
Chapter 8

Simultaneous vector or subspace

iterations

8.1 Basic subspace iteration

We have learned in subsection 7.8 how to compute several eigenpairs of a matrix, one after
the other. This turns out to be quite inefficient. Some or several of the quotients λi+1/λi
may be close to one. The following algorithm differs from Algorithm 7.8 in that it does
not perform p individual iterations for computing the, say, p smallest eigenvalues, but a
single iteration with p vectors simultaneously.

Algorithm 8.1 Basic subspace iteration

1: Let X ∈ F
n×p be a matrix with orthnormalized columns, X∗X = Ip. This algorithmus

computes eigenvectors corresponding to the p largest eigenvalues λ1 ≥ · · · ≥ λp of A.
2: Set X(0) := X, k = 1,
3: while ‖(I −X(k)X(k)∗)X(k−1)‖ > tol do
4: k := k + 1
5: Z(k) := AX(k−1)

6: X(k)R(k) := Z(k)/* QR factorization of Z(k) */
7: end while

The QR factorization in step 6 of the algorithm prevents the columns of the X(k) from
converging all to an eigenvector of largest modulus.

If the convergence criterion is satisfied then

X(k) −X(k−1)(X(k−1)∗X(k)) = E, with ‖E‖ ≤ tol.

Therefore, for the ‘residual’,

AX(k−1) −X(k−1)(X(k−1)∗X(k))R(k) = ER(k),

Therefore, in case of convergence, X(k) tends to an invariant subspace, sayR(X∗). X
(k−1)∗X(k) ≈

Ip and AX(k) = X(k)R(k) is an approximation of a partial Schur decomposition. We will
show that the matrix X(k) converges to the Schur vectors associated with the largest
p eigenvalues of A. In the convergence analysis we start from the Schur decomposition
A = UTU∗ of A.

It is important to notice that in the QR factorization of Z(k) the j-th column affects
only the columns to its right. If we would apply Algorithm 8.1 to a matrix X̂ ∈ F

n×q, with
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146 CHAPTER 8. SIMULTANEOUS VECTOR OR SUBSPACE ITERATIONS

Xei = X̂ei for i = 1, . . . , q then, for all k, we would have X(k)ei = X̂(k)ei for i = 1, . . . , j.
This, in particular, means that the first columns X(k)e1 perform a simple vector iteration.

Problem 8.1 Show by recursion that the QR factorization of AkX = AkX(0) is given by

AkX = X(k)R(k)R(k−1) · · ·R(1).

8.2 Angles between subspaces

In the convorgence analysis of the subspace iteration we need the notion of an angle
between subspaces. Let Q1 ∈ F

n×p, Q2 ∈ F
n×q be matrices with orthonormal columns,

Q∗
1Q1 = Ip, Q

∗
2Q2 = Iq. Let Si = R(Qi). Then S1 and S2 are subspaces of F

n of dimension
p and q, respectively. We want to investigate how we can define a distance or an angle
between S1 and S2 [2].

It is certainly straightforward to define the angle between the subspaces S1 and S2 to
be the angle between two vectors x1 ∈ S1 and x2 ∈ S2. It is, however, not clear right-
away how these vectors should be chosen. Let us consider the case of two 2-dimensional

q2

q1

q3

Figure 8.1: Two intersecting planes in 3-space

subspaces in R
3, cf. Fig. (8.1). Let S1 = span{q1, q2} and S2 = span{q1, q3} where we

assume that q∗
1q2 = q∗

1q3 = 0. We might be tempted to define the angle between S1 and
S2 as the maximal angle between any two vectors in S1 and S2,

(8.1) ∠(S1, S2) = max
x1∈S1
x2∈S2

∠(x1,x2).

This would give an angle of 90o as we could chose q1 in S1 and q3 in S2. This angle
would not change as we turn S2 around q1. It would even stay the same if the two planes
coincided.

What if we would take the minimum in (8.1)? This definition would be equally un-
satisfactory as we could chose q1 in S1 as well as in S2 to obtain an angle of 0o. In fact,
any two 2-dimensional subspaces in 3 dimensions would have an angle of 0o. Of course,
we would like to reserve the angle of 0o to coinciding subspaces.

A way out of this dilemma is to proceed as follows: Take any vector x1 ∈ S1 and
determine the angle between x1 and its orthogonal projection (I − Q∗

2Q2)x1 on S2. We
now maximize the angle by varying x1 among all non-zero vectors in S1. In the above
3-dimensional example we would obtain the angle between x2 and x3 as the angle between
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S1 and S3. Is this a reasonable definition? In particular, is it well-defined in the sense
that it does not depend on how we number the two subspaces? Let us now assume that
S1, S2 ⊂ F

n have dimensions p and q. Formally, the above procedure gives an angle ϑ with

(8.2)

sinϑ := max
r∈S1
‖r‖=1

‖(In −Q2Q
∗
2)r‖ = max

a∈Fp

‖a‖=1

‖(In −Q2Q
∗
2)Q1a‖

= ‖(In −Q2Q
∗
2)Q1‖.

Because In −Q2Q
∗
2 is an orthogonal projection, we get

(8.3)

‖(In −Q2Q
∗
2)Q1a‖2 = a∗Q∗

1(In −Q2Q
∗
2)(In −Q2Q

∗
2)Q1a

= a∗Q∗
1(In −Q2Q

∗
2)Q1a

= a∗(Q∗
1Q1 −Q∗

1Q2Q
∗
2Q1)a

= a∗(Ip − (Q∗
1Q2)(Q

∗
2Q1))a

= a∗(Ip −W ∗W )a

where W := Q∗
2Q1 ∈ F

q×p. With (8.2) we obtain

(8.4)

sin2 ϑ = max
‖a‖=1

a∗(Ip −W ∗W )a

= largest eigenvalue of Ip −W ∗W

= 1− smallest eigenvalue of W ∗W.

If we change the roles of Q1 and Q2 we get in a similar way

(8.5) sin2 ϕ = ‖(In −Q1Q
∗
1)Q2‖ = 1− smallest eigenvalue of WW ∗.

Notice, that W ∗W ∈ F
p×p and WW ∗ ∈ F

q×q and that both matrices have equal rank.
Thus, if W has full rank and p < q then ϑ < ϕ = π/2. However if p = q then W ∗W and
WW ∗ have equal eigenvalues, and, thus, ϑ = ϕ. In this most interesting case we have

sin2 ϑ = 1− λmin(W
∗W ) = 1− σ2min(W ),

where σmin(W ) is the smallest singular value of W [2, p.16].

For our purposes in the analysis of eigenvalue solvers the following definition is most
appropriate.

Definition 8.2 Let S1, S2 ⊂ F
n be of dimensions p and q and let Q1 ∈ F

n×p and Q2 ∈
F
n×q be matrices the columns of which form orthonormal bases of S1 and S2, respectively,

i.e. Si = R(Qi), i = 1, 2. Then we define the angle ϑ, 0 ≤ ϑ ≤ π/2, between S1 and S2 by

sinϑ = sin∠(S1, S2) =







√

1− σ2min(Q
∗
1Q2) if p = q,

1 if p 6= q.

If p = q the equations (8.2)–(8.4) imply that

(8.6)

sin2 ϑ = max
‖a‖=1

a∗(Ip −W ∗W )a = max
‖b‖=1

b∗(Ip −WW ∗)b

= ‖(In −Q2Q
∗
2)Q1‖ = ‖(In −Q1Q

∗
1)Q2‖

= ‖(Q1Q
∗
1 −Q2Q

∗
2)Q1‖ = ‖(Q1Q

∗
1 −Q2Q

∗
2)Q2‖
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Let x ∈ S1 + S2. Then x = q̃1 + q̃2 with q̃i ∈ Si. We write

x = q̃1 +Q1Q
∗
1q̃2 + (In −Q1Q

∗
1)q̃2 =: q1 + q2

with q1 = Q1a and q2 = Q2b = (In −Q1Q
∗
1)Q2b. Then

‖(Q1Q
∗
1 −Q2Q

∗
2)x‖2 = ‖(Q1Q

∗
1 −Q2Q

∗
2)(Q1a+Q2b)‖2

= ‖Q1a+Q2Q
∗
2Q1a+Q2b‖2

= ‖(In −Q2Q
∗
2)Q1a+Q2b‖2

= a∗Q∗
1(In −Q2Q

∗
2)Q1a

+ 2Re(a∗Q∗
1(In −Q2Q

∗
2)Q2b) + b∗Q∗

2Q2b

sin2 ϑ = max
‖a‖=1

a∗Q∗
1(In −Q2Q

∗
2)Q1a,

= max
‖a‖=1

a∗Q∗
1(Q1Q

∗
1 −Q2Q

∗
2)Q1a,

= max
x∈S1\{0}

x∗(Q1Q
∗
1 −Q2Q

∗
2)x

x∗x
.

Thus, sinϑ is the maximum of the Rayleigh quotient R(x) corresponding to Q1Q
∗
1−Q2Q

∗
2,

that is the largest eigenvalue of Q1Q
∗
1−Q2Q

∗
2. As Q1Q

∗
1−Q2Q

∗
2 is symmetric and positive

semi-definite, its largest eigenvalue equals its norm,

Lemma 8.3 sin∠(S1, S2) = ‖Q2Q
∗
2 −Q1Q

∗
1‖

Lemma 8.4 ∠(S1, S2) = ∠(S1
⊥, S2

⊥).

Proof. Because
‖Q2Q

∗
2 −Q1Q

∗
1‖ = ‖(I −Q2Q

∗
2)− (I −Q1Q

∗
1)‖

the claim immediately follows from Lemma 8.3.

8.3 Convergence of basic subspace iteration

In analyzing the convergence of the basic subspace iteration we proceed similarly as in
the analysis of the simple vector iteration, exploiting the Jordan normal form A = XJY ∗

with Y ∗ := X−1. We assume that the p largest eigenvalues of A in modulus are separated
from the rest of the spectrum,

(8.7) |λ1| ≥ · · · ≥ |λp| > |λp+1| ≥ · · · ≥ |λn|.

This means that the eigenvalues are arranged on the diagonal of the Jordan block matrix
J in the order given in (8.7).

In fact as we can either analyze the original iteration {X(k)} in the canonical coordi-
nate system or the iteration {Y (k)} = {U∗X(k)} in the coordinate system generated by
the (generalized) eigenvectors we assume that A itself is a Jordan block matrix with its
diagonal elements arranged as in (8.7).

The invariant subspace of A associated with the p largest (or dominant) eigenvalues is
given by R(Ep) where Ep = [e1, . . . , ep]. We are now going to show that the angle between
R(X(k)) and R(Ep), tends to zero as k goes to ∞.

From Problem 8.1 we know that

(8.8) ϑ(k) := ∠(R(Ep),R(X(k))) = ∠(R(Ep),R(AkX(0))).
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We partition the matrices A and X(k),

A = diag(J1, J2), X(k) =

[

X
(k)
1

X
(k)
2

]

, J1,X
(k)
1 ∈ F

p×p.

From (8.7) we know that J1 is nonsingular. Let us also assume that X
(k)
1 = E∗

pX
(k) is

invertible. This means, that X(k) has components in the direction of the invariant subspace
associated with the p dominant eigenvalues. Then, with Problem 8.1,

(8.9) X(k)R = AkX(0) =

[

Jk
1X

(0)
1

Jk
2X

(0)
2

]

=

[
Ip
S(k)

]

Jk
1X

(0)
1 , S(k) := Jk

2X
(0)
2 X

(0)
1

−1
J−k
1 .

Notice that X
(k)
1 is invertible if X

(0)
1 is so. (8.8) and (8.9) imply that

(8.10)

sinϑ(k) = ‖(I − EpE
∗
p)X

(k)‖

=

∥
∥
∥
∥
(I − EpE

∗
p)

[
Ip
S(k)

]∥
∥
∥
∥

/∥
∥
∥
∥

[
Ip
S(k)

]∥
∥
∥
∥
=

‖S(k)‖
√

1 + ‖S(k)‖2
.

Likewise, we have

cos ϑ(k) = ‖E∗
pX

(k)‖ =
1

√

1 + ‖S(k)‖2
.

Since ρ(J2) = |λp+1| and ρ(J−1
1 ) = 1/|λp| we obtain with (7.13) and a few algebraic

manipulations for any ε > 0 that

(8.11) tan ϑ(k) = ‖S(k)‖ ≤ ‖Jk
2 ‖‖S(0)‖‖J−k

1 ‖ ≤
(∣
∣
∣
∣

λp+1

λp

∣
∣
∣
∣
+ ε

)k

tan ϑ(0),

for k > K(ε). Making a transformation back to a general matrix A as before Theorem 7.5
we get

Theorem 8.5 Let Up, Vp ∈ F
n×p, U∗

pUp = V ∗
p Vp = Ip, be matrices that span the right and

left invariant subspace associated with the dominant p eigenvalues λ1, . . . , λp of A. Let
X(0) ∈ F

n×p be such that V ∗
p X

(0) is nonsingular. Then, if |λp| < |λp+1| and ε > 0, the

iterates X(k) of the basic subspace iteration with initial subpace X(0) converges to Up, and

(8.12) tanϑ(k) ≤
(∣
∣
∣
∣

λp+1

λp

∣
∣
∣
∣
+ ε

)k

tan ϑ(0), ϑ(k) = ∠(R(Up),R(X(k)))

for sufficiently large k.

If the matrix A is Hermitian or real-symmetric we can simplify Theorem 8.5.

Theorem 8.6 Let Up := [u1, . . . ,up] be the matrix formed by the eigenvectors correspond-
ing to the p dominant eigenvalues λ1, . . . , λp of A. Let X(0) ∈ F

n×p be such that U∗
pX

(0) is

nonsingular. Then, if |λp| < |λp+1|, the iterates X(k) of the basic subspace iteration with
initial subpace X(0) converges to Up, and

(8.13) tanϑ(k) ≤
∣
∣
∣
∣

λp+1

λp

∣
∣
∣
∣

k

tan ϑ(0), ϑ(k) = ∠(R(Up),R(X(k))).
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Let us elaborate on this result. (Here we assume that A is Hermitian or real-symmetric.
Otherwise the statements are similar modulo ε terms as in (8.12).) Let us assume that
not only Wp := U∗

pX is nonsingular but that each principal submatrix

Wj :=






w11 · · · w1j
...

...
wj1 · · · wjj




 , 1 ≤ j ≤ p,

ofWp is nonsingular. Then we can apply Theorem 8.6 to each set of columns [x
(k)
1 , . . . ,x

(k)
j ],

1 ≤ j ≤ p, provided that |λj | < |λj+1|. If this is the case, then

(8.14) tanϑ
(k)
j ≤

∣
∣
∣
∣

λj+1

λj

∣
∣
∣
∣

k

tanϑ
(0)
j ,

where ϑ
(k)
j = ∠(R([u1, . . . ,uj ]),R([x

(k)
1 , . . . ,x

(k)
j ])).

We can even say a little more. We can combine the statements in (8.14) as follows.

Theorem 8.7 Let X ∈ F
n×p. Let |λq−1| > |λq| ≥ . . . ≥ |λp| > |λp+1|. Let Wq and Wp be

nonsingular. Then

(8.15) sin ∠(R([x(k)
q , . . . ,x(k)

p ]),R([uq, . . . ,up])) ≤ c ·max

{∣
∣
∣
∣

λq
λq−1

∣
∣
∣
∣

k

,

∣
∣
∣
∣

λp+1

λp

∣
∣
∣
∣

k
}

.

Proof. Recall that the sine of the angle between two subspaces S1, S2 of equal dimension is

the norm of the projection on S⊥
2 restricted to S1, see (8.6). Here, S1 = R([x

(k)
q , . . . ,x

(k)
p ])

and S2 = R([uq, . . . ,up]).
Let x ∈ S1 with ‖x‖ = 1. The orthogonal projection of x on S2 reflects the fact, that

y ∈ R([uq, . . . ,up]) implies that y ∈ R([u1, . . . ,up]) as well as y ∈ R([u1, . . . ,uq])
⊥,

Uq−1U
∗
q−1x+ (I − UpU

∗
p )x.

To estimate the norm of this vector we make use of Lemmata 8.4 and (8.10),

‖Uq−1U
∗
q−1x+ (I − UpU

∗
p )x‖ =

(
‖Uq−1U

∗
q−1x‖2 + ‖(I − UpU

∗
p )x‖2

)1/2

≤
(

sin2 ϑ
(k)
q−1 + sin2 ϑ(k)p

)1/2
≤

√
2 ·max

{

sinϑ
(k)
q−1, sinϑ

(k)
p

}

≤
√
2 ·max

{

tan ϑ
(k)
q−1, tanϑ

(k)
p

}

.

Then, inequality (8.15) is obtained by applying (8.14) that we know to hold true for both
j = q−1 and j = p.

Corollary 8.8 Let X ∈ F
n×p. Let |λj−1| > |λj | > |λj+1| and let Wj−1 and Wj be

nonsingular. Then

(8.16) sin ∠(x
(k)
j ,uj) ≤ c ·max

{∣
∣
∣
∣

λj
λj−1

∣
∣
∣
∣

k

,

∣
∣
∣
∣

λj+1

λj

∣
∣
∣
∣

k
}

.

Example 8.9 Let us see how subspace iteration performs with the matrix

A = diag(1, 3, 4, 6, 10, 15, 20, . . . , 185)−1 ∈ R
40×40

if we iterate with 5 vectors. The critical quotients appearing in Corollary 8.8 are
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j 1 2 3 4 5

|λj+1|/|λj | 1/3 3/4 2/3 3/5 2/3
.

So, according to (8.16), the first column x
(k)
1 of X(k) ∈ R

40×5 should converge to the first

eigenvector at a rate 1/3, x
(k)
2 and x

(k)
3 should converge at a rate 3/4 and the last two

columns should converge at the rate 2/3. The graphs in Figure 8.2 show that convergence

0 5 10 15 20 25
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)
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4
)

sin(ϑ
5
)

Figure 8.2: Basic subspace iteration with τI40 − T40

takes place in exactly this manner.

Similarly as earlier the eigenvalue approximations λ
(k)
j approach the desired eigenvalues

more rapidly than the eigenvectors. In fact we have

λ
(k+1)
j

2
= ‖z(k+1)

j ‖2 =
x
(k)
j

∗
A2x

(k)
j

x
(k)
j

∗
x
(k)
j

= x
(k)
j

∗
A2x

(k)
j ,

since ‖x(k)
j ‖ = 1. Let x

(k)
j = u+u⊥, where u is the eigenvalue corresponding to λj . Then,

since u = x
(k)
j cosφ and u⊥ = x

(k)
j sinφ for a φ ≤ ϑ(k), we have

λ
(k+1)
j

2
= x

(k)
j

∗
A2x

(k)
j = u∗Au+ u⊥∗

Au⊥ = λ2ju
∗u+ u⊥∗

Au⊥

≤ λ2j‖u‖2 + λ21‖u⊥‖2

≤ λ2j cos
2 ϑ(k) + λ21 sin

2 ϑ(k)

= λ2j(1− sin2 ϑ(k)) + λ21 sin
2 ϑ(k) = λ2j + (λ21 − λ2j ) sin

2 ϑ(k).

Thus,

|λ(k+1)
j − λj| ≤

λ21 − λ
(k+1)
j

2

λ
(k+1)
j + λj

sin2 ϑ(k) = O

(

max

{(
λj
λj−1

)k

,

(
λj+1

λj

)k
})

.
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k
λ
(k−1)
1 −λ1

λ
(k)
1 −λ1

λ
(k−1)
2 −λ2

λ
(k)
2 −λ2

λ
(k−1)
3 −λ3

λ
(k)
3 −λ3

λ
(k−1)
4 −λ4

λ
(k)
4 −λ4

λ
(k−1)
5 −λ5

λ
(k)
5 −λ5

1 0.0002 0.1378 -0.0266 0.0656 0.0315
2 0.1253 0.0806 -0.2545 0.4017 -1.0332
3 0.1921 0.1221 1.5310 0.0455 0.0404
4 0.1940 0.1336 0.7649 -3.0245 -10.4226
5 0.1942 0.1403 0.7161 0.9386 1.1257
6 0.1942 0.1464 0.7002 0.7502 0.9327
7 0.1942 0.1522 0.6897 0.7084 0.8918
8 0.1942 0.1574 0.6823 0.6918 0.8680
9 0.1942 0.1618 0.6770 0.6828 0.8467
10 0.1942 0.1652 0.6735 0.6772 0.8266
11 0.1943 0.1679 0.6711 0.6735 0.8082
12 0.1942 0.1698 0.6694 0.6711 0.7921
13 0.1933 0.1711 0.6683 0.6694 0.7786
14 0.2030 0.1720 0.6676 0.6683 0.7676
15 0.1765 0.1727 0.6671 0.6676 0.7589
16 0.1733 0.6668 0.6671 0.7522
17 0.1744 0.6665 0.6668 0.7471
18 0.2154 0.6664 0.6665 0.7433
19 0.0299 0.6663 0.6664 0.7405
20 0.6662 0.6663 0.7384
21 0.6662 0.6662 0.7370
22 0.6662 0.6662 0.7359
23 0.6661 0.6662 0.7352
24 0.6661 0.6661 0.7347
25 0.6661 0.6661 0.7344
26 0.6661 0.6661 0.7343
27 0.6661 0.6661 0.7342
28 0.6661 0.6661 0.7341
29 0.6661 0.6661 0.7342
30 0.6661 0.6661 0.7342
31 0.6661 0.6661 0.7343
32 0.6661 0.6661 0.7343
33 0.6661 0.6661 0.7344
34 0.6661 0.6661 0.7345
35 0.6661 0.6661 0.7346
36 0.6661 0.6661 0.7347
37 0.6661 0.6661 0.7348
38 0.6661 0.6661 0.7348
39 0.6661 0.6661 0.7349
40 0.6661 0.6661 0.7350

Table 8.1: Example of basic subspace iteration.
The convergence criterion ‖(I −X(k−1)X(k−1)∗)X(k)‖ < 10−6 was satisfied after 87 itera-
tion steps
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A numerical example

Let us again consider the test example introduced in subsection 1.6.3 that deals with the
accustic vibration in the interior of a car. The eigenvalue problem for the Laplacian is
solved by the finite element method as introduced in subsection 1.6.2. We use the finest
grid in Fig. 1.9. The matrix eigenvalue problem

(8.17) Ax = λBx, A,B ∈ F
n×n,

has the order n = 1095. Subspace iteration is applied with five vectors as an inverse
iteration to

L−1AL−T (Lx) = λ(Lx), B = LLT . (Cholesky factorization)

X(0) is chosen to be a random matrix. Here, we number the eigenvalues from small to big.
The smallest six eigenvalues of (8.17) shifted by 0.01 to the right are

λ̂1 = 0.01, λ̂4 = 0.066635,

λ̂2 = 0.022690, λ̂5 = 0.126631,

λ̂3 = 0.054385, λ̂6 = 0.147592.

and thus the ratios of the eigenvalues that determine the rate of convergence are

(λ̂1/λ̂2)
2 = 0.194, (λ̂4/λ̂5)

2 = 0.277,

(λ̂2/λ̂3)
2 = 0.174, (λ̂5/λ̂6)

2 = 0.736,

(λ̂3/λ̂4)
2 = 0.666.

So, the numbers presented in Table 8.1 reflect quite accurately the predicted rates. The
numbers in column 6 are a little too small, though.

The convergence criterion

max
1≤i≤p

‖(I −X(k)X(k)∗)x
(k−1)
i ‖ ≤ ǫ = 10−5

was not satisfied after 50 iteration step.

8.4 Accelerating subspace iteration

Subspace iteration potentially converges very slowly. It can be slow even it one starts with

a subspace that contains all desired solutions! If, e.g., x
(0)
1 and x

(0)
2 are both elements in

R([u1,u2]), the vectors x
(k)
i , i = 1, 2, . . ., still converge linearly towards u1 und u2 although

they could be readily obtained from the 2× 2 eigenvalue problem,
[

x
(0)
1

∗

x
(0)
2

∗

]

A
[

x
(0)
1 ,x

(0)
2

]

y = λy

The following theorem gives hope that the convergence rates can be improved if one
proceeds in a suitable way.

Theorem 8.10 Let X ∈ F
n×p as in Theorem 8.5. Let ui, 1 ≤ i ≤ p, be the eigenvectors

corresponding to the eigenvalues λ1, . . . , λp of A. Then we have

min
x∈R(X(k))

sin ∠(ui,x) ≤ c

(
λi
λp+1

)k
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Proof. In the proof of Theorem 8.5 we have seen that

R(X(k)) = R
(

U

(
Ip
S(k)

))

, S(k) ∈ F
(n−p)×p,

where

s
(k)
ij = sij

(
λj
λp+i

)k

, 1 ≤ i ≤ n− p, 1 ≤ j ≤ p.

But we have

min
x∈R(X(k))

sin ∠(ui,x) ≤ sin ∠

(

ui, U

(
Ip
S(k)

)

ei

)

,

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(I − uiui
∗)U




















0
...
0
1
0
...

s1i(λi/λp+1)
k

...

sn−p,i(λi/λn)
k




















∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

/

∥
∥
∥
∥

(
Ip
S(k)

)

ei

∥
∥
∥
∥

≤

∥
∥
∥
∥
∥
∥

(I − uiui
∗)



ui +
n∑

j=p+1

sj−p,i

(
λi
λp+j

)k

uj





∥
∥
∥
∥
∥
∥

=

√
√
√
√

n−p
∑

j=1

s2ji
λ2ki
λ2kp+j

≤
(

λi
λp+1

)k
√
√
√
√

n−p
∑

j=1

s2ji.

These considerations lead to the idea to complement Algorithm 8.1 by a so-called
Rayleigh-Ritz step. Here we give an ‘inverted algorithm’ to compute the smallest
eigenvalues and corresponding eigenvectors of a symmetric/Hermitian matrix. For the
corresponding nonsymmetric algorithm see [1].

Algorithm 8.2 Subspace or simultaneous inverse iteration combined with

Rayleigh-Ritz step

1: Let X ∈ F
n×p with X∗X = Ip:

2: Set X(0) := X.
3: for k = 1, 2, . . . do
4: Solve AZ(k) := X(k−1)

5: Q(k)R(k) := Z(k) /* QR factorization of Z(k) (or modified Gram–Schmidt) */
6: Ĥ(k) := Q(k)∗AQ(k),
7: Ĥ(k) =: F (k)Θ(k)F (k)∗ /* Spectral decomposition of Ĥ(k) ∈ F

p×p */
8: X(k) = Q(k)F (k).
9: end for

Remark 8.1. The columns x
(k)
i of X(k) are called Ritz vectors and the eigenvalues

ϑ
(k)
1 ≤ · · · ≤ ϑ

(k)
p in the diagonal of Θ are called Ritz values. According to the Rayleigh-
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Ritz principle 2.32 we have

λi ≤ ϑ
(k)
i 1 ≤ i ≤ p, k > 0.

The solution of the full eigenvalue problems Ĥ(k)y = ϑy is solved by the symmetric
QR algorithm.

The computation of the matrix Ĥ(k) is expensive as matrix-vector products have to
be executed. The following considerations simplify matters. We write X(k) in the form

X(k) = Z(k)G(k), G(k) ∈ F
p×pnonsingular

Because X(k) must have orthonormal columns we must have

(8.18) G(k)∗Z(k)∗Z(k)G(k) = Ip.

Furthermore, the columns of Z(k)G(k) are the Ritz vectors in R(A−kX) of A2,

G(k)∗Z(k)∗A2Z(k)G(k) = ∆(k)−2
,

where ∆(k) is a diagonal matrix. Using the definition of Z(k) in Algorithm 8.2 we see that

G(k)∗X(k−1)∗X(k−1)G(k) = G(k)∗G(k) = ∆(k)−2
,

and that Y (k) := G(k)∆(k) is orthogonal. Substituting into (8.18) gives

Y (k)∗Z(k)∗Z(k)Y (k) = ∆(k)2.

So, the columns of Y (k) are the normalized eigenvectors of H(k) := Z(k)∗Z(k).
Thus we obtain a second variant of the inverse subspace iteration with Rayleigh-Ritz

step.

Algorithm 8.3 Subspace or simultaneous inverse vector iteration combined

with Rayleigh-Ritz step, version 2

1: Let X ∈ F
n×p with X∗X = Ip.

2: Set X(0) := X.
3: for k = 1, 2, . . . do
4: AZ(k) := X(k−1);
5: H(k) := Z(k)∗Z(k) /* = X(k−1)∗A−2X(k−1) */

6: H(k) =: Y (k)∆(k)2Y (k)∗ /* Spectral decomposition of H(k) */

7: X(k) = Z(k)Y (k)∆(k)−1
/* = Z(k)G(k) */

8: end for

Remark 8.2. An alternative to Algorithm 8.3 is the subroutine ritzit, that has been
programmed by Rutishauser [5] in ALGOL, see also [3, p.293].

We are now going to show that the Ritz vectors converge to the eigenvectors, as
Theorem 8.10 lets us hope. First we prove

Lemma 8.11 ([3, p.222]) Let y be a unit vector and ϑ ∈ F. Let λ be the eigenvalue of A
closest to ϑ and let u be the corresponding eigenvector. Let

γ := min
λi(A)6=λ

|λi(A) − ϑ|
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and let ψ = ∠(y,u). Then

sinψ ≤ ‖r(y)‖
γ

:=
‖Ay − ϑy‖

γ
,

where r(y, ϑ) = Ay − ϑy plays the role of a residual.

Proof. We write y = u cosψ + v sinψ with ‖v‖ = 1. Then

r(y, ϑ) = Ay − ϑy = (A− ϑI)u cosψ + (A− ϑI)v sinψ,

= (λ− ϑ)u cosψ + (A− ϑI)v sinψ.

Because u∗(A− ϑI)v = 0, Pythagoras’ theorem implies

‖r(y, ϑ)‖2 = (λ− ϑ)2 cos2 ψ + ‖(A− ϑI)v‖2 sin2 ψ ≥ γ2‖v‖2 sin2 ψ.

Theorem 8.12 ([3, p.298]) Let the assumptions of Theorem 8.5 be satisfied. Let x
(k)
j =

X(k)ej be the j-th Ritz vector as computed be Algorithm 8.3, and let y
(k)
i = U

(
I

S(k)

)

ei

(cf. the proof of Theorem 8.5). Then the following inequality holds

sin ∠(x
(k)
i ,y

(k)
i ) ≤ c

(
λi
λp+1

)k

, 1 ≤ i ≤ p.

Proof. The columns of U

(
Ip
S(k)

)

form a basis of R(X(k)). Therefore, we can write

x
(k)
i = U

(
Ip
S(k)

)

ti, ti ∈ F
p.

Instead of the special eigenvalue problem

X(k−1)∗A−2X(k−1)y = H(k)y = µ−2y

in the orthonormal ‘basis’ X(k) we consider the equivalent eigenvalue problem

(8.19)
[

Ip, S
(k)∗
]

UA−2U

(
Ip
S(k)

)

t = µ−2
[

Ip, S
(k)∗
]( Ip

S(k)

)

t.

Let (µ, t) be an eigenpair of (8.19). Then we have

(8.20)

0 =
[

Ip, S
(k)∗
]

UA−2U

(
Ip
S(k)

)

t− µ−2
[

Ip, S
(k)∗
]( Ip

S(k)

)

t

=
(

Λ−2
1 + S(k)∗Λ−2

2 S(k)
)

t− µ−2
(

Ip + S(k)∗S(k)
)

t,

=
(

(Λ−2
1 − µ−2I) + S(k)∗(Λ−2

2 − µ−2I)S(k)
)

t

=
(

(Λ−2
1 − µ−2I) + Λk

1S
(0)∗Λ−k

2 (Λ−2
2 − µ−2I)Λ−k

2 S(0)Λk
1

)

t

=

(

(Λ−2
1 − µ−2I) +

(
1

λp+1
Λ1

)k

Hk

(
1

λp+1
Λ1

)k
)

t

with
Hk = λ2kp+1S

(0)∗Λ−k
2 (Λ−2

2 − µ−2I)Λ−k
2 S(0).
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As the largest eigenvalue of Λ−1
2 is 1/λp+1, Hk is bounded,

‖Hk‖ ≤ c1 ∀k > 0.

Thus, ((
1

λp+1
Λ1

)k

Hk

(
1

λp+1
Λ1

)k
)

t −−−→
λ→∞

0.

Therefore, in (8.20) we can interpret this expression as an perturbation of the diagonal
matrix Λ−2

2 − µ−2I. For sufficiently large k (that may depend on i) there is a µi that is
close to λi, and a ti that is close to ei. We now assume that k is so big that

|µ−2
i − λ−1

i | ≤ ρ :=
1

2
min
λj 6=λi

|λ−2
i − λ−2

j |

such that µ−2
i is closer to λ−2

i than to any other λ−2
j , j 6= i.

We now consider the orthonormal ‘basis’

B =

(
Ip
S(k)

)(

Ip + S(k)∗S(k)
)−1/2

.

If (µi, ti) is an eigenpair of (8.19) or (8.20), respectively, then

(

µ−2
i ,
(

Ip + S(k)∗S(k)
)1/2

ti

)

is an eigenpair of

(8.21) B∗A−2Bt = µ−2t.

As, for sufficiently large k, (λ−2
i , ei) is a good approximation of the eigenpair (µ−2

i , ti)

of (8.20), then also

(

λ−2
i ,
(

Ip + S(k)∗S(k)
)1/2

ei

)

is a good approximation to the eigenpair
(

µ−2
i ,
(

Ip + S(k)∗S(k)
)1/2

ti

)

of (8.21). We now apply Lemma 8.11 with

γ = ρ, ϑ = λ−2
i ,

y =
(

Ip + S(k)∗S(k)
)1/2

ei/

∥
∥
∥
∥

(

Ip + S(k)∗S(k)
)1/2

ei

∥
∥
∥
∥
,

u =
(

Ip + S(k)∗S(k)
)1/2

ti/

∥
∥
∥
∥

(

Ip + S(k)∗S(k)
)1/2

ti

∥
∥
∥
∥
.

Now we have

‖r(y)‖ =

∥
∥
∥
∥
(B∗A−2∗B − λ−2

i I)
(

Ip + S(k)∗S(k)
)1/2

ei

∥
∥
∥
∥

∥
∥
∥
∥

(

Ip + S(k)∗S(k)
)1/2

ei

∥
∥
∥
∥

≤
∥
∥
∥
∥

(

Ip + S(k)∗S(k)
)− 1

2

[[

Ip,S
(k)∗
]

UA−2U

(
Ip
S(k)

)

− 1

λ2i

(

Ip + S(k)∗S(k)
)]

ei

∥
∥
∥
∥

≤
∥
∥
∥
∥

(

Ip + S(k)∗S(k)
)−1/2

∥
∥
∥
∥

∥
∥
∥
∥

[

Λ−2
1 − λ−2

i I +
(

λ−1
p+1Λ1

)k
Hk

(

λ−1
p+1Λ1

)k
]

ei

∥
∥
∥
∥

≤
∥
∥
∥
∥

(

λ−1
p+1Λ1

)k
Hk

(

λ−1
p+1Λ1

)k
ei

∥
∥
∥
∥

≤
∥
∥
∥λ−1

p+1Λ1

∥
∥
∥

k
‖Hk‖

∥
∥
∥
∥

(

λ−1
p+1Λ1

)k
ei

∥
∥
∥
∥
≤ c1

(
λp
λp+1

)k( λi
λp+1

)k

.
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Then, Lemma 8.11 implies that

sin ∠(x
(k)
i ,y

(k)
i ) = sin ∠

((

Ip + S(k)∗S(k)
)1/2

ti,
(

Ip + S(k)∗S(k)
)1/2

ei

)

≤ c1
ρ

(
λi
λp+1

)k

.

In the proof of Theorem 8.10 we showed that

∠(ui,y
(k)
i ) ≤ c

(
λi
λp+1

)k

.

In the previous theorem we showed that

∠(x
(k)
i ,y

(k)
i ) ≤ c1

(
λi
λp+1

)k

.

By consequence,

∠(x
(k)
i ,ui) ≤ c2

(
λi
λp+1

)k

must be true for a constant c2 independent of k.

As earlier, for the eigenvalues we can show that

|λi − λ
(k)
i | ≤ c3

(
λi
λp+1

)2k

.

A numerical example

For the previous example that is concerned with the accustic vibration in the interior of a
car the numbers listed in Table 8.2 are obtained. The quotients λ̂2i /λ̂

2
p+1, that determine

the convergence behavior of the eigenvalues are

(λ̂1/λ̂6)
2 = 0.004513, (λ̂4/λ̂6)

2 = 0.2045,

(λ̂2/λ̂6)
2 = 0.02357, (λ̂5/λ̂6)

2 = 0.7321.

(λ̂3/λ̂6)
2 = 0.1362,

The numbers in the table confirm the improved convergence rate. The convergence rates of
the first four eigenvalues have improved considerably. The predicted rates are not clearly
visible, but they are approximated quite well. The convergence rate of the fifth eigenvalue

has not improved. The convergence of the 5-dimensional subspace R([x
(k)
1 , . . . ,x

(k)
5 ]) to

the searched space R([u1, . . . ,u5]) has not been accelerated. Its convergence rate is still
≈ λ5/λ6 according to Theorem 8.5

By means of the Rayleigh-Ritz step we have achieved that the columns x
(k)
i = x(k)

converge in an optimal rate to the individual eigenvectors of A.

8.5 Relation between subspace iteration and QR algorithm

The connection between (simultaneous) vector iteration and the QR algorithm has been
investigated by Parlett and Poole [4].

Let X0 = In, the n× n identity matrix.
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k
λ
(k−1)
1 −λ1

λ
(k)
1 −λ1

λ
(k−1)
2 −λ2

λ
(k)
2 −λ2

λ
(k−1)
3 −λ3

λ
(k)
3 −λ3

λ
(k−1)
4 −λ4

λ
(k)
4 −λ4

λ
(k−1)
5 −λ5

λ
(k)
5 −λ5

1 0.0001 0.0017 0.0048 0.0130 0.0133
2 0.0047 0.0162 0.2368 0.0515 0.2662
3 0.0058 0.0273 0.1934 0.1841 0.7883
4 0.0057 0.0294 0.1740 0.2458 0.9115
5 0.0061 0.0296 0.1688 0.2563 0.9195
6 0.0293 0.1667 0.2553 0.9066
7 0.0288 0.1646 0.2514 0.8880
8 0.0283 0.1620 0.2464 0.8675
9 0.0275 0.1588 0.2408 0.8466
10 0.1555 0.2351 0.8265
11 0.1521 0.2295 0.8082
12 0.1490 0.2245 0.7921
13 0.1462 0.2200 0.7786
14 0.1439 0.2163 0.7676
15 0.1420 0.2132 0.7589
16 0.1407 0.2108 0.7522
17 0.1461 0.2089 0.7471
18 0.1659 0.2075 0.7433
19 0.1324 0.2064 0.7405
20 0.2054 0.7384
21 0.2102 0.7370
22 0.2109 0.7359
23 0.7352
24 0.7347
25 0.7344
26 0.7343
27 0.7342
28 0.7341
29 0.7342
30 0.7342
31 0.7343
32 0.7343
33 0.7344
34 0.7345
35 0.7346
36 0.7347
37 0.7348
38 0.7348
39 0.7349
40 0.7350

Table 8.2: Example of accelerated basic subspace iteration.
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Then we have

AI = A0 = AX0 = Y1 = X1R1 (SV I)

A1 = X∗
1AX1 = X∗

1X1R1X1 = R1X1 (QR)

AX1 = Y2 = X2R2 (SV I)

A1 = X∗
1Y2 = X∗

1X2R2 (QR)

A2 = R2X
∗
1X2 (QR)

= X∗
2X1X

∗
1X2R2

︸ ︷︷ ︸

A1

X∗
1X2 = X∗

2AX2 (QR)

More generally, by induction, we have

AXk = Yk+1 = Xk+1Rk+1 (SV I)

Ak = X∗
kAXk = X∗

kYk+1 = X∗
kXk+1Rk+1

Ak+1 = Rk+1X
∗
kXk+1 (QR)

= X∗
k+1XkX

∗
kXk+1Rk+1

︸ ︷︷ ︸

Ak

X∗
k

︸ ︷︷ ︸

A

Xk+1 = X∗
k+1AXk+1 (QR)

Relation to QR: Q1 = X1, Qk = X∗
kXk+1.

Ak = AkX0 = Ak−1AX0 = Ak−1X1R1

= Ak−2AX1R1 = Ak−2X2R2R1

...

= Xk RkRk−1 · · ·R1
︸ ︷︷ ︸

Uk

= XkUk (QR)

Because Uk is upper triangular we can write

Ak[e1, . . . , ep] = XkUk[e1, . . . , ep] = XkUk(:, 1 : p) = Xk(:, 1 : p)






u11 · · · u1p
. . .

...
upp






This holds for all p. We therefore can interpret the QR algorithm as a nested sub-

space iteration. There is also a relation to simultaneous inverse vector iteration! Let us
assume that A is invertible. Then we have,1

AXk−1 = Xk−1Ak−1 = XkRk

XkR
−∗
k = A−∗Xk−1, R−∗

k is lower triangular

Xk R
−∗
k R−∗

k−1 · · ·R−∗
1

︸ ︷︷ ︸

U−∗
k

=
(
A−∗

)k
X0

1Notice that A−∗ = (A−1)
∗

= (A∗)−1.
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Then,

Xk[eℓ, . . . , en]






ūℓ,ℓ
...

. . .

ūn,ℓ ūn,n




 =

(
A−∗

)k
X0[eℓ, . . . , en]

By consequence, the last n − ℓ + 1 columns of Xk execute a simultaneous inverse
vector iteration. This holds for all ℓ. Therefore, the QR algorithm also performs a nested

inverse subspace iteration.

8.6 Addendum

Let A = H be an irreducible Hessenberg matrix and W1 = [w1, . . . ,wp] be a basis of the
p-th dominant invariant subspace of H∗,

H∗W1 =W1S, S invertible.

Notice that the p-th dominant invariant subspace is unique if |λp| > |λp+1|.
Let further X0 = [e1, . . . , ep]. Then we have the

Theorem 8.13 W ∗
1X0 is nonsingular.

Remark 8.3. If W ∗
1X0 is nonsingular then W ∗

kX0 is nonsingular for all k > 0.

Proof. If W ∗
1X0 were singular then there was a vector a ∈ F

p with X∗
0W1a = 0. Thus,

w =W1a is orthogonal to e1, . . . , ep. Therefore, the first p components of w are zero.

From, H∗W1 =W1S we have that (H∗)kw ∈ R(W1) for all k.

But we have

w =













0
...
0
×
...
×



















p zeros

H∗w =













0
...
0
×
...
×



















p− 1 zeros

(H∗)kw =












×
...
...
...
...
×












These vectors evidently are linearly independent.

So, we have constructed p + 1 linearly independent vectors w, . . . , (H∗)pw in the p-
dimensional subspace R(W1). This is a contradiction.
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