

(1.4) u(0, t) = u(L, t) = 0, t1 ≤ t ≤ t2,

as well as given initial conditions and end conditions,

(1.5)
u(x, t1) = u1(x),
u(x, t2) = u2(x),

0 < x < L.
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According to the principle of Hamilton a mechanical system with kinetic energy T and
potential energy V behaves in a time interval t1 ≤ t ≤ t2 for given initial and end positions
such that

I =

∫ t2

t1

Ldt, L = T − V,

is minimized.

Let u(x, t) be such that I(u) ≤ I(w) for all w, that satisfy the initial, end, and
boundary conditions. Let w = u+ ε v with

(∗) v(0, t) = v(L, t) = 0, v(x, t1) = v(x, t2) = 0.

v is called a variation. We now consider I(u + ε v) as a function of ε. Then we have the
equivalence

I(u) minimal ⇐⇒ dI
dε

(u) = 0 for all admitted v.

Plugging u+ ε v into eq. (1.3) we obtain

(1.6)

I(u+ ε v) =
1

2

t2∫

t1

L∫

0

[
ρ(x)

(
∂(u+ ε v)

∂t

)2

− τ
(
∂(u+ ε v)

∂x

)2

+ 2f(u+ ε v)

]
dx dt

= I(u) + ε

t2∫

t1

L∫

0

[
ρ(x)

∂u

∂t

∂v

∂t
− τ ∂u

∂x

∂v

∂x
+ 2fv

]
dx dt+O(ε2).

Thus, after integration by parts, exploiting the conditions in (∗), the equation

∂I

∂ε
=

∫ t2

t1

∫ L

0

[
ρ
∂2u

∂t2
− τ ∂

2u

∂x2
+ 2 f

]
v dx dt = 0

must hold for all admissible v. Therefore, the bracketed expression must vanish,

(1.7) − ρ∂
2u

∂t2
+ τ

∂2u

∂x2
= 2 f.

This last differential equation is named Euler-Lagrange equation.

If the force is proportional to the displacement u(x, t) (like, e.g., in Hooke’s law) then
we get a differential equation of the form

(1.8)
−ρ(x)∂

2u
∂t2

+ ∂
∂x

(
p(x)∂u

∂x

)
+ q(x)u(x, t) = 0.

u(0, t) = u(1, t) = 0

which is a special case of the Euler-Lagrange equation (1.7). Here, ρ(x) plays the role of
a mass density, p(x) of a locally varying elasticity module. We do not specify initial and
end conditions for the moment. Note that there are no external forces present in (1.8).

From physics we know that ρ(x) > 0 and p(x) > 0 for all x. These properties are of
importance also from a mathematical view point! For simplicity, we assume that ρ(x) = 1.
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1.2.2 The method of separation of variables

For the solution u in (1.8) we make the ansatz

(1.9) u(x, t) = v(t)w(x).

Here, v is a function that depends only on the time t, while w depends only on the spatial
variable x. With this ansatz (1.8) becomes

(1.10) v′′(t)w(x)− v(t)(p(x)w′(x))′ − q(x)v(t)w(x) = 0.

Now we separate the variables depending on t from those depending on x,

v′′(t)
v(t)

=
1

w(x)
(p(x)w′(x))′ + q(x).

This equation holds for any t and x. We can vary t and x independently of each other
without changing the value on each side of the equation. Therefore, each side of the
equation must be equal to a constant value. We denote this value by −λ. Thus, from the
left side we obtain the equation

(1.11) − v′′(t) = λv(t).

This equation has the well-known solution v(t) = a · cos(
√
λt) + b · sin(

√
λt) where λ > 0

is assumed. The right side of (1.10) gives a so-called Sturm-Liouville problem

(1.12) −(p(x)w′(x))′ + q(x)w(x) = λw(x), w(0) = w(1) = 0.

A value λ for which (1.12) has a non-trivial (i.e. nonzero) solution w is called an eigen-
value; w is a corresponding eigenfunction. It is known that all eigenvalues of (1.12) are
positive. By means of our ansatz (1.9) we get

u(x, t) = w(x)
[
a · cos(

√
λt) + b · sin(

√
λt)
]

as a solution of (1.8). It is known that (1.12) has infinitely many real positive eigenvalues
0 < λ1 ≤ λ2 ≤ · · · , (λk −→

k→∞
∞). (1.12) has a non-zero solution, say wk(x), only for these

particular values λk. Therefore, the general solution of (1.8) has the form

(1.13) u(x, t) =

∞∑

k=0

wk(x)
[
ak · cos(

√
λk t) + bk · sin(

√
λk t)

]
.

The coefficients ak and bk are determined by initial and end conditions. We could, e.g.,
require that

u(x, 0) =

∞∑

k=0

akwk(x) = u0(x),

∂u

∂t
(x, 0) =

∞∑

k=0

√
λk bkwk(x) = u1(x),

where u0 and u1 are given functions. It is known that the wk form an orthogonal basis in
the space of square integrable functions L2(0, 1),

∫ 1

0
wk(x)wℓ(x)dx = γkδkℓ.
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Therefore, it is not difficult to compute the coefficients ak and bk,

ak =

∫ 1

0
u0(x)wk(x)dx/γk, bk =

∫ 1

0
u1(x)wk(x)dx/γk

√
λk.

In concluding, we see that the difficult problem to solve is the eigenvalue problem (1.12).
Knowing the eigenvalues and eigenfunctions the general solution of the time-dependent
problem (1.8) is easy to form.

Eq. (1.12) can be solved analytically only in very special situation, e.g., if all coefficients
are constants. In general a numerical method is needed to solve the Sturm-Liouville
problem (1.12).

1.3 Numerical methods for solving 1-dimensional problems

In this section we consider three methods to solve the Sturm-Liouville problem.

1.3.1 Finite differences

We approximate w(x) by its values at the discrete points xi = ih, h = 1/(n + 1), i =
1, . . . , n.

x
L0 x x x

i−1 i i+1

Figure 1.3: Grid points in the interval (0, L).

At point xi we approximate the derivatives by finite differences. We proceed as
follows. First we write

d

dx
g(xi) ≈

g(xi+ 1
2
)− g(xi− 1

2
)

h
.

For g = pdwdx we get

g(xi+ 1
2
) = p(xi+ 1

2
)
w(xi+1)− w(xi)

h

and, finally, for i = 1, . . . , n,

− d

dx

(
p
dw

dx
(xi)

)
≈ −1

h

[
p(xi+ 1

2
)
w(xi+1)− w(xi)

h
− p(xi− 1

2
)
w(xi)− w(xi−1)

h

]

=
1

h2

[
−p(xi− 1

2
)wi−1 + (p(xi− 1

2
) + p(xi+ 1

2
))wi − p(xi+ 1

2
)wi+1

]
.

Note that at the interval endpoints w0 = wn+1 = 0.

We can collect all equations in a matrix equation,




p(x 1
2
) + p(x 3

2
)

h2
+ q(x1) −

p(x 3
2
)

h2

−
p(x 3

2
)

h2
p(x 3

2
) + p(x 5

2
)

h2
+ q(x2) −

p(x 5
2
)

h2

−
p(x 5

2
)

h2
. . .

. . .







w1

w2

w3
...
wn



= λ




w1

w2

w3
...
wn



,
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or, briefly,

(1.14) Aw = λw.

By construction, A is symmetric and tridiagonal. One can show that it is positive definite
as well. Note that this matrix has just a few nonzeros: out of the n2 elements of A only
3n− 2 are nonzero. This is an example of a sparse matrix.

1.3.2 The finite element method

We write (1.12) in the form

Find a twice differentiable function w with w(0) = w(1) = 0 such that

∫ 1

0

[
−(p(x)w′(x))′ + q(x)w(x) − λw(x)

]
φ(x)dx = 0

for all smooth functions φ that satisfy φ(0) = φ(1) = 0.

To relax the requirements on w we integrate by parts and get the new so-called weak
or variational form of the problem:

Find a differentiable function w with w(0) = w(1) = 0 such that

(1.15)

∫ 1

0

[
p(x)w(x)′φ′(x) + q(x)w(x)φ(x) − λw(x)φ(x)

]
dx = 0

for all differentiable functions φ that satisfy φ(0) = φ(1) = 0.

Remark: Requiring continuous differentiability is too strong and does not lead to a
mathematically suitable formulation. In particular, the test functions that will be used
below are not differentiable in the classical sense. It is more appropriate to require w and φ
to be weakly differentiable. In terms of Sobolev spaces: w,φ ∈ H1

0 ([0, 1]). An introduction
to Sobolev spaces is, however, beyond the scope of these notes.

x
L0 x x x

i−1 i i+1

1Ψi

Figure 1.4: A basis function of the finite element space: a hat function.

We now write w as the linear combination

(1.16) w(x) =
n∑

i=1

ξiΨi(x),

where

(1.17) Ψi(x) =

(
1− |x− xi|

h

)

+

= max{0, 1− |x− xi|
h

},



8 CHAPTER 1. INTRODUCTION

is the function that is linear in each interval (xi, xi+1) and satisfies

Ψi(xk) = δik :=

{
1, i = k,
0, i 6= k.

An example of such a basis function, a so-called hat function, is displayed in Fig. 1.4.
We now replace w in (1.15) by the linear combination (1.16), and replace testing

‘against all φ’ by testing against all Ψj. In this way (1.15) becomes

∫ 1

0

(
−p(x)(

n∑

i=1

ξiΨ
′
i(x))Ψ

′
j(x) + (q(x)− λ)

n∑

i=1

ξiΨi(x)Ψj(x)

)
dx, for all j,

or,

(1.18)
n∑

i=1

ξi

∫ 1

0

(
p(x)Ψ′

i(x)Ψ
′
j(x) + (q(x)− λ)Ψi(x)Ψj(x)

)
dx = 0, for all j.

These last equations are called the Rayleigh–Ritz–Galerkin equations. Unknown are
the n values ξi and the eigenvalue λ. In matrix notation (1.18) becomes

(1.19) Ax = λMx

with

aij =

∫ 1

0

(
p(x)Ψ′

iΨ
′
j + q(x)ΨiΨj

)
dx and mij =

∫ 1

0
ΨiΨj dx

For the specific case p(x) = 1 + x and q(x) = 1 we get

akk =

∫ kh

(k−1)h

[
(1 + x)

1

h2
+

(
x− (k − 1)h

h

)2
]
dx

+

∫ (k+1)h

kh

[
(1 + x)

1

h2
+

(
(k + 1)h− x

h

)2
]
dx = 2(n + 1 + k) +

2

3

1

n+ 1

ak,k+1 =

∫ (k+1)h

kh

[
(1 + x)

1

h2
+

(k + 1)h− x
h

· x− kh
h

]
dx = −n− 3

2
− k + 1

6

1

n+ 1

In the same way we get

M =
1

6(n+ 1)




4 1

1 4
. . .

. . .
. . . 1
1 4




Notice that both matrices A and M are symmetric tridiagonal and positive definite.

1.3.3 Global functions

Formally we proceed as with the finite element method, i.e., we solve equation (1.18). But
now we choose the Ψk(x) to be functions with global support1. We could, e.g., set

Ψk(x) = sin kπx,

1The support of a function f is the set of arguments x for which f(x) 6= 0.
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functions that are differentiable and satisfy the homogeneous boundary conditions. The Ψk

are eigenfunctions of the nearby problem −u′′(x) = λu(x), u(0) = u(1) = 0 corresponding
to the eigenvalue k2π2. The elements of matrix A are given by

akk =

∫ 1

0

[
(1 + x)k2π2 cos2 kπx+ sin2 kπx

]
dx =

3

4
k2π2 +

1

2
,

akj =

∫ 1

0

[
(1 + x)kjπ2 cos kπx cos jπx+ sin kπx sin jπx

]
dx

=
kj(k2 + j2)((−1)k+j − 1)

(k2 − j2)2 , k 6= j.

1.3.4 A numerical comparison

We consider the above 1-dimensional eigenvalue problem

(1.20) − ((1 + x)w′(x))′ + w(x) = λw(x), w(0) = w(1) = 0,

and solve it with the finite difference and finite element methods as well as with the global
functions method. The results are given in Table 1.1.

Clearly the global function method is the most powerful of them all. With 80 basis
functions the eigenvalues all come right. The convergence rate is exponential.

With the finite difference and finite element methods the eigenvalues exhibit quadratic
convergence rates. If the mesh width h is reduced by a factor of q = 2, the error in the
eigenvalues is reduced by the factor q2 = 4. There exist higher order finite elements and
higher order finite difference stencils [11, 6].

1.4 Example 2: The heat equation

The instationary temperature distribution u(x, t) in an insulated container satisfies the
equations

(1.21)

∂u(x, t)

∂t
−∆u(x, t) = 0, x ∈ Ω, t > 0,

∂u(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

Here Ω is a 3-dimensional domain2 with boundary ∂Ω. u0(x),x = (x1, x2, x3)
T ∈ R

3, is a
given bounded, sufficiently smooth function.

(1.22) ∆u =
∑ ∂2u

∂xi
2

is called the Laplace operator and ∂u
∂n denotes the derivative of u in direction of the outer

normal vector n. To solve the heat equation the method of separation of variables is
employed. We write u in the form

(1.23) u(x, t) = v(t)w(x).

2In the sequel we understand a domain to be bounded and simply connected.
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Finite difference method

k λk(n = 10) λk(n = 20) λk(n = 40) λk(n = 80)

1 15.245 15.312 15.331 15.336
2 56.918 58.048 58.367 58.451
3 122.489 128.181 129.804 130.236
4 206.419 224.091 229.211 230.580
5 301.499 343.555 355.986 359.327
6 399.367 483.791 509.358 516.276
7 492.026 641.501 688.398 701.185
8 578.707 812.933 892.016 913.767
9 672.960 993.925 1118.969 1153.691
10 794.370 1179.947 1367.869 1420.585

Finite element method

k λk(n = 10) λk(n = 20) λk(n = 40) λk(n = 80)

1 15.447 15.367 15.345 15.340
2 60.140 58.932 58.599 58.511
3 138.788 132.657 130.979 130.537
4 257.814 238.236 232.923 231.531
5 426.223 378.080 365.047 361.648
6 654.377 555.340 528.148 521.091
7 949.544 773.918 723.207 710.105
8 1305.720 1038.433 951.392 928.983
9 1702.024 1354.106 1214.066 1178.064
10 2180.159 1726.473 1512.784 1457.733

Global function method

k λk(n = 10) λk(n = 20) λk(n = 40) λk(n = 80)

1 15.338 15.338 15.338 15.338
2 58.482 58.480 58.480 58.480
3 130.389 130.386 130.386 130.386
4 231.065 231.054 231.053 231.053
5 360.511 360.484 360.483 360.483
6 518.804 518.676 518.674 518.674
7 706.134 705.631 705.628 705.628
8 924.960 921.351 921.344 921.344
9 1186.674 1165.832 1165.823 1165.822
10 1577.340 1439.083 1439.063 1439.063

Table 1.1: Numerical solutions of problem (1.20)
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If a constant λ can be found such that

(1.24)

∆w(x) + λw(x) = 0, w(x) 6= 0, x in Ω,

∂w(x)

∂n
= 0, x on ∂Ω,

then the product u = vw is a solution of (1.21) if and only if

(1.25)
dv(t)

dt
+ λv(t) = 0,

the solution of which has the form a·exp(−λt). By separating variables, the problem (1.21)
is divided in two subproblems that are hopefully easier to solve. A value λ, for which (1.24)
has a nontrivial (i.e. a nonzero) solution is called an eigenvalue; w then is called a corre-
sponding eigenfunction.

If λn is an eigenvalue of problem (1.24) with corresponding eigenfunction wn, then

e−λntwn(x)

is a solution of the first two equations in (1.21). It is known that equation (1.24) has
infinitely many real eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · , that tend to infinity, λn −→ ∞ as
n → ∞. Multiple eigenvalues are counted according to their multiplicity. An arbitrary
bounded piecewise continuous function can be represented as a linear combination of the
eigenfunctions w1, w2, . . . Therefore, the solution of (1.21) can be written in the form

(1.26) u(x, t) =

∞∑

n=1

cne
−λntwn(x),

where the coefficients cn are determined such that

(1.27) u0(x) =

∞∑

n=1

cnwn(x).

The smallest eigenvalue of (1.24) is λ1 = 0 with w1 = 1 and λ2 > 0. Therefore we see
from (1.26) that

(1.28) u(x, t) −→

t→∞
c1.

Thus, in the limit (i.e., as t goes to infinity), the temperature will be constant in the whole
container. The convergence rate towards this equilibrium is determined by the smallest
positive eigenvalue λ2 of (1.24):

‖u(x, t)− c1‖ = ‖
∞∑

n=2

cne
−λntwn(x)‖ ≤

∞∑

n=2

|e−λnt|‖cnwn(x)‖

≤ e−λ2t
∞∑

n=2

‖cnwn(x)‖ ≤ e−λ2t‖u0(x)‖.

Here we have assumed that the value of the constant function w1(x) is set to unity.
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1.5 Example 3: The wave equation

The air pressure u(x, t) in a volume with acoustically “hard” walls satisfies the equations

∂2u(x, t)

∂t2
−∆u(x, t) = 0, x ∈ Ω, t > 0,(1.29)

∂u(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0,(1.30)

u(x, 0) = u0(x), x ∈ Ω,(1.31)

∂u(x, 0)

∂t
= u1(x), x ∈ Ω.(1.32)

Sound propagates with speed −∇u, along the (negative) gradient from high to low pres-
sure.

To solve the wave equation we proceed as with the heat equation in section 1.4: sepa-
ration of u according to (1.23) leads again to equation (1.24) but now together with

(1.33)
d2v(t)

dt2
+ λv(t) = 0.

We know this equation from the analysis of the vibrating string, see (1.11). From there
we know that the general solution of the wave equation has the form

(1.13) u(x, t) =

∞∑

k=0

wk(x)
[
Ak · cos(

√
λk t) +Bk · sin(

√
λk t)

]
.

where the wk, k = 1, 2, . . ., are the eigenfunctions of the eigenvalue problem (1.24). The
coefficients ak and bk are determined by (1.31) and (1.32).

If a harmonic oscillation is forced on the system, an inhomogeneous problem

(1.34)
∂2u(x, t)

∂t2
−∆u(x, t) = f(x, t),

is obtained. The boundary and initial conditions are taken from (1.29)–(1.32). This
problem can be solved by expanding u and f in the eigenfunctions wn(x),

(1.35)

u(x, t) :=

∞∑

n=1

ṽn(t)wn(x),

f(x, t) :=

∞∑

n=1

φn(t)wn(x).

With this approach, ṽn has to satisfy equation

(1.36)
d2ṽn
dt2

+ λnṽn = φn(t).

If φn(t) = an sinωt, then the solution becomes

(1.37) ṽn = An cos
√
λnt+Bn sin

√
λnt+

1

λn − ω2
an sinωt.
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An and Bn are real constants that are determined by the initial conditions. If ω gets close
to
√
λn, then the last term can be very large. In the limit, if ω =

√
λn, ṽn gets the form

(1.38) ṽn = An cos
√
λnt+Bn sin

√
λnt− (an/2ω)t cos ωt,

in which case, ṽn is not bounded in time anymore. This phenomenon is called resonance.
Often resonance is not desirable; it may, e.g., mean the blow up of some structure. In
order to prevent resonances eigenvalues have to be known. Possible remedies are changing
the domain (the structure) or parameters (the materials).
Remark 1.1. Vibrating membranes satisfy the wave equation, too. In general the boundary
conditions are different from (1.30). If the membrane (of a drum) is fixed at its boundary,
the condition

(1.39) u(x, t) = 0

is imposed. These boundary conditions are called Dirichlet boundary conditions. The
boundary conditions in (1.21) and (1.30) are called Neumann boundary conditions. Com-
binations of these two can occur.

1.6 Numerical methods for solving the Laplace eigenvalue
problem in 2D

In this section we again consider the eigenvalue problem

(1.40) −∆u(x) = λu(x), x ∈ Ω,

with the more general boundary conditions

(1.41) u(x) = 0, x ∈ Γ1 ⊂ ∂Ω,

(1.42)
∂u

∂n
(x) + α(x)u(x) = 0, x ∈ Γ2 ⊂ ∂Ω.

Here, Γ1 and Γ2 are disjoint subsets of ∂Ω with Γ1 ∪ Γ2 = ∂Ω. We restrict ourselves in
the following on two-dimensional domains and write (x, y) instead of (x1, x2).

In general it is not possible to solve a problem of the form (1.40)–(1.42) exactly (ana-
lytically). Therefore, one has to resort to numerical approximations. Because we cannot
compute with infinitely many variables we have to construct a finite-dimensional eigenvalue
problem that represents the given problem as well as possible, i.e., that yields good approx-
imations for the desired eigenvalues and eigenvectors. Since finite-dimensional eigenvalue
problem only have a finite number of eigenvalues one cannot expect to get good approxi-
mations for all eigenvalues of (1.40)–(1.42).

Two methods for the discretization of eigenvalue problems of the form (1.40)–(1.42) are
the Finite Difference Method [11, 16, 9] and the Finite Element Method (FEM) [6, 15, 8].
We briefly introduce these methods in the following subsections.

1.6.1 The finite difference method

In this section we just want to mediate some impression what the finite difference method
is about. Therefore we assume for simplicity that the domain Ω is a square with sides of
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length 1: Ω = (0, 1) × (0, 1). We consider the eigenvalue problem

(1.43)

−∆u(x, y) = λu(x, y), 0 < x, y < 1

u(0, y) = u(1, y) = u(x, 0) = 0, 0 < x, y < 1,

∂u
∂n

(x, 1) = 0, 0 < x < 1.

This eigenvalue problem occurs in the computation of eigenfrequencies and eigenmodes of
a homogeneous quadratic membrane with three fixed and one free side. It can be solved
analytically by separation of the two spatial variables x and y. The eigenvalues are

λk,l =

(
k2 +

(2l − 1)2

4

)
π2, k, l ∈ N,

and the corresponding eigenfunctions are

uk,l(x, y) = sin kπx sin
2l − 1

2
πy.

In the finite difference method one proceeds by defining a rectangular grid with grid
points (xi, yj), 0 ≤ i, j ≤ N . The coordinates of the grid points are

(xi, yj) = (ih, jh), h = 1/N.

By a Taylor expansion one can show that for sufficiently smooth functions u

−∆u(x, y) = 1

h2
(4u(x, y) − u(x− h, y)− u(x+ h, y)− u(x, y − h)− u(x, y + h))

+O(h2).

It is therefore straightforward to replace the differential equation −∆u(x, y) = λu(x, y)
by a difference equation at the interior grid points

(1.44) 4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = λh2ui,j, 0 < i, j < N.

We consider the unknown variables ui,j as approximations of the eigenfunctions at the
grid points (i, j):

(1.45) ui,j ≈ u(xi, xj).

The Dirichlet boundary conditions are replaced by the equations

(1.46) ui,0 = ui,N = u0,i, 0 < i < N.

At the points at the upper boundary of Ω we first take the difference equation (1.44)

(1.47) 4ui,N − ui−1,N − ui+1,N − ui,N−1 − ui,N+1 = λh2ui,N , 0 ≤ i ≤ N.

The value ui,N+1 corresponds to a grid point outside of the domain! However the Neumann
boundary conditions suggest to reflect the domain at the upper boundary and to extend the
eigenfunction symmetrically beyond the boundary. This procedure leads to the equation
ui,N+1 = ui,N−1. Plugging this into (1.47) and multiplying the new equation by the factor
1/2 gives

(1.48) 2ui,N −
1

2
ui−1,N −

1

2
ui+1,N − ui,N−1 =

1

2
λh2ui,N , 0 < i < N.
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In summary, from (1.44) and (1.48), taking into account that (1.46) we get the matrix
equation

(1.49)




4 −1 0 −1
−1 4 −1 0 −1
0 −1 4 0 0 −1
−1 0 0 4 −1 0 −1

−1 0 −1 4 −1 0 −1
−1 0 −1 4 0 0 −1

−1 0 0 4 −1 0 −1
−1 0 −1 4 −1 0 −1

−1 0 −1 4 0 0 −1
−1 0 0 2 −1

2 0
−1 0 −1

2 2 −1
2

−1 0 −1
2 2







u1,1
u1,2
u1,3
u2,1
u2,2
u2,3
u3,1
u3,2
u3,3
u4,1
u4,2
u4,3




= λh2




1
1

1
1

1
1

1
1

1
1
2

1
2

1
2







u1,1
u1,2
u1,3
u2,1
u2,2
u2,3
u3,1
u3,2
u3,3
u4,1
u4,2
u4,3




.

For arbitrary N > 1 we define

ui :=




ui,1
ui,2
...

ui,N−1


 ∈ R

N−1,

T :=




4 −1
−1 4

. . .
. . .

. . . −1
−1 4



∈ R

(N−1)×(N−1),

I :=




1
1

. . .

1


 ∈ R

(N−1)×(N−1).
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In this way we obtain from (1.44), (1.46), (1.48) the discrete eigenvalue problem

(1.50)




T −I
−I T

. . .
. . .

. . . −I
−I 1

2T







u1
...
u3

u4


 = λh2




I
. . .

I
1
2I







u1
...

uN−1

uN




of size N × (N − 1). This is a matrix eigenvalue problem of the form

(1.51) Ax = λMx,

where A and M are symmetric and M additionally is positive definite. If M is the
identity matrix, we call (1.51) a special and otherwise a generalized eigenvalue problem.
In these lecture notes we deal with numerical methods, to solve eigenvalue problems like
these.

In the case (1.50) it is easy to obtain a special (symmetric) eigenvalue problem by a
simple transformation: By left multiplication by




I
I

I √
2I




we obtain from (1.50)

(1.52)




T −I
−I T −I

−I T −
√
2I

−
√
2I T







u1

u2

u3
1√
2
u4


 = λh2




u1

u2

u3
1√
2
u4


 .

A property common to matrices obtained by the finite difference method are its spar-
sity. Sparse matrices have only very few nonzero elements.

In real-world applications domains often cannot be covered easily by a rectangular
grid. In this situation and if boundary conditions are complicated the method of finite
differences can be difficult to implement. Because of this the finite element method is
often the method of choice.

Nevertheless, problems that are posed on rectangular grids can be solved very effi-
ciently. Therefore, tricks are used to deal with irregular boundaries. The solution of
the problem may be extended artificially beyond the boundary, see e.g. [1, 17, 9]. Simi-
lar techiques, so-called immersed boundary conditions are applied at (irregular) interfaces
where, e.g., equations or parameters change [11].

1.6.2 The finite element method (FEM)

Let (λ, u) ∈ R× V be an eigenpair of problem (1.40)–(1.42). Then

(1.53)

∫

Ω
(∆u+ λu)v dx dy = 0, ∀v ∈ V,

where V is vector space of bounded twice differentiable functions that satisfy the boundary
conditions (1.41)–(1.42). By partial integration (Green’s formula) this becomes

(1.54)

∫

Ω
∇u∇v dx dy +

∫

Γ2

αu v ds = λ

∫

Ω
u v dx dy, ∀v ∈ V,
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or

(1.55) a(u, v) = (u, v), ∀v ∈ V

where

a(u, v) =

∫

Ω

∇u∇v dx dy +
∫

Γ2

αu v ds, and (u, v) =

∫

Ω
u v dx dy.

We complete the space V with respect to the Sobolev norm [8, 3]

√∫

Ω
(u2 + |∇u|2) dx dy

to become a Hilbert space H [3, 19]. H is the space of quadratic integrable functions with
quadratic integrable first derivatives that satisfy the Dirichlet boundary conditions (1.41)

u(x, y) = 0, (x, y) ∈ Γ1.

(Functions inH in general do not satisfy the so-called natural boundary conditions (1.42).)
One can show [19] that the eigenvalue problem (1.40)–(1.42) is equivalent with the eigen-
value problem

(1.56)
Find (λ, u) ∈ R×H such that
a(u, v) = λ(u, v) ∀v ∈ H.

(The essential point is to show that the eigenfunctions of (1.56) are elements of V .)

The Rayleigh–Ritz–Galerkin method

In the Rayleigh–Ritz–Galerkin method one proceeds as follows: A set of linearly indepen-
dent functions

(1.57) φ1(x, y), · · · , φn(x, y) ∈ H,

are chosen. These functions span a subspace S of H. Then, problem (1.56) is solved where
H is replaced by S.

(1.58)
Find (λ, u) ∈ R× S such that
a(u, v) = λ(u, v) ∀v ∈ S.

With the Ritz ansatz [15]

(1.59) u =
n∑

i=1

xiφi,

equation (1.58) becomes

(1.60)
Find (λ,x) ∈ R× R

n such that
n∑
i=1

xia(φi, v) = λ
n∑
i=1

xi(φi, v), ∀v ∈ S.
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Eq. (1.60) must hold for all v ∈ S, in particular for v = φ1, · · · , φn. But since the
φi, 1 ≤ i ≤ n, form a basis of S, equation (1.60) is equivalent with

(1.61)

n∑

i=1

xia(φi, φj) = λ

n∑

i=1

xi(φi, φj), 1 ≤ j ≤ n.

This is a matrix eigenvalue problem of the form

(1.62) Ax = λMx

where

(1.63) x =




x1
...
xn


 , A =




a11 · · · a1n
...

. . .
...

an1 · · · ann


 , M =




m11 · · · m1n
...

. . .
...

mn1 · · · mnn




with

aij = a(φi, φj) =

∫

Ω
∇φi∇φj dx dy +

∫

Γ2

αφi φj ds

and

mij = (φi, φj) =

∫

Ω
φi φj dx dy.

The finite element method (FEM) is a special case of the Rayleigh–Ritz method.
In the FEM the subspace S and in particular the basis {φi} is chosen in a particularly
clever way. For simplicity we assume that the domain Ω is a simply connected domain with
a polygonal boundary, c.f. Fig 1.5. (This means that the boundary is composed entirely
of straight line segments.) This domain is now partitioned into triangular subdomains

Figure 1.5: Triangulation of a domain Ω

T1, · · · , TN , so-called elements, such that

(1.64) Ti ∩ Tj = Ø for all i 6= j, and
⋃

e

Te = Ω.

Finite element spaces for solving (1.40)–(1.42) are typically composed of functions that
are continuous in Ω and are polynomials on the individual subdomains Te. Such functions



1.6. THE 2D LAPLACE EIGENVALUE PROBLEM 19

are called piecewise polynomials. Notice that this construction provides a subspace of the
Hilbert space H but not of V , i.e., the functions in the finite element space are not very
smooth and the natural boundary conditions are not satisfied.

An essential issue is the selection of the basis of the finite element space S. If S1 ⊂ H
is the space of continuous, piecewise linear functions (the restriction to Te is a polynomial
of degree 1) then a function in S1 is uniquely determined by its values at the vertices of the
triangles. Let these nodes, except those on the boundary portion Γ1, be numbered from
1 to n, see Fig. 1.6. Let the coordinates of the i-th node be (xi, yi). Then φi(x, y) ∈ S1 is
defined by

7 9

211411

15 19 23 26

17 20 24 27
29

28

2522
18

12

8
4

16

13

10

6

3

5
2

1

Figure 1.6: Numbering of nodes on Ω (piecewise linear polynomials)

(1.65) φi((xj , yj)) := δij =

{
1 i = j
0 i 6= j

A typical basis function φi is sketched in Figure 1.7.

Figure 1.7: A piecewise linear basis function (or hat function)

Another often used finite element element space is S2 ⊂ H, the space of continuous,
piecewise quadratic polynomials. These functions are (or can be) uniquely determined by
their values at the vertices and edge midpoints of the triangle. The basis functions are
defined according to (1.65). There are two kinds of basis functions φi now, first those
that are 1 at a vertex and second those that are 1 at an edge midpoint, cf. Fig. 1.8. One
immediately sees that for most i 6= j

(1.66) a(φi, φj) = 0, (φi, φj) = 0.
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Figure 1.8: The piecewise quadratic basis functions corresponding to the edge midpoints [5]

Therefore the matrices A andM in (1.62)–(1.63) will be sparse. The matrixM is positive
definite as

(1.67) xTMx =
N∑

i,j=1

xixjmij =
N∑

i,j=1

xixj(φi, φj) = (u, u) > 0, u =
N∑

i=1

xiφi 6= 0,

because the φi are linearly independent and because ||u|| =
√

(u, u) is a norm. Similarly
it is shown that

xTAx ≥ 0.

It is possible to have xTAx = 0 for a nonzero vector x. This is the case if the constant
function u = 1 is contained in S. This happens if Neumann boundary conditions ∂u

∂n = 0
are posed on the whole boundary ∂Ω. Then,

u(x, y) = 1 =
∑

i

φi(x, y),

i.e., we have xTAx = 0 for x = [1, 1, . . . , 1].

1.6.3 A numerical example

We want to determine the acoustic eigenfrequencies and corresponding modes in the inte-
rior of a car. This is of interest in the manufacturing of cars, since an appropriate shape of
the form of the interior can suppress the often unpleasant droning of the motor. The prob-
lem is three-dimensional, but by separation of variables the problem can be reduced to two
dimensions. If rigid, acoustically hard walls are assumed, the mathematical model of the
problem is again the Laplace eigenvalue problem (1.24) together with Neumann boundary
conditions. The domain is given in Fig. 1.9 where three finite element triangulations are
shown with 87 (grid1), 298 (grid2), and 1095 (grid3) vertices (nodes), respectively. The
results obtained with piecewise linear polynomials are listed in Table 1.2. From the results
we notice the quadratic convergence rate. The smallest eigenvalue is always zero. The
corresponding eigenfunction is the constant function. This function can be represented
exactly by the finite element spaces, whence its value is correct (up to rounding error).

The fourth eigenfunction of the acoustic vibration problem is displayed in Fig. 1.10.
The physical meaning of the function value is the difference of the pressure at a given
location to the normal pressure. Large amplitudes thus means that the corresponding
noise is very much noticable.



1.7. CAVITY RESONANCES IN PARTICLE ACCELERATORS 21

0 5 10 15 20 25

−2

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

−2

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

−2

0

2

4

6

8

10

12

14

16

Figure 1.9: Three meshes for the car length cut

1.7 Cavity resonances in particle accelerators

The Maxwell equations in vacuum are given by

curl E(x, t) = −∂B
∂t

(x, t), (Faraday’s law)

curl H(x, t) =
∂D

∂t
(x, t) + j(x, t), (Maxwell–Ampère law)

divD(x, t) = ρ(x, t), (Gauss’s law)

divB(x, t) = 0. (Gauss’s law – magnetic)

where E is the electric field intensity, D is the electric flux density, H is the magnetic
field intensity, B is the magnetic flux density, j is the electric current density, and ρ is the
electric charge density. Often the “optical” problem is analyzed, i.e. the situation when
the cavity is not driven (cold mode), hence j and ρ are assumed to vanish.

Again by separating variables, i.e. assuming a time harmonic behavior of the fields,
e.g.,

E(x, t) = e(x)eiωt,

and by using the constitutive relations

D = εE, B = µH, j = σE,
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Finite element method

k λk(grid1) λk(grid2) λk(grid3)

1 0.0000 -0.0000 0.0000
2 0.0133 0.0129 0.0127
3 0.0471 0.0451 0.0444
4 0.0603 0.0576 0.0566
5 0.1229 0.1182 0.1166
6 0.1482 0.1402 0.1376
7 0.1569 0.1462 0.1427
8 0.2162 0.2044 0.2010
9 0.2984 0.2787 0.2726
10 0.3255 0.2998 0.2927

Table 1.2: Numerical solutions of acoustic vibration problem
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Figure 1.10: Fourth eigenmode of the acoustic vibration problem
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one obtains after elimination of the magnetic field intensity the so called time-harmonic
Maxwell equations

(1.68)

curl µ−1curl e(x) = λ ε e(x), x ∈ Ω,

div ε e(x) = 0, x ∈ Ω,

n× e = 0, x ∈ ∂Ω.

Here, additionally, the cavity boundary ∂Ω is assumed to be perfectly electrically conduct-
ing, i.e. E(x, t)× n(x) = 0 for x ∈ ∂Ω.

The eigenvalue problem (1.68) is a constrained eigenvalue problem. Only functions
are taken into account that are divergence-free. This constraint is enforced by Lagrange
multipliers. A weak formulation of the problem is then

Find (λ, e, p) ∈ R×H0(curl; Ω)×H1
0 (Ω) such that e 6= 0 and

(a) (µ−1curl e, curl Ψ) + (grad p,Ψ) = λ(ε e,Ψ), ∀Ψ ∈ H0(curl; Ω),
(b) (e,grad q) = 0, ∀q ∈ H1

0 (Ω).

With the correct finite element discretization this problem turns in a matrix eigenvalue
problem of the form [

A C
CT O

] [
x
y

]
= λ

[
M O
O O

] [
x
y

]
.

The solution of this matrix eigenvalue problem correspond to vibrating electric fields. A
possible shape of domain Ω is given in Figure 1.11.

Figure 1.11: Comet cavity of Paul Scherrer Institute

1.8 Spectral clustering3

The goal of clustering is to group a given set of data points x1, . . . ,xn into k clusters such
that members from the same cluster are (in some sense) close to each other and members
from different clusters are (in some sense) well separated from each other.

3This section is based on a tutorial by von Luxburg [12]. Thanks to Daniel Kressner for compiling it!
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A popular approach to clustering is based on similarity graphs. For this purpose, we
need to assume some notion of similarity s(xi,xj) ≥ 0 between pairs of data points xi
and xj . An undirected graph G = (V,E) is constructed such that its vertices correspond
to the data points: V = {x1, . . . ,xn}. Two vertices xi,xj are connected by an edge if
the similarity sij between xi and xj is sufficiently large. Moreover, a weight wij > 0 is
assigned to the edge, depending on sij. If two vertices are not connected we set wij = 0.
The weights are collected into a weighted adjacency matrix

W =
(
wij
)n
i,j=1

.

There are several possibilities to define the weights of the similarity graph associated
with a set of data points and a similarity function:

fully connected graph All points with positive similarity are connected with each other
and we simply set wij = s(xi,xj). Usually, this will only result in reasonable clusters
if the similarity function models locality very well. One example of such a similarity

function is the Gaussian s(xi,xj) = exp
(
− ‖xi−xj‖2

2σ2

)
, where ‖xi − xj‖ is some

distance measure (e.g., Euclidean distance) and σ is some parameter controlling
how strongly locality is enforced.

k-nearest neighbors Two vertices xi,xj are connected if xi is among the k-nearest
neighbors of xj or if xj is among the k-nearest neighbors of xi (in the sense of some
distance measure). The weight of the edge between connected vertices xi,xj is set
to the similarity function s(xi,xj).

ε-neighbors Two vertices xi,xj are connected if their pairwise distance is smaller than
ε for some parameter ε > 0. In this case, the weights are usually chosen uniformly,
e.g., wij = 1 if xi,xj are connected and wij = 0 otherwise.

Assuming that the similarity function is symmetric (s(xi,xj) = s(xj ,xi) for all xi,xj) all
definitions above give rise to a symmetric weight matrix W . In practice, the choice of the
most appropriate definition depends – as usual – on the application.

1.8.1 The graph Laplacian

In the following we construct the so called graph Laplacian, whose spectral decomposition
will later be used to determine clusters. For simplicity, we assume the weight matrix W
to be symmetric. The degree of a vertex xi is defined as

(1.69) di =

n∑

j=1

wij .

In the case of an unweighted graph, the degree di amounts to the number of vertices
adjacent to vi (counting also vi if wii = 1). The degree matrix is defined as

D = diag(d1, d2, . . . , dn).

The graph Laplacian is then defined as

(1.70) L = D −W.

By (1.69), the row sums of L are zero. In other words, Le = 0 with e the vector of all
ones. This implies that 0 is an eigenvalue of L with the associated eigenvector e. Since L
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is symmetric all its eigenvalues are real and one can show that 0 is the smallest eigenvalue;
hence L is positive semidefinite. It may easily happen that more than one eigenvalue is
zero. For example, if the set of vertices can be divided into two subsets {x1, . . . ,xk},
{xk+1, . . . ,xn}, and vertices from one subset are not connected with vertices from the
other subset, then

L =

(
L1 0
0 L2

)
,

where L1, L2 are the Laplacians of the two disconnected components. Thus L has two
eigenvectors (e0) and (0e) with eigenvalue 0. Of course, any linear combination of these two
linearly independent eigenvectors is also an eigenvector of L.

The observation above leads to the basic idea behind spectral graph partitioning: If
the vertices of the graph decompose into k connected components V1, . . . , Vk there are k
zero eigenvalues and the associated invariant subspace is spanned by the vectors

(1.71) χV1 , χV2 , . . . , χVk ,

where χVj is the indicator vector having a 1 at entry i if xi ∈ Vj and 0 otherwise.

1.8.2 Spectral clustering

On a first sight, it may seem that (1.71) solves the graph clustering problem. One simply
computes the eigenvectors belonging to the k zero eigenvalues of the graph Laplacian
and the zero structure (1.71) of the eigenvectors can be used to determine the vertices
belonging to each component. Each component gives rise to a cluster.

This tempting idea has two flaws. First, one cannot expect the eigenvectors to have
the structure (1.71). Any computational method will yield an arbitrary eigenbasis, e.g.,
arbitrary linear combinations of χV1 , χV2 , . . . , χVk . In general, the method will compute
an orthonormal basis U with

(1.72) U =
(
v1, . . . ,vk

)
Q,

where Q is an arbitrary orthogonal k × k matrix and vj = χVj/|Vj | with the cardinality
|Vj | of Vj . Second and more importantly, the goal of graph clustering is not to detect
connected components of a graph4. Requiring the components to be completely discon-
nected from each other is too strong and will usually not lead to a meaningful clustering.
For example, when using a fully connected similarity graph only one eigenvalue will be
zero and the corresponding eigenvector e yields one component, which is the graph itself!
Hence, instead of computing an eigenbasis belonging to zero eigenvalues, one determines
an eigenbasis belonging to the k smallest eigenvalues.

Example 1.1 200 real numbers are generated by superimposing samples from 4 Gaussian
distributions with 4 different means:

m = 50; randn(’state’,0);

x = [2+randn(m,1)/4;4+randn(m,1)/4;6+randn(m,1)/4;8+randn(m,1)/4];

The following two figures show the histogram of the distribution of the entries of x and the
eigenvalues of the graph Laplacian for the fully connected similarity graph with similarity

function s(xi,xj) = exp
(
− |xi−xj |2

2

)
:

4There are more efficient algorithms for finding connected components, e.g., breadth-first and depth-first
search.
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As expected, one eigenvalue is (almost) exactly zero. Additionally, the four smallest
eigenvalues have a clearly visible gap to the other eigenvalues. The following four figures
show the entries of the 4 eigenvectors belonging to the 4 smallest eigenvalues of L:
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On the one hand, it is clearly visible that the eigenvectors are well approximated by linear
combinations of indicator vectors. On the other hand, none of the eigenvectors is close to
an indicator vector itself and hence no immediate conclusion on the clusters is possible.

To solve the issue that the eigenbasis (1.72) may be transformed by an arbitrary
orthogonal matrix, we “transpose” the basis and consider the row vectors of U :

UT =
(
u1, u2, . . . , un

)
, ui ∈ R

k.

If U contained indicator vectors then each of the short vectors ui would be a unit vector
ej for some 1 ≤ j ≤ k (possibly divided by |Vj |). In particular, the ui would separate very
well into k different clusters. The latter property does not change if the vectors ui undergo
an orthogonal transformation QT . Hence, applying a clustering algorithm to u1, . . . , un
allows us to detect the membership of ui independent of the orthogonal transformation.
The key point is that the short vectors u1, . . . , un are much better separated than the
original data x1, . . . ,xn. Hence, a much simpler algorithm can be used for clustering. One
of the most basic algorithms is k-means clustering. Initially, this algorithm assigns each
ui randomly5 to a cluster ℓ with 1 ≤ ℓ ≤ k and then iteratively proceeds as follows:

1. Compute cluster centers cℓ as cluster means:

cℓ =
∑

i in cluster ℓ

ui

/ ∑

i in cluster ℓ

1.

2. Assign each ui to the cluster with the nearest cluster center.

3. Goto Step 1.

The algorithm is stopped when the assigned clusters do not change in an iteration.

5For unlucky choices of random assignments the k-means algorithm may end up with less than k clusters.
A simple albeit dissatisfying solution is to restart k-means with a different random assignment.
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Example 1.1 (cont’d). The k-means algorithm applied to the eigenbasis from Example
1.1 converges after 2 iterations and results in the following clustering:
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1.8.3 Normalized graph Laplacians

It is sometimes advantageous to use a normalized Laplacian

(1.73) D−1L = I −D−1W

instead of the standard Laplacians. Equivalently, this means that we compute the eigen-
vectors belonging to the smallest eigenvalues of the generalized eigenvalue problem Wx =
λDx. Alternatively, one may also compute the eigenvalues from the symmetric matrix
D−1/2WD−1/2 but the eigenvectors need to be adjusted to compensate this transforma-
tion.

Example 1.1 (cont’d). The eigenvalues of the normalized Laplacian for Example 1.1
are shown below:
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In comparison to the eigenvalues of the standard Laplacian, the four smallest eigenvalues
of the normalized Laplacian are better separated from the rest. Otherwise, the shape of
the eigenvectors is similar and the resulting clustering is identical with the one obtained
with the standard Laplacian.
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Figure 1.12: Things that can go wrong with the basic model: left is a dangling node, right
a terminal strong component featuring a cyclic path. Figures are from [2]

1.9 Google’s PageRank6

One of the reasons why Google is such an effective search engine is the PageRank that
determines the importance of a web page [2, 10, 13]. The PageRank is determined entirely
by the link structure of the World Wide Web. For any particular query, Google finds
the pages on the Web that match that query and lists those pages in the order of their
PageRank. Let’s imagine a surfer brachiate through pages of the world wide web randomly
choosing an outgoing link from one page to get to the next. This can lead to dead ends at
pages with no outgoing links, or cycles around cliques of interconnected pages. So, every
once in a while, the surfer simply chooses a random page from the Web. This theoretical
random walk is known as a Markov chain or Markov process. The limiting probability
that an infinitely dedicated random surfer visits any particular page is its PageRank. A
page has high rank if other pages with high rank link to it.

LetW be the set of (reachable) web pages and let n = |W |. On WorldWideWebSize.com7

it is estimated that Google’s index contains around to 47 billion pages.

The elements of the connectivity matrix G ∈ R
n×n is defined by

gij =

{
1 there is a hyperlink j 7→ i,

0 otherwise.

Clearly, this is an extremely sparse matrix. The number of its nonzero elements nnz(G)
equals the number of hyperlinks in W . Let ri and cj be the row and column sums of G,

ri =
∑

j

gij , cj =
∑

i

gij .

Then ri is called the in-degree and cj is called the out-degree of the jth page. cj = 0
means a dead end.

In Fig. 1.13 we see the example of a tiny web with just n = 6 nodes. The nodes α, β,
γ, δ, ρ, σ correspond to labels 1 to 6 in the matrix notation, in this sequence.

6Here we closely follow Section 2.11 in Moler’s Matlab introduction [13].
7http://www.worldwidewebsize.com/ accessed on Feb. 20, 2018.

http://www.worldwidewebsize.com/
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Figure 1.13: A small web with 6 nodes.

Then the connectivity matrix for the small web is given by

G =




0 0 0 1 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
1 0 1 0 0 0



.

Notice the zero 5th column of G. This column corresponds to the dead end at the dangling
node ρ.

Let A be the matrix with elements

aij =

{
gij/cj if cj 6= 0

1/n if cj = 0 (dead end).

In the small web example above,

A =




0 0 0 1 1
6 1

1
2 0 0 0 1

6 0
0 1

2 0 0 1
6 0

0 1
2

1
3 0 1

6 0
0 0 1

3 0 1
6 0

1
2 0 1

3 0 1
6 0



.

The entries in A’s column j indicate the probabilities of jumping from the jth page to the
other pages on the web. Column 3, e.g., tells that starting from node 3 (= γ) nodes δ, ρ,
σ are chosen with equal probability 1/3. Note that we choose any page of the web with
equal probability when we land at a dead end.
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To not be stuck to much in parts of the web, we follow the links only with probability α.
With probability 1− α we choose a random page. Therefore, we replace A by the matrix

Ã = αA+ (1− α)peT ,

where p is a personalization vector and e = (1, 1, . . . , 1)T . (p has nonnegative elements
that sum to 1, ‖p‖1 = 1.) Note that p may have zero entries indicating, e.g., uncongenial,
discredited, or discriminated web pages. We assume an innocent web and set p = e/n.
Since n ≈ 50 · 109 in the real WWW, a typical entry of p is about 2 · 10−11.

Note that

eT Ã = eT .

So, 1 ∈ σ(AT ) = σ(A), i.e., 1 is an eigenvalue of A with left eigenvector e. Since the
matrix norm

‖A‖1 = max
1≤j≤n

n∑

i=1

|aij| = 1,

A cannot have an eigenvalue larger than 1 in modulus. The Perron–Frobenius theorem for
matrices with nonnegative entries states that such matrices have a simple real eigenvalue
of largest modulus [4]. Therefore, the eigenvalue 1 is in fact the largest eigenvalue of A.
We are not interested in the left eigenvector e but in the right eigenvector x,

x = Ãx.

The Perron–Frobenius theory confirms that x can be chosen such that all its entries are
nonnegative. If x is scaled such that

n∑

i=1

xi = 1

then x is the state vector of the Markov chain and is Google’s PageRank.

The computation of the PageRank amounts to determining the largest eigenvalue and
corresponding eigenvector of a matrix. It can be determined by vector iteration. The
computation gets easier the smaller the damping factor α is chosen. However, small α
means small weight is given to the structure of the web. In [13] a Matlab routine
pagerankpow.m is provided to compute the PageRank exploiting the sparsity structure of
G.

1.10 Other sources of eigenvalue problems

The selection of applications above may lead to the impression that eigenvalue problems
in practice virtually always require the computation of the smallest eigenvalues of a sym-
metric matrix. This is not the case. For example, a linear stability analysis requires the
computation of all eigenvalues on or close to the imaginary axis of a nonsymmetric matrix.
Computational methods for decoupling the stable/unstable parts of a dynamical system
require the computation of all eigenvalues in the left and/or right half of the complex
plane. The principal component analysis (PCA), which plays an important role in a large
variety of applications, requires the computation of the largest eigenvalues (or rather sin-
gular values). As we will see in the following chapters, the region of eigenvalues we are
interested in determines the difficulty of the eigenvalue problem to a large extent (along
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with the matrix order and structure). It should also guide the choice of algorithm for
solving an eigenvalue problem.

Saad [14] discusses further interesting sources of eigenvalue problems like electronic
structure calculations, the stability of dynamical systems, or Markov chain models similar
as Google’s PageRank.
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(doi:10.3929/ethz-a-005067691).

[6] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland,
Amsterdam, 1978. (Studies in Mathematics and its Applications, 4).

[7] R. Courant and D. Hilbert, Methoden der Mathematischen Physik, Springer,
Berlin, 1968.

[8] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast
Iterative Solvers, Oxford University Press, Oxford, 2005.

[9] G. E. Forsythe and W. R. Wasow, Finite-difference methods for partial differ-
ential equations, Wiley, New York, 1960.

[10] A. N. Langville and C. D. Meyer, Google’s pagerank and beyond: the science of
search engine rankings, Princeton University Press, Princeton, N.J., 2006.

[11] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential
Equations, SIAM, Philadelphia, PA, 2007.

[12] U. von Luxburg, A tutorial on spectral clustering, Stat. Comput., 17 (2007),
pp. 395–416.

[13] C. B. Moler, Numerical Computing with Matlab, SIAM, Philadelphia, PA, 2004.

[14] Y. Saad, Numerical Methods for Large Eigenvalue Problems, SIAM, Philadelphia,
PA, 2011.

[15] H. R. Schwarz, Methode der finiten Elemente, Teubner, Stuttgart, 3rd ed., 1991.

doi:10.3929/ethz-a-005067691


32 CHAPTER 1. INTRODUCTION

[16] , Numerische Mathematik, Teubner, Stuttgart, 3rd ed. ed., 1993.

[17] G. H. Shortley and R. Weller, The numerical solution of Laplace’s equation, J.
Appl. Phys., 9 (1939), pp. 334–344.

[18] G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press,
Wellesley, 1986.

[19] H. F. Weinberger, Variational Methods for Eigenvalue Approximation, Regional
Conference Series in Applied Mathematics 15, SIAM, Philadelphia, PA, 1974.


