
Advanced Algorithms 2024 21/10, 2024

Sample Solutions 05

Lecturer: Maximilian Probst Teaching Assistant: Jakob Nogler

1 Hashing with Chaining via 2-wise Independence

The time required for inserting or deleting in a linked list is determined by the length of the
list. Thus, in hashing with chaining, the time for any operation involving a key x depends on
length of the linked list containing x stored in H[h(x)]. Since the linked list in H[h(x)] contains
all elements y ∈ S such that h(y) = h(x), we can write the expected time of an operation as

E[1 + |H(h(x))|] = O(1 +
∑

x 6=y∈S
P[h(y) = h(x)]).

We bound this last probability by∑
x6=y∈S

P[h(y) = h(x)] =
∑

x 6=y∈S

∑
i∈[m]

P[h(y) = i | h(x) = i] · P[h(x) = i]

=
∑

x 6=y∈S

∑
i∈[m]

P[h(y) = i] · P[h(x) = i] (2-wise independence)

=
∑

x 6=y∈S

∑
i∈[m]

1

m2
=

n

m
(uniformity).

2 Extending Hash Functions to Non-Prime Domains

Intuitively, we would like to apply the same reasoning as in the script. However, this approach
does not extend to gk(x) in this case because [m] is not necessarily a field.

To circumvent this, we define the function hk(x) =
∑k

i=1 aix
i−1 mod p, omitting the final

modulo m operation. Now, for any Y1, Y2, . . . , Yk ∈ [U] where the Yi’s are pairwise distinct, i.e.,
Yi 6= Yj for all i 6= j, we can express hk(Y`) for all 1 ≤ ` ≤ k as a system of linear equations.

Y 0
1 Y 1

1 . . . Y k−1
1

Y 0
2 Y 1

2 . . . Y k−1
2

.

Y 0
k Y 1

k . . . Y k−1
k



a1
a2
. . .
ak

 =


hk(Y1)
hk(Y2)
. . .

hk(Yk)


Since the matrix on the left is a Vandermonde matrix and [p] forms a field, there is a one-to-one
correspondence between the k-tuples (a1, a2, . . . , ak) and (hk(Y1), hk(Y2), . . . , hk(Yk)). Given
that a1, a2, . . . , ak are uniformly distributed in [p]k, it follows that (hk(Y1), hk(Y2), . . . , hk(Yk))
is also uniformly distributed in [p]k. We derive that for each (i1, i2, . . . , ik) ∈ [p]k, we have

P[hk(x1) = i1 ∧ · · · ∧ hk(xk) = ik] = 1/pk.

Thus, for each x1 ∈ [U] and i1 ∈ [p] (and any x2, . . . , xk such that xi 6= xj for i 6= j) we have

P[hk(x1) = i1] =
∑

(i2,...,ik)∈[p]k−1

P[hk(x1) = i1 ∧ · · · ∧ hk(xk) = ik] = pk−1 · 1/pk = 1/p.

1

This final discussion summarizes what was previously covered in the lecturespecifically, that
the hash function hk is both uniform and k-uniform. Now, let us build on this to demonstrate
that similar properties apply to gk.

To this end, set p′ ∈ [m] to be the number such that p′ = p mod m. Further, for an integer
x ∈ [m], let m(x) denote the number of integers y ∈ [p] such that y = x mod m. Note that
m(x) = bp/mc if x < p′, and m(x) = bp/mc+ 1 otherwise.

From this, we obtain uniformity since for each j ∈ [m] and x ∈ [U] we have

P[gk(x) = j] =
∑

i∈[p] : i=j mod m

P[hk(x) = i]

= p−1 ·m(j)

≤ p−1(bp/mc+ 1)

≤ p−1(p/m+ 1)

= (1/m+ 1/p) ≤ (1 + 1/2c) · 1/m.

To show k-wise independence, observe that for a tuple (j1, j2, . . . , jk) ∈ [m]k, there are∏k
`=1m(j`) distinct tuples (i1, i2, . . . , ik) ∈ [p]k such that i` = j` mod m for all 1 ≤ ` ≤ k.

Thus, for any (j1, j2, . . . , jk) ∈ [m]k and (x1, . . . , xk) ∈ [U]k, we have

P[gk(x1) = j1 ∧ · · · ∧ gk(xk) = jk] = p−k ·
k∏

`=1

m(j`).

We conclude

P[gk(x1) = j1 ∧ · · · ∧ gk(xk) = jk] = p−k ·
k∏

`=1

m(j`) =

k∏
`=1

(
m(j`) · p−1

)
=

k∏
`=1

P[gk(x`) = j`].

3 Linear Probing with 3-wise Independence

We use a proof similar to the one in the script that shows how a 5-independent hash function
enables linear probing with an expected time complexity of O(1) per operation. That is, given
an element x, we define a run R(x) as it is defined there. Moreover, we partition [m] into dyadic
intervals and consider `-intervals, which we say is almost-full if at least 2` · 34 items from S \{x}
hash into I.

We can recycle the proof of the script up to the point where we need to bound the probability
P` that a particular `-interval is nearly full. Since the hash function is now 3-independent
rather than 5-independent, we can no longer use the 4th moment bound. Instead, we require
a corresponding lemma that applies to two random variables instead of four. To this end, it
suffices to use Chebyshev’s inequality.

Fix an `-interval I. For each y ∈ S \ {x}, let Yy denote the indicator random variable for
whether h(y) ∈ I. Define X =

∑
y∈S\{x} Yy, so that

P` = Pr

[
|{y ∈ S \ {x} | h(y) ∈ I}| ≥ 3

4
· 2`
]
= Pr

[
X ≥ 3

4
· 2`
]
.

Recall that E[X] = n
m · 2` ≤ 2

3 · 2`. Now, we apply Chebyshev’s inequality:

Pr

[
X ≥ 3

4
· 2`
]
= Pr

[
X − E[X] ≥ 1

12
· 2`
]
≤ Pr

[
|X − E[X]| ≥ 1

12
· 2`
]
≤ 144 · Var[X]

22`
.

To bound the variance, we use 2-independence and the fact that for all y ∈ S \ {x} we have
Var[Yy] ≤ E[Yy]:

2

Var[X] = Var

 ∑
y∈S\{x}

Yy

 =
∑

y∈S\{x}

Var[Yy] ≤
∑

y∈S\{x}

E[Yy] ≤
n

m
· 2` ≤ 2

3
· 2`.

Thus, we can bound the probability that I is nearly full as follows:

P` = Pr

[
X ≥ 3

4
· 2`
]
≤ 144 · Var[X]

22`
≤ 96

2`
.

Thereby, similarly to the proof of the script, we derive that R(x) is of size [2`+2, 2`+3) with
probability O(1/2`), and we obtain a total expected runtime of

O(1) +
∑log2 m

`=0
O(1/2`) ·O(2`) = O(1 +

∑log2 m

`=0
1) = O(log n).

4 Method of Moments

1. If c > k/2, then we have at least one index jh with multiplicity mh = 1. It remains to use
k-wise independence of the random variables to obtain

E[(Yj1 − p)(Yj2 − p) · · · (Yjc − p)] = E[(Yj1 − p)m1]E[(Yj2 − p)m2] · · ·E[(Yjc − p)mc]

and then use that E[(Xjh − p)mh] = E[Xjh − p] = 0.
For c ≤ k/2, we use that for every h, we have either mh = 1 or (Xjh − p)mh ≤ (Xjh − p)2.
In the former case, as argued before, we have E[(Xjh − p)mh] = 0. In the latter case, we
have

E[(Xjh −p)mh] ≤ E[(Xjh −p)2] = E[X2
jh
]−2E[Xjh]p+p2 = E[Xjh]−2p2+p2 = p−p2 ≤ p.

Thus, in either case E[(Xjh − p)mh] ≤ p. Again the upper bound of pc then follows by
using the k-wise independence of the variables Xjh .

2. Let us first upper bound the number of indices i1, i2, . . . , ik ∈ [n] that have the same
distinct indices j1 < j2 < . . . < jc. Since each index ih can take at most c values, we can
upper bound crudely by ck.
Combined with the fact that for all c ≤ k/2 all sets of distinct indices j1 < j2 < . . . < jc
(no matter the multiplicities) have expected value at most pc, we obtain

E[(X − µ)k] =
∑

i1,i2,...,ik∈[n]

E[(Yi1 − p)(Yi2 − p) · · · (Yik − p)]

<

k/2∑
c=1

∑
j1<j2<...<jc∈[n]

ck · pc

<

k/2∑
c=1

nc · ck · pc

< 2 · nk/2 · (k/2)k · pk/2

= O((k/2)k(np)k/2).

It remains to use that by Markov’s inequality, we have

P[|X − µ| > d
√
µ] = P[(X − µ)k > dkµk/2] ≤ E[(X − µ)k]

dkµk/2
.

3

And by our calculation above, we have

E[(X − µ)k]

dkµk/2
= O

(
(k/2)k · (np)k/2

dkµk/2

)
= O

(
(k/2)k

dk

)
using np = µ.

4

