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1 Rounding for bin packing

Let xi =
1
2 for all i. Then, for any ε > 0, packing items with sizes (1 + ε)xi =

1
2 + ε

2 takes n
bins, versus the n/2 of the original items: α = 2. This shows that the same, simple rounding
as in the FPTAS for knapsack (rounding item values to a power of (1 + ε)) cannot be used to
achieve a PTAS, and a more complicated rounding approach is required.

2 Target shooting

1. Let X =
∑

Xi. The standard Chernoff bound, selecting (1 + ε) as the scaling parameter,
gives

P (|X − E[X]| ≥ εE[X]) ≤ 2 exp(−ε2E[X]/3) = 2 exp(−ε2
|T |
|S|

m/3)

then, selecting m as suggested gives a probability of O(δ) of multiplicative error of (1+ ε)
or more.

2. A single sample is from T with probability |T |
|S| . Thus, as long as |T | ≤ 1

2 |S|, the probability
none of O( |S||T |) samples is from T is

(
1− |T |

|S|

)O
(

|S|
|T |

)
=

(
1− |T |

|S|

) |S|
|T |

O(1)

≥ 4−O(1)

which is constant.

3. Call the algorithm O(log 1/δ) times, and return the median result. This only fails if more
than half of the returned values are less than (1−ε)OPT or more than half are more than
(1 + ε)OPT. But the probability of landing outside the correct range is at most 1

3 , and
that for correct range at least 2

3 . Thus, probability of failure with at least O(log 1/δ) calls
is at most 2−O(log 1/δ) = O(δ), as desired.

3 Counting satisfying assignments

We can propose a target-shooting algorithm which we will show to be an FPRAS faster than
the DFN-COUNT algorithm as described in the lecture notes. To begin, let F be a disjunction
of m clauses Ci, where each Ci is a conjunction of up to n literals. Let f(F ) be the number
of satisfying assignments to F . By assumption, there exists an i ∈ [m] such that |Ci| = 10. It
follows that f(F ) ≥ 2n−|Ci| = 2n−10.

For our target-shooting algorithm, will sample k assignments αj uniformly at random and
count how many of these satisfy F . To show that this target-shooting algorithm is an FPRAS,
we start by defining:
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Xj =

{
1 F [αj ] = 1,

0 otherwise
.

Note that these are independent Bernoulli random variable with probability of success as
follows:

Pr[Xj = 1] =
f(F )

2n
≥ 2n−10

2n
=

1

210
,

by the previous observation of f(F ) ≥ 2n−10. Define X =
∑k

j=1Xj , then using linearity of
expectations we can compute E[X] as follows:

E[X] = E

 k∑
j=1

Xj

 =

k∑
j=1

E[Xj ] = k
f(F )

2n
≥ k

210
. (1)

As f(F ) is the quantity we would like to estimate, we can take the value of X and multiply
it by 2n

k so that in expectation it is f(F ). We therefore need to show that it is also ε-close with
probability at least 3/4. To achieve this, let us first consider the probability that f(F ) is not
ε-close to 2n

k X in expectation:

Pr

[∣∣∣∣2nk X − f(F )

∣∣∣∣ ≥ εf(F )

]
= Pr

[∣∣∣∣X − k
f(F )

2n

∣∣∣∣ ≥ εk
f(F )

2n

]
= Pr [|X − E[X]| ≥ εE[X]] .

As X is the sum of independent Bernoulli random variables, we can use the Chernoff bound
to get an upper bound for the above probability:

Pr [|X − E[X]| ≥ εE[X]] ≤ 2 exp

(
−ε2E[X]

3

)
≤ 2 exp

(
− ε2k

3 · 210

)
,

where we notably use the lower bound for E[X] in (1). In order for the proposed algorithm
to be an FPRAS, we need to show that we can choose k ∈ poly(n, 1/ε) such that the upper
bound above is less than or equal to 1/4. For this, observe the following:

2 exp

(
− ε2k

3 · 210

)
≤ 1

4
⇐⇒ k ≥ 9 · 210 ln 2 · 1

ε2
.

Thus, by setting k = O(ε−2), we get:

Pr [|X − E[X]| ≥ εE[X]] ≤ 1

4
⇐⇒ Pr

[∣∣∣∣2nk X − f(F )

∣∣∣∣ ≤ εf(F )

]
≥ 3

4
.

What remains to be shown is to analyze the runtime of this algorithm. Observe that we
can sample an assignment αj in O(n) and check whether it satisfies F in O(m), which gives a
complexity of O(nm) for each of the k ∈ poly(n, 1/ε) assignments. Overall, this gives O(nm/ε2),
thus showing that this target-shooting algorithm is indeed an FPRAS. Moreover, comparing
this with DNF-COUNT as given in the lecture notes, this algorithm is indeed faster, as desired.
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