
Advanced Algorithms 2024 23/09, 2024

Sample Solutions 01

Lecturer: Johannes Lengler Teaching Assistant: Andor Vari-Kakas

1 Monotone Submodular Maximization

Let U = {e1, e2, . . . , en}. Our goal is to find a set S ⊆ U with |S| ≤ k which maximizes f(S).
It is sufficient to consider sets of size exactly k, as f is monotone. A trivial idea is to compare
the profits of all sets whose size is k, but this takes super-polynomial time (because we have(
n
k

)
sets of size k to check), for k = ω(1).
A simple polynomial-time algorithm is the greedy algorithm. It starts with S0 = ∅. At each

step i, it adds to Si−1 the element et(i) with the largest marginal gain. That is, it chooses et(i)
which maximizes f(Si−1 ∪ {et(i)})− f(Si−1). At last, it outputs Sk.

Next, let’s analyze how it approximates the optimal solution. Denote the optimal set as
OPT = {y1, y2, . . . , yk}. Our goal is to show that in each step there is an element, which
decreases the difference to the optimum solution.

f(OPT) ≤ f(OPT ∪ Si) monotone
= f(Si) + [f(Si ∪ {y1})− f(Si)]

+ f(Si ∪ {y1, y2})− f(Si ∪ {y1})
+ · · ·
+ f(Si ∪ {y1, . . . , yk})− f(Si ∪ {y1, . . . , yk−1})

≤ f(Si) + [f(Si ∪ {y1})− f(Si)] + · · ·+ [f(Si ∪ {yk})− f(Si)] submodular

= f(Si) +

k∑
t=1

f(Si ∪ {yt})− f(Si)

The first inequality is obtained by just adding each element of OPT to the set Si, one at a time
(note that some of these terms can be zero, e.g. if some yt is already contained in Si. For the
second to last line, we used fact that f is submodular, allowing us to bound the marginal gain
in each step, by the marginal gain of adding the element to Si. Rearranging, we get

f(OPT)− f(Si) ≤
k∑

t=1

f(Si ∪ {yt})− f(Si).

We know that there must be an term in the sum whose value is above the average 1
k

∑k
t=1 f(Si∪

{yt})− f(Si), which means there exists j ∈ [k], s.t.

f(Si ∪ {yj})− f(Si) ≥
1

k
(f(OPT)− f(Si))

f(Si+1)− f(Si) ≥
1

k
(f(OPT)− f(Si)) greedy

f(OPT)− f(Si+1) ≤ (1− 1

k
)(f(OPT)− f(Si))

f(OPT)− f(Sk) ≤ (1− 1

k
)kf(OPT) ≤ 1

e
f(OPT)

f(Sk) ≥ (1− 1

e
)f(OPT).

1

The second line is because Greedy always adds the element with the largest maximal gain,
f(Si+1) ≥ f(Si ∪ {yj}). Finally, we reach the conclusion that Greedy gives a solution whose
value is better than (1− 1

e) times of the optimal profit.

2 2-Approximation for Knapsack (Vazirani 8.2)

Let O be a set containing the elements of an optimal solution. Define K− := {a1, a2, . . . , ak−1}
and K := {a1, a2, . . . , ak} with size(K) =: C.

Proof by contradiction: Assume the given algorithm is not a 2-approximation. Then,
profit(K−) < profit(O)

2 and profit({ak}) < profit(O)
2 . Thus:

profit(K−) + profit({ak}) = profit(K) < profit(O).

As K does not fit into the given budget B, we have C > B. In addition, K is an optimal
solution to another knapsack problem of budget C (with the same item set), as we have the
highest profit to size ratio and the highest possible size for this knapsack. But then we have a
contradiction, as a bigger knapsack (budget C) cannot have an optimal solution with less profit
than the optimal solution of a smaller knapsack (budget B) on the same item set. Therefore
the given algorithm is a 2-approximation.

Another way to solve this problem would be to argue about the fractional version of Knap-
sack, where we are allowed to add fractional values of elements.

3 Bin Covering (Vazirani 9.7)

Rounding Without loss of generality, assume the items are ordered by size a1 ≥ a2 ≥ · · · ≥
an. We partition the items into groups of size at most Q := bbnεcεc as follows: group G1

contains the items a1, . . . aQ, group G2 contains aQ+1, . . . , a2Q, and so on. Note, that the
number of groups kε := d n

Qe is a constant only depending on ε. Next we round-down the size
of each item aj in group Gl to a′j := al·Q, the size of the smallest element in Gl. We refer to the
original problem instance as I and to the problem instance with rounded-down item sizes a′ as
D. We can now run the following brute-force algorithm on D.

Brute-force algorithm for bin-covering We first enumerate all possible ways to cover a
bin. Because all items have size ≥ c it suffices to try out all combinations of up to M :=

⌈
1
c

⌉
items. Because there are only kε many different item sizes the number of valid combinations is at
most Rε :=

(
M+kε
M

)
, which is a constant independent of n. Note that with n items we can cover

at most n bins. Thus we can next enumerate all possible ways to cover up to n bins, each with
any of the Rε possible item combinations from before. There are

(
n+Rε

n

)
≤ (n+Rε)

Rε = O(nRε)
such combinations thus our algorithm terminates in time polynomial in n.

Analysis Note that the solution returned by the brute-force algorithm is optimal for the
rounded problem instance D, thus we refer to it as OPT (D). Because we rounded all item sizes
down, each set of items in OPT (D) that covers a bin in D still covers a bin in I. We claim that
OPT (D) is a (1− ε) approximation of the optimal solution to the original problem OPT (I).

To show this we consider another problem instance U where we round-up all item sizes, i.e.
similar to before we assign sizes a′′ such that each element gets the size of the largest element in
its group. Because we only increase item sizes in U with respect to the original problem I, it is
clear that |OPT (U)| ≥ |OPT (I)|. We now argue that we can cover all up to Q bins of OPT (U)
using the rounded-down sizes a′. Consider the solution OPT (U) =: {S1, . . . , Sm} (where each
Si covers one bin) and any element aj ∈ Si. If aj ∈ Gl for some l > 1 we can replace it with

2

any rounded-down element in Gl−1, because a′′j is at most a′i for any ai ∈ Gl−1. Because all
groups except Gk have size Q and Gk has size ≤ Q, we can do this for all elements in groups
with index > 1. There are Q items in G1, these items are distributed over at most Q bins. If
we simply declare these bins as not covered, we get that |OPT (D)| ≥ |OPT (U)| −Q.

Now let ε ≤ 1
d 1
c
e . Then it holds bεnc ≤

⌊
n

d 1
c
e

⌋
≤ |OPT (I)| where the second inequality holds

because any
⌈
1
c

⌉
elements cover a bin. Moreover, we get

Q = bbnεcεc ≤ εbnεc ≤ ε · |OPT (I)|.

And thus, as desired

|OPT (D)| ≥ |OPT (U)| −Q

≥ |OPT (I)| −Q

≥ (1− ε)|OPT (I)|.

3

