
Advanced Algorithms 2024 2024

Sample Solutions GHW 01

Lecturer: Johannes Lengler Teaching Assistant: Antti, Richard

1 Covering Cliques Richard Hlad́ık

1. Let us abbreviate Ei :=
(
Vi
2

)
∩ E. The integer LP has a binary variable for every edge

e ∈ E saying whether the edge is included in F . We have a constraint for every Vi,
requiring that at least s edges in Ei are included in F . The criterion being minimized is
the number of edges in F . Written formally, the integer LP is as follows:

given xe ∈ {0, 1} ∀e ∈ E

minimise
∑
e∈E

xe

subject to
∑
e∈Ei

xe ≥ s ∀Vi ∈ S

2. We create an LP relaxation of the integer LP above by changing the domain of all variables
to xe ∈ [0, 1]. Note that the LP relaxation has a solution by setting all xe to one, so let
x∗ ∈ [0, 1]E be the optimal solution of the LP relaxation. Define

ye =

{
1 if x∗e ≥

(
k
2

)−1
;

0 otherwise.

Finally, we take F = { e ∈ E | ye = 1 }.
Now we prove that (a) y is a solution to the ILP and (b) it is a

(
k
2

)
-approximation.

(a) Take arbitrary Vi ∈ S. We know that
∑

e∈Ei
x∗e ≥ s and want to prove that∑

e∈Ei
ye ≥ s. Assume this is not the case. Then this means that there are at

most s − 1 edges e ∈ Ei such that x∗e ≥
(
k
2

)−1
. Denote the set of these edges as S.

Now we can write∑
e∈Ei

x∗e =
∑

e∈Ei∩S
x∗e +

∑
e∈Ei\S

x∗e < s− 1 +

(
k
2

)
− s+ 1(
k
2

) < s− 1 + 1 = s,

which is a contradiction with x∗e being a solution to the relaxed LP.

(b) By definition, we have ye ≤
(
k
2

)
x∗e. Denote by OPT∗ the value of the relaxed LP

optimum, and by OPT the value of the integral LP optimum. We have OPT∗ ≤ OPT,
since the solution space of the integral LP is a subset of that of the relaxed LP. We
can write:

|F | =
∑
e∈E

ye ≤
∑
e∈E

(
k

2

)
x∗e =

(
k

2

)
OPT∗ ≤

(
k

2

)
OPT,

just as desired.

1

2 Graph Coloring Johannes Lengler

As usual, we denote by n the number of vertices and m the number of edges. Let mr, mb and
mv denote the number of red, blue, and violet edges, respectively.

If mr ≥ m/3 or mb ≥ m/3, color everything red or blue respectively. This gives a score of
at least m/3. Since OPT ≤ m, this is a 3-approximation of OPT.

Otherwise, color everything randomly, and let S be the resulting score. We satisfy each
violet edge with a probability of 1/2 and each blue and red edge with a probability of 1/4.
Hence, E[S] = mv

2 + mr+mb
4 . Using mr +mb = m−mv and mv ≥ m/3 + 1, we obtain

E[S] =
mv

2
+

mr +mb

4
=

2mv +m−mv

4
=

mv +m

4
≥

4
3m+ 1

4
≥ m+ 1

3
.

Now let S′ := m− S. Then E[S′] ≤ 2m−1
3 . By Markov’s inequality, we have

Pr

[
S′ ≥ 2m

3

]
≤ (2m− 1)/3

2m/3
= 1− 1

2m
.

Hence,

Pr
[
S ≥ m

3

]
= Pr

[
S′ ≤ 2m

3

]
≥ Pr

[
S′ <

2m

3

]
≥ 1

2m
.

Now we repeat the coloring k := ⌈2m lnm⌉ times. Then the probability that none of those yield
S ≥ m

3 is

Pr
[
no trial yields S ≥ m

3

]
≤

(
1− 1

2m

)2m lnm

≤ (e−
1
2m)2m lnm =

1

m
.

Therefore, w.h.p. at least one of the k trials gives a value of S of at least m/3, which is a
3-approximation.

3 Item Distribution Antti Roeyskoe

1. For an easier description, consider just assigning sizes to vertices, with the restriction that
any size may be assigned at most as many times as there are items with that size, and no
restriction on number of times the size 0 is assigned.

We perform dynamic programming on the tree. Fix an arbitrary root vertex, we then
proceed from leaves to the root. For every vertex u, size su ∈ S and counts {cs}s∈S (cs
being at most the number of items with size s or n, whichever is smaller), we compute
DP(u, su, {cs}s∈S): the assignment of sizes to vertices in the subtree of u that, among all
assignments of sizes to vertices in the subtree of u satisfying that

• the size s ∈ S is assigned to exactly cs vertices in the subtree of u (including u itself),
and

• the root u of the subtree is assigned the size su,

minimizes the sum of sizes assigned to children of u. If no such assignment exists, we
store this information instead.

We compute these assignments in a bottom-up manner, starting from the leaves, where
DP(u, su, {cs}s∈S) is an assignment of the size su to u if csu = 1 and cs′ = 0 for all other
s′ ∈ S, and doesn’t exist otherwise.

Suppose that for vertex u, all DP-values for its children have been computed. Fix an
arbitrary ordering of the children of u, and for k at most the number of children |ch(u)| of

2

u, define DPk(u, su, {cs}s∈S) as the DP-value you would obtain with the restriction that
the size 0 must be assigned to every vertex in the subtrees of the |ch(u)| − k last children
of u. We have DP|ch(u)|(u, su, {cs}s∈S) = DP(u, su, {cs}s∈S), and as with leaves, we have
the base case where DP0(u, su, {cs}s∈S) is an assignment of the size su to u if csu = 1 and
cs′ = 0 for all other s′ ∈ S, and doesn’t exist otherwise.

Now, we can describe how to compute DPk+1(u, ·, ·) from DPk(u, ·, ·) and DP(u′, ·, ·) where
u′ is the (k + 1)-th child of u. This can be done by simply iterating over su′ and all
partitions of cs’s into c1s + c2s = cs, and offering the assignment DPk(u, su, {c1s}s∈S) ∪
DP(u′, su′ , {c2s}s∈S) if both of these individual assignments exist and the sum of sizes of
children of u′ in the assignment is at most h− su. For every triplet (u, su, {cs}s∈S), there
are at most C2n2C such offered assignments, so we can iterate over all of them and take
the one minimizing the sum of sizes assigned to children of u.

Correctness follows by correctness of the two combined DP tables, as the sum of sizes of
the children of u after combining the assignments is exactly sv′ plus the sum of sizes of
the first k children of u (which is minimized by DPk(u, ·, ·)), and the combined assignment
is valid if the sum of sizes of children of u′ (which is minimized by DP(u′, ·, ·)) is at most
h − su. Thus, for any assignment satisfying the requirements, the offered assignment
with the same split c1s + c2s = cs exists and has sum of children of u at most that of the
assignment.

Finally, for the root vertex r, we can iterate over all sr and {cs}s∈S , and out of those
where the sum of sizes of children of r is at most h, return the one with maximum

∑
cs.

2. Fix the desired constant ϵ > 0. We may assume ϵ ≤ 1. Let C = ⌊1/ϵ⌋ ≥ 1. To obtain a
PTAS, we round up the sizes of items so that at most C sizes remain, then apply part 1.

To describe the rounding, suppose k is the optimal number of items assigned (we can
iterate over k as it is at most n). First, note that if there is a way to assign some number
k of items, it is possible to assign the k items with minimum sizes. Thus, if k ≤ C,
we can delete all but the k items with minimum sizes and apply part 1, obtaining an
exact solution. Otherwise, let k′ := ⌈k/C⌉, and let Ij be the range of the (jk′ + 1)-th to
(j + 1)k′−th item in increasing order of size. For every valid j, replace the size of every
item in Ij with the minimum size of an item in Ij+1. Then, delete every item except the
first k, and finally, apply part 1.

With this approach, there are at most C distinct item sizes as k/k′ ≤ C, and since
the sizes of items only increased, the returned assignment of items remains valid for the
original sizes. It remains to show that after the operation, there still exists a sufficiently
large assignment of items, and indeed, one with at least k − k′ items exists, as after
the rounding, the i-th item has size at most that of the (i + k′)-th item’s original size.
Assigning the first k − k′ items to the same vertices the (k′ + 1)-th to k-th items are
assigned in the optimal solution is thus valid even with rounded sizes.

Thus, the algorithm is a (1 − ϵ)-approximation, as from C ≤ 1
ϵ it follows that k − k′ =

k − ⌈k/C⌉ ≤ k − k/C ≤ k − kϵ = (1− ϵ)k.

4 Rental Problem Richard Hlad́ık

1. Let σ1, . . . , σn be the sequence of winter sports days, with σi = ski or σi = snowboard.
Fix any deterministic online algorithm A. We will construct an adversarial sequence σ as
follows.

Until A buys skis or the bundle deal, we let σi = ski. Let k be the day on which A buys
skis or the bundle deal. We then distinguish three cases:

3

• A never buys skis or the bundle deal. In this case, the competitive ratio is
infinite, since for fixed X,Y , we can make the algorithm pay arbitrarily much while
the offline algorithm pays a constant amount.

• A buys the bundle deal on the k-th day. Then we terminate σ after the k-th
day, i.e., we set n := k. A has paid at least Y + k − 1. On the other hand, the
optimal offline algorithm will either buy skis at the start, or rent skis for the whole
time, whichever is cheaper. Hence, cOPT(σ) = min(X, k), and the competitive ratio
satisfies

αA ≥ cA(σ)

cOPT(σ)
≥ Y + k − 1

min(X, k)
≥ k

k
+

Y − 1

X
= 1 +

Y − 1

X
.

• A buys skis on the k-th day. Then, we continue σ as follows: if A has bought
a snowboard already, we terminate σ after the k-th day and set k′ = k. Otherwise,
until A buys either the snowboard or the bundle deal, we set σi = snowboard, and
we let k′ to be the day on which A made the second purchase. We terminate σ after
the k′-th day.

In total, A has paid at least 2X+k′−1. On the other hand, an offline algorithm can
buy the bundle deal at the start, or rent for the whole time, whichever is cheaper.
Hence, cOPT(σ) ≤ min(Y, k′), and the competitive ratio satisfies

αA ≥ cA(σ)

cOPT(σ)
≥ 2X + k′ − 1

min(Y, k′)
≥ 1 +

2X − 1

Y
,

where for the last inequality, we used the same trick as in the previous part.

Since every algorithm falls into one of those three cases, this proves that for any valid
choice of 1 ≤ X ≤ Y ≤ 2X and for any algorithm, we have

αA ≥ 1 + min

(
Y − 1

X
,
2X − 1

Y

)
≥ 1 + min

(
Y

X
,
2X

Y

)
− 1

X
.

As αA is defined as the supremum over all valid X,Y , our goal is to pick them such
that the above expression is maximized. For any fixed X, the first argument of min is
increasing with Y and the other one is decreasing. Hence, for a fixed X, the expression is
maximized when the two terms are equal, i.e. when

Y

X
=

2X

Y
⇐⇒ Y 2 = 2X2 ⇐⇒ Y =

√
2X.

Thus, by setting Y =
√
2X, we get αA ≥ 1+

√
2− 1/X. For any ε > 0, we can make this

greater than 1 +
√
2− ε by choosing X large enough.

2. Our algorithm will mimic the two cases in the lower bound. When Y/X is small, it
intuitively pays off more to take the bundle deal, otherwise it pays off more to buy the
two items separately. Therefore, in our algorithm, we will distinguish two cases:

• Y ≤
√
2X. Then the algorithm always rents until the ⌊X⌋-th day, on which it buys

the bundle deal.

• Y >
√
2X. The algorithm counts how many days of a given type have elapsed, and

on the ⌊Y/2⌋-th day of that type, it buys the equipment of that type.

To prove competitiveness, we will look at both cases separately.

4

• Y ≤
√
2X. Assume the season ended after n days. If n < X, the algorithm is in

fact 1-competitive. If n ≥ X, we paid ⌊X⌋ + Y ≤ X + Y , while the optimal offline
algorithm has paid at least X. Thus, in this case, we have

cA(σ)

cOPT(σ)
≤ X + Y

X
= 1 +

Y

X
≤ 1 +

√
2.

• Y >
√
2X. Assume the season ended after A ski days and B snowboard days. We

will distinguish four cases:

– A,B < Y/2. Then the algorithm is in fact 1-competitive, as we can check that
renting is the optimal solution (recall that Y/2 ≤ X).

– A,B ≥ Y/2. The algorithm spent 2⌊Y/2⌋+ 2X ≤ Y + 2X. The optimal offline
algorithm needs to spend min(Y,min(A,X) + min(B,X)) = Y , and thus

cA(σ)

cOPT(σ)
≤ 1 +

2X

Y
≤ 1 +

√
2.

– A < Y/2, B ≥ Y/2. The algorithm spent cA(σ) = ⌊Y/2⌋+X+A ≤ Y/2+X+A.
The optimal offline algorithm needs to spend cOPT(σ) = min(Y,min(A,X) +
min(B,X)) = min(Y,A + min(B,X)) ≥ min(Y,A + Y/2) = A + Y/2. The
competitive ratio can now be bounded as

cA(σ)

cOPT(σ)
≤ Y/2 +X +A

A+ Y/2
≤ 1 +

X

A+ Y/2
≤ 1 +

X

Y/2
≤ 1 +

√
2.

– A ≥ Y/2, B < Y/2. Analogously to the previous case.

We have shown that the competitive ratio of both sub-algorithms is always at least 1+
√
2,

and the whole algorithm is thus (1 +
√
2)-competitive, as desired.

5

