
Advanced Algorithms 2024 Deadline: 22/11/2024, 11:59 pm

Graded Homework 2

Lecturer: Bernhard Haeupler, Johannes Lengler, Maximilian Probst

Note 1: Solutions must be typeset in LATEX and uploaded via moodle by the deadline. Late sub-
missions will not be graded. If you would like to add a drawing in your solution, you can simply
include a picture of a hand-drawn figure in your LATEX.

Note 2: This is a theory course and any claim should be substantiated with a proof. When asked
to give an algorithm, the algorithm has to have polynomial running time, unless less efficient
algorithms are explicitly permitted by the problem statement. You are required to prove the claimed
properties of any algorithm you present.

Note 3: You can discuss the problems with the other students but you should write your own
solutions independently, and you should be able to orally explain your submitted solution to the
instructors, if asked. It is strictly prohibited to share any (hand)written or electronic (partial)
solutions with fellow students. Moreover, if you discussed a problem with another student, you
must list their names on your submitted solution.

1 What’s That Song? (25 points)

In this task, we consider one possible way to develop an application that is queried with a recording
of a song and asked to return the title of the song played.

We are given a music library S with the songs that should be identifiable. Each song is represented
by a set of features. Concretely, features come from a universe of size U and each song A ∈ S is
represented as a subset of features, i.e. A ∈ 2[U]. The similarity between two songs X,Y ∈ 2[U] is
measured by comparing the overlap in features:

Sim(X,Y) =
|X ∩ Y |
|X ∪ Y |

.

Note that Sim(X,Y) ∈ [0, 1]. For the purpose of this task, we define X as being fairly similar to
Y if Sim(X,Y) ≥ 0.9.

The goal is now to construct a data structure that can be queried with a recording X ∈ 2[U] of
a song and returns with at least a constant probability a song Y from its database that is fairly
similar to X. We are guaranteed that such a Y always exists. If there multiple songs that are
fairly similar to X, we can return an arbitrary one of them.

We start by describing a hash function that maps songs to O(log n)-bit bitstrings (where we denote
n = |S|). Concretely, we construct a hash function f : 2[U] → {0, 1}ℓ for ℓ = 1

2 log(1/.95)(n) as
follows: we take ℓ uniform, fully independent hash functions h1, h2, . . . , hℓ where each hj maps [U]
to [2(nU)100]. We assume henceforth that for all j, no two distinct elements x, y ∈ [U] are hashed
to either the same value or the same value save for the least significant bit (i.e. hj(x) ̸= hj(y)
and hj(x) ̸= hj(y) xor 1), which is true w.h.p.. For each j, we define gj : 2[U] → [2(nU)100] as
gj(X) = minx∈X hj(x). Finally, we define the combined hash value f(X) by

f(X) = (g1(X) mod 2) ◦ (g2(X) mod 2) ◦ . . . ◦ (gℓ(X) mod 2).

That is, the combined hash value is an ℓ-bit string where the j-th bit indicates the parity of the
minimum value hashed to among the components of X w.r.t. hash function hj .

To implement the query for a song recording X ∈ 2[U], we construct independent hash functions
f1, f2, . . . , f√n as described above, each mapping 2[U] to {0, 1}ℓ. Finally, for each such hash function

1

fi, we build a map Hi such that for every x ∈ {0, 1}ℓ, we can query Hi[x] and get a list of all
elements Y in S such that fi(Y) = x.

Now, to perform a query on a song recording X ∈ 2[U], we use the maps H1, . . . ,H√
n to find all

elements Y ∈ S such that for some i, fi(X) = fi(Y). Finally, we return the song Y ∗ among these
with the greatest similarity to X.

1. Show that for a hash function f as constructed above, the probability of any two songsX,Y ∈
2[U] agreeing on the j-th bit, i.e. satisfying gj(X) = gj(Y) (mod 2), is (1 + Sim(X,Y))/2.
(9 points)

2. Show that with at least constant probability, upon query with X ∈ 2[U] for which a Y ∈ S
exists with Sim(X,Y) ≥ .9, we have that the algorithm returns an element Z ∈ 2[U] s.t.
Sim(X,Z) ≥ Sim(X,Y). (8 points)

3. Assume that upon a query with recording X of a song in the library, the similarity to the
recorded song Y ∈ S is at least 0.9 while the similarity to any other song Z ∈ S, Y ̸= Z is at
most 0.8.

Show that in this case, the expected number of similarity computations performed by the
algorithm is O(

√
n). (8 points)

2 Estimating Frequencies (25 points)

In exercise 4 of exercise set 6, we saw a special case with ϵ = 0.5 of a deterministic streaming
algorithm for estimating the frequency of integers in an N -length stream of integers from [n]
(N = poly(n)) up to an additive error of ϵN with space complexity of O(log(n)/ϵ).

1. Show that this is asymptotically optimal for reasonable ϵ: for any function ϵ(n) ∈
(
n−0.99, 12

)
,

there cannot exist a streaming algorithm in the same setting that estimates the frequency of
each integer up to additive error ϵN with space complexity o(log(n)/ϵ). (4 points)

Even though this tradeoff between additive error and space complexity is asymptotically optimal,
surprisingly, it is possible to, for example, find with high probability an integer that occurs at least√
N times in a stream where each other integer occurs at most once, using just O(log2 n) bits of

memory. In this exercise, we obtain an algorithm achieving a more general and powerful result.

2. Recall the AMS algorithm from the lecture notes: an uniform, 4-wise independent hash
function σ mapping [n] to {−1, 1} is sampled, then a value Z =

∑
j∈[n] σ(j)fj is computed.

The AMS algorithm uses Z2 as an estimator for F2 =
∑

j∈[n] f
2
j . We repurpose this value Z.

2a. Show that σ(j) · Z is an unbiased estimator for fj (i.e. E[σ(j) · Z] = fj). (2 points)

2b. Show that the variance of σ(j) · Z is at most ||f ||22 =
∑

j′∈[n] f
2
j′ . (5 points)

3. Suppose we introduce an additional uniform, pairwise independent hash function h : [n] → [k]
for some prime k, and compute values Z1, . . . , Zk, where Zv is the value Z computed by an
AMS sketch of stream elements that hash to v, i.e.,

Zv :=
∑
j∈[n]
h(j)=v

σ(j)fj .

Show that σ(j) ·Zh(j) is still an unbiased estimator for fj , and that the variance of σ(j) ·Zh(j)

is now at most ||f ||22/k (4 points).

2

4. Give a randomized streaming algorithm with space complexity O(log(n)2/ϵ2) that with high
probability, for each j ∈ [n], gives an unbiased estimate of fj with additive error at most
ϵ||f ||2. (10 points)

3 Hashing With Worst-Case Access (25 points)

Consider a random undirected n-vertex multigraph (possibly with self-loops) constructed by uni-
formly and independently sampling the endpoints for each of m = ⌊n/2e2⌋ edges.

1. Show that with probability at least 1−O
(
1
n

)
, there exists an orientation of the edges of the

graph where each vertex has outdegree at most one. (4 points)

2. Show that for any fixed u, v ∈ V , the probability that there exists a path of length d from u
to v that does not visit any vertex more than once is at most e−2d/n. (5 points)

3. Suppose the m edges are sampled one by one. Given that there always exists an orientation
of the edges of the graph where each vertex has outdegree at most one, give an algorithm
with expected update time complexity O(1) that maintains such an orientation. (6 points)

Now, consider the following hash table design: two hash functions h1 and h2 from [U] to [n] for
prime n are selected. Elements inserted into the table are stored directly in an array, with at most
one element stored at any index, and the following guarantee: if an element x ∈ [U] appears, it
must be stored either at index h1(x) or h2(x) of the table.

4. Suppose the hash functions h1 and h2 are fully independent and can be evaluated in constant
time. Show how to implement a hash table with this layout that can, with probability at
least 1−O

(
1
n

)
, process up to m = Ω(n) insertions with expected insertion time complexity

O(1) and worst-case lookup and deletion time complexity O(1). (10 points)

For each part of this exercise, you may assume the results of earlier parts, even if you did not
complete those parts.

4 Verifying 3-Colouring (25 points)

Consider an undirected graph G = (V,E) with n vertices and m = Ω(n1.1) edges, where each
vertex has a colour c(v) ∈ {red, green,blue}. This graph is given to you in a streaming form: the
stream starts with the integers n and m, then m pairs of integers (ui, vi) identifying the i-th edge
ei of the graph as connecting vertices ui and vi, and finally, the stream concludes with the colour
of each vertex c(v), v ∈ V . The goal is to output whether the colouring is a valid 3-colouring, i.e.,
VALID if there is no edge ei such that c(ui) = c(vi), and INVALID otherwise.

1. Show that there cannot exist a randomized streaming algorithm with space complexity o(m)
that with high probability correctly answers if the 3-colouring is valid. (5 points)

Hint: consider a bipartite graph.

2. Suppose that for each edge ei, there are edges ej , ej′ with |j − i|, |j′ − i| ≤ n such that the
three edges form a triangle. Give a randomized streaming algorithm with space complexity
O(n log n) that with high probability correctly answers if the 3-colouring is valid. (20 points)

3

