
Chapter 2

Basics

2.1 Notation

The fields of real and complex numbers are denoted by R and C, respectively. Elements
in R and C, scalars, are denoted by lowercase letters, a, b, c, . . ., and α, β, γ, . . .

Vectors are denoted by boldface lowercase letters, a, b, c, . . ., and α, β, γ, . . . We
denote the space of vectors of n real components by R

n and the space of vectors of n
complex components by C

n.

(2.1) x ∈ R
n ⇐⇒ x =




x1
x2
...
xn


 , xi ∈ R.

We often make statements that hold for real or complex vectors or matrices. Then we
write, e.g., x ∈ F

n.
The inner product of two n-vectors in C is defined as

(2.2) (x,y) =

n∑

i=1

xiȳi = y∗x,

that is, we require linearity in the first component and anti-linearity in the second.
y∗ = (ȳ1, ȳ2, . . . , ȳn) denotes conjugate transposition of complex vectors. To simplify

notation we denote real transposition by an asterisk as well.

Two vectors x and y are called orthogonal, x ⊥ y, if x∗y = 0.
The inner product (2.2) induces a norm in F,

(2.3) ‖x‖ =
√

(x,x) =

(
n∑

i=1

|xi|2
)1/2

.

This norm is often called Euclidean norm or 2-norm.
The set of m-by-n matrices with components in the field F is denoted by F

m×n,

(2.4) A ∈ F
m×n ⇐⇒ A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


 , aij ∈ F.
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The matrix A∗ ∈ F
n×m,

(2.5) A∗ =




ā11 ā21 . . . ām1

ā12 ā22 . . . ām2
...

...
...

ā1n ā2n . . . ānm




is the Hermitian transpose of A. Notice, that with this notation n-vectors can be
identified with n-by-1 matrices.

The following classes of square matrices are of particular importance:

• A ∈ F
n×n is called Hermitian if and only if A∗ = A.

• A real Hermitian matrix is called symmetric.

• U ∈ F
n×n is called unitary if and only if U−1 = U∗.

• Real unitary matrices are called orthogonal.

• A ∈ F
n×n is called normal if A∗A = AA∗. Both, Hermitian and unitary matrices

are normal.

We define the norm of a matrix to be the norm induced by the vector norm (2.3),

(2.6) ‖A‖ := max
x 6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖.

The condition number of a nonsingular matrix is defined as κ(A) = ‖A‖‖A−1‖. It is easy
to show that if U is unitary then ‖Ux‖ = ‖x‖ for all x. Thus the condition number of a
unitary matrix is 1.

2.2 Statement of the problem

The (standard) eigenvalue problem is as follows.

Given a square matrix A ∈ F
n×n.

Find scalars λ ∈ C and vectors x ∈ C
n, x 6= 0, such that

(2.7) Ax = λx,

i.e., such that

(2.8) (A− λI)x = 0

has a nontrivial (nonzero) solution.

So, we are looking for numbers λ such that A− λI is singular.

Definition 2.1 Let the pair (λ,x) be a solution of (2.7) or (2.8), respectively. Then

• λ is called an eigenvalue of A,

• x is called an eigenvector corresponding to λ
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• (λ,x) is called eigenpair of A.

• The set σ(A) of all eigenvalues of A is called spectrum of A.

• The set of all eigenvectors corresponding to an eigenvalue λ together with the vector
0 form a linear subspace of Cn called the eigenspace of λ. As the eigenspace of λ
is the null space of λI −A we denote it by N (λI −A).

• The dimension of N (λI −A) is called geometric multiplicity g(λ) of λ.

• An eigenvalue λ is a zero of the characteristic polynomial

χ(λ) := det(λI −A) = λn + an−1λ
n−1 + · · ·+ a0.

The multiplicity of λ as a zero of χ is called the algebraic multiplicity m(λ) of λ.
We will later see that

1 ≤ g(λ) ≤ m(λ) ≤ n, λ ∈ σ(A), A ∈ F
n×n.

Remark 2.1. A nontrivial solution solution y of

(2.9) y∗A = λy∗

is called left eigenvector corresponding to λ. A left eigenvector of A is a right eigenvector
of A∗, corresponding to the eigenvalue λ̄, A∗y = λ̄y.

Problem 2.2 Let x be a (right) eigenvector of A corresponding to an eigenvalue λ and
let y be a left eigenvector of A corresponding to a different eigenvalue µ 6= λ. Show that
x∗y = 0.

Remark 2.2. Let A be an upper triangular matrix,

(2.10) A =




a11 a12 . . . a1n
a22 . . . a2n

. . .
...
ann


 , aik = 0 for i > k.

Then we have

det(λI −A) =
n∏

i=1

(λ− aii).

Problem 2.3 Let λ = aii, 1 ≤ i ≤ n, be an eigenvalue of A in (2.10). Can you give a
corresponding eigenvector? Can you detect a situation where g(λ) < m(λ)?

The (generalized) eigenvalue problem is as follows.

Given two square matrices A,B ∈ F
n×n.

Find scalars λ ∈ C and vectors x ∈ C, x 6= 0, such that

(2.11) Ax = λBx,

or, equivalently, such that

(2.12) (A− λB)x = 0

has a nontrivial solution.
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Definition 2.4 Let the pair (λ,x) be a solution of (2.11) or (2.12), respectively. Then

• λ is called an eigenvalue of A relative to B,

• x is called an eigenvector of A relative to B corresponding to λ.

• (λ,x) is called an eigenpair of A relative to B,

• The set σ(A;B) of all eigenvalues of (2.11) is called the spectrum of A relative
to B.

Let us look at some examples.

• Let B be nonsingular. Then

(2.13) Ax = λBx⇐⇒ B−1Ax = λx

• Let both A and B be Hermitian, A = A∗ and B = B∗. Let further be B positive
definite and B = LL∗ be its Cholesky factorization. Then

(2.14) Ax = λBx⇐⇒ L−1AL−∗y = λy, y = L∗x.

• Let A be invertible. Then Ax = 0 implies x = 0. That is, 0 6∈ σ(A;B). Therefore,

(2.15) Ax = λBx⇐⇒ µx = A−1Bx, µ =
1

λ

• Let A = B ∈ R
n×n be invertible. Then

Ax = λBx⇐⇒ B−1Ax = Ix = x.

Therefore, σ(A;B) = {1}. The associated eigenspace is Rn. Every nonzero vector x
is an eigenvector.

• Difficult situation: both A and B are singular.

1. Let, e.g.,

A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
.

Then,
Ae2 = 0 = 0 ·Be2 = 0 · e2,

such that 0 is an eigenvalue of A relative to B. Since

Ae1 = e1 = λBe1 = λ0

e1 cannot be an eigenvector of A relative to B.

As in (2.15) we may swap the roles of A and B. Then

Be1 = 0 = µAe1 = 0e1.

So, µ = 0 is an eigenvalue of B relative to A. We therefore say, informally, that
λ =∞ is an eigenvalue of A relative to B. So, σ(A;B) = {0,∞}.

2. Let

A =

(
1 0
0 0

)
, B =

(
1 0
0 0

)
= A.

Then,

Ae1 = 1 · Be1,

Ae2 = 0 = λBe2 = λ0, for all λ ∈ C.

Therefore, in this case, σ(A;B) = C.
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2.3 Similarity transformations

Definition 2.5 A matrix A ∈ F
n×n is similar to a matrix C ∈ F

n×n, A ∼ C, if and only
if there is a nonsingular matrix S such that

(2.16) S−1AS = C.

The mapping A −→ S−1AS is called a similarity transformation.

Theorem 2.6 Similar matrices have equal eigenvalues with equal multiplicities. If (λ,x)
is an eigenpair of A and C = S−1AS then (λ, S−1x) is an eigenpair of C.

Proof. Ax = λx and C = S−1AS imply that

CS−1x = S−1ASS−1x = S−1λx.

Hence, A and C have equal eigenvalues and their geometric multiplicity is not changed by
the similarity transformation. From

det(λI − C) = det(λS−1S − S−1AS)

= det(S−1(λI −A)S) = det(S−1) det(λI −A) det(S) = det(λI −A)

it follows that the characteristic polynomials of A and C are equal and hence also the
algebraic eigenvalue multiplicities are equal.

Similarity transformations are used to transform matrices into similar matrices from
which eigenvalues can be easily read. Diagonal matrices are the preferred matrix structure.
However, not all matrices are diagonalizable. There is, e.g., no invertible matrix S that
diagonalizes the matrix [

1 1
0 1

]
.

In the Jordan normal form introduced in section 2.8 the transformation is into a bidiagonal
matrix. In the Schur normal form, see section 2.4 the transformation is into an upper
tridiagonal matrix, but with an unitary S.

Definition 2.7 Two matrices A and B are called unitarily similar if S in (2.16) is
unitary. If the matrices are real the term orthogonally similar is used.

Unitary similarity transformations are very important in numerical computations. Let
U be unitary. Then ‖U‖ = ‖U−1‖ = 1, the condition number of U is therefore κ(U) = 1.
Hence, if C = U−1AU then C = U∗AU and ‖C‖ = ‖A‖. In particular, if A is disturbed
by δA (e.g., roundoff errors introduced when storing the entries of A in finite-precision
arithmetic) then

U∗(A+ δA)U = C + δC, ‖δC‖ = ‖δA‖.
Hence, errors (perturbations) in A are not amplified by a unitary similarity transformation.
This is in contrast to arbitrary similarity transformations. However, as we will see later,
small eigenvalues may still suffer from large relative errors.

Another reason for the importance of unitary similarity transformations is the preser-
vation of symmetry: If A is symmetric then U−1AU = U∗AU is symmetric as well.

For generalized eigenvalue problems, similarity transformations are not so crucial since
we can operate with different matrices from both sides. If S and T are nonsingular

Ax = λBx ⇐⇒ TAS−1Sx = λTBS−1Sx.
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This sometimes called equivalence transformation ofA,B. Thus, σ(A;B) = σ(TAS−1;TBS−1).
Let us consider a special case: let B be invertible and let B = LU be the LU-factorization
of B. Then we set S = U and T = L−1 and obtain TBU−1 = L−1LUU−1 = I. Thus,
σ(A;B) = σ(L−1AU−1; I) = σ(L−1AU−1).

2.4 Schur decomposition

Theorem 2.8 (Schur decomposition) If A ∈ C
n×n then there is a unitary matrix

U ∈ C
n×n such that

(2.17) U∗AU = T

is upper triangular. The diagonal elements of T are the eigenvalues of A.

Proof. The proof is by induction. For n = 1, the theorem is obviously true.

Assume that the theorem holds for matrices of order ≤ n− 1. Let (λ,x), ‖x‖ = 1, be
an eigenpair of A, Ax = λx. We construct a unitary matrix U1 with first column x (e.g.
the Householder reflector U1 with U1x = e1). Partition U1 = [x, U ]. Then

U∗
1AU1 =

[
x∗Ax x∗AU
U

∗
Ax U

∗
AU

]
=

[
λ × · · · ×
0 Â

]

as Ax = λx and U
∗
x = 0 by construction of U1. By assumption, there exists a unitary

matrix Û ∈ C
(n−1)×(n−1) such that Û∗ÂÛ = T̂ is upper triangular. Setting U := U1(1⊕Û),

we obtain (2.17).

Notice , that this proof is not constructive as we assume the knowledge of an eigenpair
(λ,x). So, we cannot employ it to actually compute the Schur form. The QR algorithm
is used for this purpose. We will discuss this basic algorithm in Chapter 4.

Let U∗AU = T be a Schur decomposition of A with U = [u1,u2, . . . ,un]. The Schur
decomposition can be written as AU = UT . The k-th column of this equation is

(2.18) Auk = λuk +

k−1∑

i=1

tikui, λk = tkk.

This implies that

(2.19) Auk ∈ span{u1, . . . ,uk}, ∀k.

Thus, the first k Schur vectors u1, . . . ,uk form an invariant subspace1 for A. From
(2.18) it is clear that the first Schur vector is an eigenvector of A. The other columns of U ,
however, are in general not eigenvectors of A. Notice, that the Schur decomposition is not
unique. In the proof we have chosen any eigenvalue λ. This indicates that the eigenvalues
can be arranged in any order in the diagonal of T . This also indicates that the order with
which the eigenvalues appear on T ’s diagonal can be manipulated.

Problem 2.9 Let

A =

[
λ1 α
0 λ2

]
.

1A subspace V ⊂ F
n is called invariant for A if AV ⊂ V.
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Find an orthogonal 2× 2 matrix Q such that

Q∗AQ =

[
λ2 β
0 λ1

]
.

Hint: the first column of Q must be a normalized eigenvector of A corresponding to
eigenvalue λ2. Why?

2.5 The real Schur decomposition

Real matrices can have complex eigenvalues. If complex eigenvalues exist, then they occur
in complex conjugate pairs! That is, if λ is an eigenvalue of the real matrix A, then also λ̄
is an eigenvalue of A. The following theorem indicates that complex computation can be
avoided.

Theorem 2.10 (Real Schur decomposition) If A ∈ R
n×n then there is an orthogonal

matrix Q ∈ R
n×n such that

(2.20) QTAQ =




R11 R12 · · · R1m

R22 · · · R2m

. . .
...

Rmm




is upper quasi-triangular. The diagonal blocks Rii are either 1 × 1 or 2 × 2 matrices. A
1× 1 block corresponds to a real eigenvalue, a 2× 2 block corresponds to a pair of complex
conjugate eigenvalues.

Remark 2.3. The matrix [
α β
−β α

]
, α, β ∈ R,

has the eigenvalues α+ iβ and α− iβ.
Proof. Let λ = α + iβ, β 6= 0, be an eigenvalue of A with eigenvector x = u + iv. Then
λ̄ = α− iβ is an eigenvalue corresponding to x̄ = u− iv. To see this we first observe that

Ax = A(u+ iv) = Au+ iAv,

λx = (α+ iβ)(u + iv) = (αu− βv) + i(βu + αv).

Thus,
Ax̄ = A(u− iv) = Au− iAv,

= (αu − βv) − i(βu+ αv)

= (α− iβ)u − i(α − iβ)v = (α − iβ)(u − iv) = λ̄x̄.

Now, the actual proof starts. Let k be the number of complex conjugate pairs. We prove
the theorem by induction on k.

First we consider the case k = 0. In this case A has real eigenvalues and eigenvectors.
It is clear that we can repeat the proof of the Schur decomposition of Theorem 2.8 in real
arithmetic to get the decomposition (2.17) with U ∈ R

n×n and T ∈ R
n×n. So, there are n

diagonal blocks Rjj in (2.20) all of which are 1× 1.
Let us now assume that the theorem is true for all matrices with fewer than k complex

conjugate pairs. Then, with λ = α+ iβ, β 6= 0 and x = u+ iv, as previously, we have

A[u,v] = [u,v]

[
α β
−β α

]
.
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Let {x1,x2} be an orthonormal basis of span([u,v]). Then, since u and v are linearly
independent2, there is a nonsingular 2× 2 real square matrix C with

[x1,x2] = [u,v]C.

Now,

A[x1,x2] = A[u,v]C = A[u,v]

[
α β
−β α

]
C

= [x1,x2]C
−1

[
α β
−β α

]
C =: [x1,x2]S.

S and

[
α β
−β α

]
are similar and therefore have equal eigenvalues. Now we construct an

orthogonal matrix [x1,x2,x3, . . . ,xn] =: [x1,x2,W ]. Then

[
[x1,x2],W

]T
A
[
[x1,x2],W

]
=



xT1
xT2
W T


 [[x1,x2]S,AW

]
=

[
S [x1,x2]

TAW
O W TAW

]
.

The matrix W TAW has less than k complex-conjugate eigenvalue pairs. Therefore, by
the induction assumption, there is an orthogonal Q2 ∈ R

(n−2)×(n−2) such that the matrix

QT2 (W
TAW )Q2

is quasi-triangular. Thus, the orthogonal matrix

Q = [x1,x2,x3, . . . ,xn]

(
I2 O
O Q2

)

transforms A similarly to quasi-triangular form.

2.6 Normal matrices

Definition 2.11 A matrix A ∈ F
n×n is called normal if

(2.21) AA∗ = A∗A.

Let A = URU∗ be the Schur decomposition of A. Then,

RR∗ = U∗AUU∗A∗U = U∗AA∗U = U∗A∗AU = U∗A∗UU∗AU = R∗R.

Therefore, also the upper triangular R is normal. We look at the (1,1)-elements of RR∗

and R∗R that evidently must be equal. On one hand we have

(R∗R)11 = r̄11r11 = |r11|2,
on the other hand

(RR∗)11 =
n∑

j=1

r1j r̄1j = |r11|2 +
n∑

j=2

|r1j |2.

Therefore, the latter sum must vanish, i.e., r1j = 0 for j = 2, . . . , n. Comparing the (2,2)-
elements, (3,3)-elements, etc., of RR∗ and R∗R, we see that R is diagonal. In this way we
arrive at

Theorem 2.12 A matrix is normal if and only if it is diagonalizable by a unitary matrix.

(Note that unitarily diagonalizable matrices are trivially normal.)

2If u and v were linearly dependent then it follows that β must be zero.
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2.7 Hermitian matrices

Definition 2.13 A matrix A ∈ F
n×n is Hermitian if

(2.22) A = A∗.

The Schur decomposition for Hermitian matrices is particularly simple. We first note
that A being Hermitian implies that the upper triangular Λ in the Schur decomposition
A = UΛU∗ is Hermitian and thus diagonal. In fact, because

Λ = Λ∗ = (U∗AU)∗ = U∗A∗U = U∗AU = Λ,

each diagonal element λi of Λ satisfies λi = λi. So, Λ has to be real. In summary have the
following result.

Theorem 2.14 (Spectral theorem for Hermitian matrices) Let A be Hermitian.
Then there is a unitary matrix U and a real diagonal matrix Λ such that

(2.23) A = UΛU∗ =
n∑

i=1

λiuiu
∗
i .

The columns u1, . . . ,un of U are eigenvectors corresponding to the eigenvalues λ1, . . . , λn.
They form an orthonormal basis for F

n.

The decomposition (2.23) is called a spectral decomposition of A.
As the eigenvalues are real we can sort them with respect to their magnitude. We can,

e.g., arrange them in ascending order such that λ1 ≤ λ2 ≤ · · · ≤ λn.
If λi = λj , then any nonzero linear combination of ui and uj is an eigenvector corre-

sponding to λi,

A(uiα+ ujβ) = uiλiα+ ujλjβ = (uiα+ ujβ)λi.

However, eigenvectors corresponding to different eigenvalues are orthogonal. Let Au = uλ
and Av = vµ, λ 6= µ. Then

λu∗v = (u∗A)v = u∗(Av) = u∗vµ,

and thus
(λ− µ)u∗v = 0,

from which we deduce u∗v = 0 as λ 6= µ.
In summary, the eigenvectors corresponding to a particular eigenvalue λ form a sub-

space, the eigenspace {x ∈ F
n, Ax = λx} = N (A − λI). They are perpendicular to the

eigenvectors corresponding to all the other eigenvalues. Therefore, the spectral decompo-
sition (2.23) is unique up to ± signs if all the eigenvalues of A are distinct. In case of
multiple eigenvalues, we are free to choose any orthonormal basis for the corresponding
eigenspace.
Remark 2.4. The notion of Hermitian or symmetric has a wider background. Let 〈x,y〉
be an inner product on F

n. Then a matrix A is symmetric with respect to this inner
product if 〈Ax,y〉 = 〈x, Ay〉 for all vectors x and y. For the ordinary Euclidean inner
product (x,y) = x∗y we arrive at the element-wise Definition 2.7 if we set x and y equal
to coordinate vectors.

It is important to note that all the properties of Hermitian matrices that we will derive
subsequently hold similarly for matrices symmetric with respect to a certain inner product.
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Example 2.15 We consider the one-dimensional Sturm-Liouville eigenvalue problem

(2.24) − u′′(x) = λu(x), 0 < x < π, u(0) = u(π) = 0,

that models the vibration of a homogeneous string of length π that is fixed at both ends.
The eigenvalues and eigenvectors or eigenfunctions of (2.24) are

λk = k2, uk(x) = sin kx, k ∈ N.

Let u
(n)
i denote the approximation of an (eigen)function u at the grid point xi,

ui ≈ u(xi), xi = ih, 0 ≤ i ≤ n+ 1, h =
π

n+ 1
.

We approximate the second derivative of u at the interior grid points by finite differ-
ences [3, 8]

(2.25)
1

h2
(−ui−1 + 2ui − ui+1) = λui, 1 ≤ i ≤ n.

Collecting these equations and taking into account the boundary conditions, u0 = 0 and
un+1 = 0, we get a (matrix) eigenvalue problem

(2.26) Tnx = λx

where

Tn :=
(n+ 1)2

π2




2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2




∈ R
n×n.

The matrix eigenvalue problem (2.26) can be solved explicitly [10, p.229]. Eigenvalues and
eigenvectors are given by

(2.27)

λ
(n)
k =

(n+ 1)2

π2
(2− 2 cosφk) =

4(n+ 1)2

π2
sin2

kπ

2(n+ 1)
,

u
(n)
k =

(
2

n+ 1

)1/2

[sinφk, sin 2φk, . . . , sinnφk]
T , φk =

kπ

n+ 1
.

Clearly, λ
(n)
k converges to λk as n→∞. (Note that sin ξ → ξ as ξ → 0.) When we identify

u
(n)
k with the piecewise linear function that takes on the values given by u

(n)
k at the grid

points xi then this function evidently converges to sin kx.

Let p(λ) be a polynomial of degree d, p(λ) = α0 + α1λ + α2λ
2 + · · · + αdλ

d. As
Aj = (UΛU∗)j = UΛjU∗ we can define a matrix polynomial as

(2.28) p(A) =

d∑

j=0

αjA
j =

d∑

j=0

αjUΛjU∗ = U




d∑

j=0

αjΛ
j


U∗.

This equation shows that p(A) has the same eigenvectors as the original matrix A. The
eigenvalues are modified though, λk becomes p(λk). Similarly, more complicated functions
of A can be computed if the function is defined on spectrum of A.



2.8. THE JORDAN NORMAL FORM 43

2.8 The Jordan normal form

Theorem 2.16 (Jordan normal form) For every A ∈ F
n×n there is a nonsingular

matrix X ∈ F
n×n such that

(2.29) X−1AX = J = diag(J1, J2, . . . , Jp),

where

(2.30) Jk = Jmk
(λk) =




λk 1

λk
. . .
. . . 1

λk



∈ F

mk×mk

are called Jordan blocks and m1+ · · ·+mp = n. The values λk need not be distinct. The
Jordan matrix J is unique up to the ordering of the blocks. The transformation matrix X
is not unique.

A matrix is diagonalizable if all Jordan blocks are 1 × 1, i.e., mk = 1 for all k3. In this
case the columns of X are eigenvectors of A.

More generally, there is one eigenvector associated with each Jordan block, e.g.,

J2(λ)e1 =

[
λ 1
0 λ

] [
1
0

]
= λ e1.

Nontrivial Jordan blocks give rise to so-called generalized eigenvectors e2, . . . , emk
since

(Jk(λ)− λI)ej+1 = ej , j = 1, . . . ,mk − 1.

This choice of generalized eigenvectors is not unique though, as (Jk(λ)−λI)(e2+αe1) = e1
for any α. This is one of the reasons for the non-uniqueness of the transformation matrix
X in Theorem 2.16.

From the Jordan blocks we can read geometric and algebraic multiplicity of an eigen-
value: The number of Jordan blocks associated with a particular eigenvalue give the
geometric multiplicity; the sum of its orders gives the algebraic multiplicity.

Numerically the size of the Jordan blocks cannot be determined stably as the following
example shows. Let [

ε 1
0 −ε

]
≈
[
0 1
0 0

]
= J2(0)

be the approximation for J2(0) that some numerical algorithm has computed. This matrix
has two distinct eigenvalues and thus two eigenvectors,

[
ε 1
0 −ε

] [
1 1
0 −2ε

]
=

[
1 1
0 −2ε

] [
ε 0
0 −ε

]
.

For small ε the two eigenvectors are very close. They even collaps when ε → 0. A
numerical code cannot differ between the two cases (ε = 0, ε 6= 0) that have a completely
different structure.

31× 1 Jordan blocks are called trivial.
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Let Y := X−∗ and let X = [X1,X2, . . . ,Xp] and Y = [Y1, Y2, . . . , Yp] be partitioned
according to J in (2.29), meaning that Xj, Yj ∈ F

n×mj . Then,

(2.31) A = XJY ∗ =
p∑

k=1

XkJkY
∗
k =

p∑

k=1

(λkXkY
∗
k +XkNkY

∗
k ),

where Nk = Jmk
(0). If mk = 1 then Nk is zero. We define the matrices Pk := XkY

∗
k and

Dk := XkNkY
∗
k . Then, since P

2
k = Pk, Pk is a projector on R(Pk) = R(Xk). It is called a

spectral projector. From (2.31) we immediately obtain [9]

(2.32) A =

p∑

k=1

(λkPk +Dk).

Since Imk
Nk = NkImk

= Nk, we have

PkDℓ = DℓPk = δkℓDℓ,

APk = PkA = PkAPk = λkPk +Dk,

AjPk = PkA
j = PkA

jPk = Pk(λkIn +Dk)
j = (λkIn +Dk)

jPk.

The Jordan normal form can be computed from the Schur decomposition A = U∗TU ,
see, e.g., [2], although it is not recommended in general to do so.

1. Group equal eigenvalues on the diagonal of the triangular T . This is a generalization
of the solution of Problem 2.4.

2. Let

(2.33) T =




T1 T12 · · · T1s
T2 · · · T2s

. . .
...
Ts




where the s diagonal blocks Tk are related to the s distinct eigenvalues of T . The off-
diagonal blocks Tjℓ are zeroed one after the other. Each steps requires the solution
of a Sylvester equation Tjℓ = TjY − Y Tℓ.
Exercise: Consider the case of two (simple or multiple) eigenvalues,

T =

[
T1 T12

T2

]
.

Apply a similarity transformation with the matrix

X =

[
I1 Y

I2

]
.

Determine Y ? How can this be extended to the case (2.33) with s diagonal blocks?

3. The diagonal blocks T1, . . . , Ts are brought to Jordan form.

The Jordan normal form can be nicely employed to define matrix functions, see [6].
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2.9 Projections

Definition 2.17 A matrix P that satisfies

(2.34) P 2 = P

is called a projection.

Obviously, a projection is a square matrix. If P is a projection then Px = x for all
x in the range R(P ) of P . In fact, if x ∈ R(P ) then x = Py for some y ∈ F

n and
Px = P (Py) = P 2y = Py = x.

x

x

1

2

Figure 2.1: Oblique projection of example 2.9

Example 2.18 Let

P =

(
1 2
0 0

)
.

The range of P is R(P ) = F×{0}. The effect of P is depicted in Figure 2.1: All points x
that lie on a line parallel to span{(2,−1)∗} are mapped on the same point on the x1 axis.
So, the projection is along span{(2,−1)∗} which is the null space N (P ) of P .

Example 2.19 Let x and y be arbitrary vectors such that y∗x 6= 0. Then

(2.35) P =
xy∗

y∗x

is a projection. Notice that the projector of the previous example can be expressed in the
form (2.35).

Problem 2.20 Let X,Y ∈ F
n×p such that Y ∗X is nonsingular. Show that

P := X(Y ∗X)−1Y ∗

is a projection.

Example 2.21 The spectral projectors XkY
∗
k introduced in (2.31) are projectors. Their

range is the span of all eigenvectors and generalized eigenvectors associated with the
eigenvalue λk.
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If P is a projection then I−P is a projection as well. In fact, (I−P )2 = I−2P +P 2 =
I−2P +P = I−P . If Px = 0 then (I−P )x = x. Therefore, the range of I−P coincides
with the null space of P , R(I − P ) = N (P ). It can be shown that R(P ) = N (P ∗)⊥.

Notice thatR(P )∩R(I−P ) = N (I−P )∩N (P ) = {0}. For, if Px = 0 then (I−P )x =
x, which can only be zero if x = 0. So, any vector x can be uniquely decomposed into

(2.36) x = x1 + x2, x1 ∈ R(P ), x2 ∈ R(I − P ) = N (P ).

The most interesting situation occurs if the decomposition is orthogonal, i.e., if x∗
1x2 =

0 for all x.

Definition 2.22 A matrix P is called an orthogonal projection if

(2.37)
(i) P 2 = P
(ii) P ∗ = P.

Proposition 2.23 Let P be a projection. Then the following statements are equivalent.
(i) P ∗ = P ,
(ii) R(I − P ) ⊥ R(P ), i.e. (Px)∗(I − P )y = 0 for all x,y.

Proof. (ii) follows trivially from (i) and (2.34).

Now, let us assume that (ii) holds. Then

x∗P ∗y = (Px)∗y = (Px)∗(Py + (I − P )y)
= (Px)∗(Py)

= (Px+ (I − P )x)(Py) = x∗(Py).

This equality holds for any x and y and thus implies (i).

Example 2.24 Let q be an arbitrary vector of norm 1, ‖q‖ = q∗q = 1. Then P = qq∗

is the orthogonal projection onto span{q}.

Example 2.25 Let Q ∈ F
n×p with Q∗Q = Ip. Then QQ∗ is the orthogonal projector

onto R(Q), which is the space spanned by the columns of Q.

Problem 2.26 Let Q,Q1 ∈ F
n×p with Q∗Q = Q∗

1Q1 = Ip such that R(Q) = R(Q1).
This means that the columns of Q and Q1, respectively, are orthonormal bases of the same
subspace of Fn. Show that the projector does not depend on the basis of the subspace,
i.e., that QQ∗ = Q1Q

∗
1.

Problem 2.27 Let Q = [Q1, Q2], Q1 ∈ F
n×p, Q2 ∈ F

n×(n−p) be a unitary matrix. Q1

contains the first p columns of Q, Q2 the last n− p. Show that Q1Q
∗
1 +Q2Q

∗
2 = I. Hint:

Use QQ∗ = I. Notice, that if P = Q1Q
∗
1 then I − P = Q2Q

∗
2.

Problem 2.28 What is the form of the orthogonal projection onto span{q} if the inner
product is defined as 〈x,y〉 := y∗Mx where M is a symmetric positive definite matrix?
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2.10 The Rayleigh quotient

Definition 2.29 The quotient

ρ(x) :=
x∗Ax
x∗x

, x 6= 0,

is called the Rayleigh quotient of A at x.

Notice, that ρ(xα) = ρ(x), α 6= 0. Hence, the properties of the Rayleigh quotient
can be investigated by just considering its values on the unit sphere. Using the spectral
decomposition A = UΛU∗, we get

x∗Ax = x∗UΛU∗x =

n∑

i=1

λi|u∗
ix|2.

Similarly, x∗x =
∑n

i=1 |u∗
ix|2. With λ1 ≤ λ2 ≤ · · · ≤ λn, we have

λ1

n∑

i=1

|u∗
ix|2 ≤

n∑

i=1

λi|u∗
ix|2 ≤ λn

n∑

i=1

|u∗
ix|2.

So,
λ1 ≤ ρ(x) ≤ λn, for all x 6= 0.

As
ρ(uk) = λk,

the extremal values λ1 and λn are actually attained for x = u1 and x = un, respectively.
Thus we have proved the following theorem.

Theorem 2.30 Let A be Hermitian. Then the Rayleigh quotient satisfies

(2.38) λ1 = min
x 6=0

ρ(x), λn = max
x 6=0

ρ(x).

As the Rayleigh quotient is a continuous function it attains all values in the closed interval
[λ1, λn].

The next theorem generalizes the above theorem to interior eigenvalues. It is attributed
to Poincaré, Fischer and Pólya.

Theorem 2.31 (Minimum-maximum principle) Let A be Hermitian. Then

(2.39) λp = min
X∈Fn×p, rank(X)=p

max
x 6=0

ρ(Xx)

Proof. Let Up−1 = [u1, . . . ,up−1]. For every X ∈ F
n×p with full rank we can choose x 6= 0

such that U∗
p−1Xx = 0. Then 0 6= z := Xx =

∑n
i=p ziui. As in the proof of the previous

theorem we obtain the inequality
ρ(z) ≥ λp.

To prove that equality holds in (2.39) we choose X = [u1, . . . ,up]. Then

U∗
p−1Xx =



1 0

. . .
...

1 0


x = 0

implies that x = ep, i.e., that z = Xx = up. So, ρ(z) = λp.
An important consequence of the minimum-maximum principle is the following
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Theorem 2.32 (Monotonicity principle) Let A be Hermitian and let q1, . . . ,qp be
normalized, mutually orthogonal vectors. Set Q := [q1, . . . ,qp] and A

′ := Q∗AQ ∈ F
p×p.

Then the p eigenvalues λ′1 ≤ · · · ≤ λ′p of A′ satisfy

(2.40) λk ≤ λ′k, 1 ≤ k ≤ p.

Proof. Let w1, . . . ,wp ∈ F
p be the eigenvectors of A′,

(2.41) A′wi = λ′iwi, 1 ≤ i ≤ p,

with w∗
iwj = δij . Then the vectors Qw1, . . . , Qwp are normalized and mutually orthogo-

nal. Therefore, we can construct a normalized vector x0 with ‖x0‖ = 1,

x0 := a1Qw1 + · · ·+ akQwk = Q(a1w1 + · · ·+ akwk) = Qa,

that is orthogonal to the first k − 1 eigenvectors of A,

x∗
0ui = 0, 1 ≤ i ≤ k − 1.

(Note, that ‖x0‖ = 1 implies ‖a‖ = 1.) Then, with the minimum-maximum principle we
get

λk = min
x 6=0

x∗u1=···=x∗uk−1=0

R(x) ≤ R(x0) = x∗
0Ax0 = a∗Q∗AQa =

k∑

i=1

|a|2i λ′i ≤ λ′k.

Exercise: It is possible to prove the inequalities (2.40) without assuming that the
q1, . . . ,qp are orthonormal. But then one has to use the eigenvalues λ′k of

A′x = λ′Bx, B′ = Q∗Q,

instead of (2.41). Prove this.

Remark 2.5. Let qi = eji , 1 ≤ i ≤ k. This means that we extract rows and columns
j1, . . . , jk to construct A′. (The indices ji are assumed to be distinct.)
Remark 2.6. Let’s remove a single row/column (with equal index) from A. Then k = n−1
in Remark 2.5 and the index set j1, . . . , jn−1 contains all but one of the integers 1, . . . , n.

If we formulate a monotonicity principle based on the eigenvalues λn, λn−1, . . . as con-
secutive maxima of the Rayleigh quotient, then we arrive at the interlacing property

(2.42) λk ≤ λ′k ≤ λk+1, 1 ≤ k < n.

This interlacing property can be generalized, see, e.g., [7, 5].
The trace of a matrix A ∈ F

n×n is defined to be the sum of its diagonal elements.
Matrices that are similar have equal trace [4, p.89]. Hence, by the spectral theorem,

(2.43) trace(A) =
n∑

i=1

aii =
n∑

i=1

λi.

The following theorem is a generalization of Theorem 2.30.

Theorem 2.33 (Trace theorem)

(2.44) λ1 + λ2 + · · · + λp = min
X∈Fn×p, X∗X=Ip

trace(X∗AX)
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Proof. Let X ∈ F
n×p with X∗X = Ip and let λ′1, . . . , λ

′
p be the eigenvalues of A

′ = X∗AX.
Then the monotonicity principle applies, i.e., λk ≤ λ′k for 1 ≤ k ≤ p. Thus,

λ1 + λ2 + · · ·+ λp ≤ λ′1 + λ′2 + · · ·+ λ′p = trace(X∗AX).

Equality holds if X = [u1, . . . ,up] is formed of the eigenvectors associated with the p
smallest eigenvalues.

Note that the choice of eigenvectors u1, . . . ,up is not unique if one of the eigenvalues
λ1 to λp is multiple. Even if these eigenvalues are simple the minimizer X is not unique.
In fact, any matrix X = [u1, . . . ,up]G with unitary G ∈ F

p×p yields the same minimal
trace.

2.11 Cholesky factorization

Definition 2.34 AHermitian matrix is called positive definite (positive semi-definite)
if all its eigenvalues are positive (nonnegative).

For a Hermitian positive definite matrix A, the LU decomposition can be written in a
particular form reflecting the symmetry of A.

Theorem 2.35 (Cholesky factorization) Let A ∈ F
n×n be Hermitian positive definite.

Then there is a lower triangular matrix L such that

(2.45) A = LL∗.

L is unique if we choose its diagonal elements to be positive.

Proof. We prove the theorem by giving an algorithm that computes the desired factoriza-
tion.

Since A is positive definite, we have a11 = e∗1Ae1 > 0. Therefore we can form the
matrix

L1 =




l
(1)
11

l
(1)
21 1
...

. . .

l
(1)
n1 1



=




√
a11
a21√
a1,1

1

...
. . .

an1√
a1,1

1



.

We now form the matrix

A1 = L−1
1 AL−1

1
∗
=




1 0 . . . 0

0 a22 − a21a12
a11 . . . a2n − a21a1n

a11
...

...
. . .

...

0 an2 − an1a12
a11 . . . ann − an1a1n

a11


 .

This is the first step of the algorithm. Since positive definiteness is preserved by a congru-
ence transformation X∗AX (see also Theorem 2.38 below), A1 is again positive definite.
Hence, we can proceed in a similar fashion factorizing A1(2:n, 2:n), etc.

Collecting L1, L2, . . . , we obtain

I = L−1
n · · ·L−1

2 L−1
1 A(L∗

1)
−1(L∗

2)
−1 · · · (L∗

n)
−1

or
(L1L2 · · ·Ln)(L∗

n · · ·L∗
2L

∗
1) = A.
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which is the desired result. It is easy to see that L1L2 · · ·Ln is a lower triangular matrix
and that

L1L2 · · ·Ln =




l
(1)
11

l
(1)
21 l

(2)
22

l
(1)
31 l

(2)
32 l

(3)
33

...
...

...
. . .

l
(1)
n1 l

(2)
n2 l

(3)
n3 . . . l

(n)
nn




Remark 2.7. To check if a (symmetric) matrix is positive definite, it is the best to try
to compute the Cholesky factorization. The argorithm fails if one of the pivots becomes
negative.
Remark 2.8. When working with symmetric matrices, one often stores only half of the
matrix, e.g. the lower triangle consisting of all elements including and below the diagonal.
The L-factor of the Cholesky factorization can overwrite this information in-place to save
memory.

Definition 2.36 The inertia of a Hermitian matrix is the triple (ν, ζ, π) where ν, ζ, π is
the number of negative, zero, and positive eigenvalues.

Definition 2.37 Two matrices A and B are called congruent if there is a nonsingular
matrix X such that B = X∗AX. The mapping A 7→ X∗AX is called congruence trans-
formation.

Theorem 2.38 (Sylvester’s law of inertia) The inertia is invariant under congruence
transformations.

Proof. The proof is given, for example, in [5].

2.12 The singular value decomposition (SVD)

Theorem 2.39 (Singular value decomposition) If A ∈ C
m×n then there exist unitary

matrices U ∈ C
m×m and V ∈ C

n×n such that

(2.46) U∗AV = Σ =

(
diag(σ1, . . . , σp) 0

0 0

)
, p = min(m,n),

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Proof. If A = O, the theorem holds with U = Im, V = In and Σ equal to the m× n zero
matrix.

We now assume that A 6= O. Let x, ‖x‖ = 1, be a vector that maximizes ‖Ax‖ and
let Ax = σy where σ = ‖A‖ = ‖Ax‖ and ‖y‖ = 1. As A 6= O, σ > 0. Consider the scalar
function

f(α) :=
‖A(x + αy)‖2
‖x+ αy‖2 =

(x+ αy)∗A∗A(x+ αy)

(x+ αy)∗(x+ αy)

Because of the extremality of Ax, the derivative f ′(α) of f(α) must vanish at α = 0. This
holds for all y! The derivative f ′(α) is given by

df

dα
(α) =

(x∗A∗Ay + ᾱy∗A∗Ay)‖x + αy‖2 − (x∗y + ᾱy∗y)‖A(x + αy)‖2
‖x+ αy‖4
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Thus, we have for all y,

df

dα
(α)

∣∣∣∣
α=0

=
x∗A∗Ay‖x‖2 − x∗y‖Ax‖2

‖x‖4 = 0.

As ‖x‖ = 1 and ‖Ax‖ = σ, we get

(x∗A∗A− σ2x∗)y = (A∗Ax− σ2x)∗y = 0, for all y,

which implies
A∗Ax = σ2x.

Multiplying Ax = σy from the left by A∗ we get A∗Ax = σA∗y = σ2x from which

A∗y = σx

and AA∗y = σAx = σ2y follow. Therefore, x is an eigenvector of A∗A corresponding to
the eigenvalue σ2 and y is an eigenvector of AA∗ corresponding to the same eigenvalue.

Now, we construct a unitary matrix U1 with first column y and a unitary matrix V1
with first column x, U1 = [y, Ū ] and V1 = [x, V̄ ]. Then

U∗
1AV1 =

[
y∗Ax y∗AV
U

∗
Ax U

∗
AV

]
=

[
σ σx∗V

σU
∗
y U

∗
AV

]
=

[
σ 0∗

0 Â

]

where Â = U
∗
AV .

The proof above is due to W. Gragg. It nicely shows the relation of the singular value
decomposition with the spectral decomposition of the Hermitian matrices A∗A and AA∗,

(2.47) A = UΣV ∗ =⇒ A∗A = V Σ2V ∗. AA∗ = UΣ2U∗,

Note that the proof given in [5] is shorter and maybe more elegant.
The SVD of dense matrices is computed in a way that is very similar to the dense Her-

mitian eigenvalue problem. However, in the presence of roundoff error, it is not advisable
to make use of the matrices A∗A and AA∗. Instead, let us consider the (n+m)× (n+m)
Hermitian matrix

(2.48)

[
O A
A∗ O

]
.

Making use of the SVD (2.46) we immediately get
[
O A
A∗ O

]
=

[
U O
O V

] [
O Σ
ΣT O

] [
U∗ O
O V ∗

]
.

Now, let us assume that m ≥ n. Then we write U = [U1, U2] where U1 ∈ F
m×n and

Σ =

[
Σ1

O

]
with Σ1 ∈ R

n×n. Then

[
O A
A∗ O

]
=

[
U1 U2 O
O O V

]

O O Σ1

O O O
Σ1 O O





U∗
1 O

U∗
2 O
O V ∗


 =

[
U1 O U2

O V O

]

O Σ1 O
Σ1 O O
O O O





U∗
1 O
O V ∗

U∗
2 O


 .

The first and third diagonal zero blocks have order n. The middle diagonal block has
order n−m. Now we employ the fact that

[
0 σ
σ 0

]
=

1√
2

[
1 1
1 −1

] [
σ 0
0 −σ

]
1√
2

[
1 1
1 −1

]
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to obtain

(2.49)

[
O A
A∗ O

]
=

[
1√
2
U1

1√
2
U1 U2

1√
2
V − 1√

2
V O

]

Σ1 O O
O −Σ1 O
O O O







1√
2
U∗
1

1√
2
V ∗

1√
2
U∗
1 − 1√

2
V ∗

U∗
2 O


 .

Thus, there are three ways how to treat the computation of the singular value decompo-
sition as an eigenvalue problem. One of the two forms in (2.47) is used implicitly in the
QR algorithm for dense matrices A, see [5],[1]. The form (2.48) is suited if A is a sparse
matrix.
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