Advanced Algorithms 2024 21/10, 2024

Sample Solutions 05

Lecturer: Maximilian Probst Teaching Assistant: Jakob Nogler

1 Hashing with Chaining via 2-wise Independence

The time required for inserting or deleting in a linked list is determined by the length of the
list. Thus, in hashing with chaining, the time for any operation involving a key z depends on
length of the linked list containing x stored in H[h(z)]. Since the linked list in H[h(x)] contains
all elements y € S such that h(y) = h(x), we can write the expected time of an operation as

E[l + |H(h(z))]] = O(L+ Y Plh(y) = h(z))).

r#YyeS

We bound this last probability by

Y Ph(y)=h@)]=) > Ply)=il|h(z)=i Ph)=1

r£yeS xFYES i€[m)]
= Z Z h(y) = i] - P[h(z) = 1] (2-wise independence)
x#Y€E€S i€[m]
1
x#£y€E€S i€[m] m m

2 Extending Hash Functions to Non-Prime Domains

Intuitively, we would like to apply the same reasoning as in the script. However, this approach
does not extend to gx(x) in this case because [m] is not necessarily a field.

To circumvent this, we define the function hy(x) = Zle a;z'~' mod p, omitting the final
modulo m operation. Now, for any Y7, Y, ..., Yy € [U] where the Y;’s are pairwise distinct, i.e.,
Y; #Y; for all i # j, we can express hy(Yy) for all 1 </ <k as a system of linear equations.

v vh oYY fa hi (Y1)
Yy Yo Y’“ ez | | e(Y2)
vy vl o Y,f—l ax hi (Yi)

Since the matrix on the left is a Vandermonde matrix and [p] forms a field, there is a one-to-one

correspondence between the k-tuples (a1, as,... ak) and (hr(Y1), hi(Y2), ..., hi(Yx)). Given

that a1, as,...,a; are uniformly distributed in [p]¥, it follows that (hx (Y1), hx(Y2),. .., hi(Yz))

is also uniformly distributed in [p]*. We derive that for each (iy,42,...,ix) € [p]*, we have
P[hk(l'l) =4 A A hk(xk) = Zk] = 1/pk.

Thus, for each x1 € [U] and iy € [p| (and any xa, ...,z such that x; # x; for i # j) we have

P[hk(:cl) :il] = Z]P’[hk(xl) :il/\-"Ahk(IEk) :ik] :pkil . 1/pk: 1/p.
(42,-0k) E[p]F 1

This final discussion summarizes what was previously covered in the lecturespecifically, that
the hash function Ay is both uniform and k-uniform. Now, let us build on this to demonstrate
that similar properties apply to g.

To this end, set p’ € [m] to be the number such that p’ = p mod m. Further, for an integer
x € [m], let m(x) denote the number of integers y € [p] such that y = 2 mod m. Note that
m(z) = |p/m] if x < p', and m(z) = |[p/m] + 1 otherwise.

From this, we obtain uniformity since for each j € [m] and = € [U] we have

Plgr(z) = j] = > Plhx(z) = i
i€lp] : i=j mod m
p~ ' m(j)

p~H(lp/m] +1)

p~(p/m+1)

=(1/m+1/p) < (1+1/2¢)-1/m.

<
<

To show k-wise independence, observe that for a tuple (ji,7j2,...,jx) € [m]¥, there are
H§:1 m(jg) distinet tuples (iy,42,...,i,) € [p]¥ such that iy = j, mod m for all 1 < ¢ < k.
Thus, for any (j1, jo, ..., jx) € [m]F and (z1,...,7x) € [U]¥, we have

k
Plgk(21) = j1 A+ A gi(ar) = il = p~ " - [mGe)-
(=1

We conclude

k

K
Plgk(x1) = j1 A+ Agr(ew) = ji) =p7 - [[mGe) = [(mGo) -p7") = [[Plow(ae) = ji-
=1

/=1

3 Linear Probing with 3-wise Independence

We use a proof similar to the one in the script that shows how a 5-independent hash function
enables linear probing with an expected time complexity of O(1) per operation. That is, given
an element x, we define a run R(x) as it is defined there. Moreover, we partition [m] into dyadic
intervals and consider (-intervals, which we say is almost-full if at least 2¢- % items from S\ {z}
hash into 1.

We can recycle the proof of the script up to the point where we need to bound the probability
P, that a particular /f-interval is nearly full. Since the hash function is now 3-independent
rather than 5-independent, we can no longer use the 4th moment bound. Instead, we require
a corresponding lemma that applies to two random variables instead of four. To this end, it
suffices to use Chebyshev’s inequality.

Fix an f-interval I. For each y € S\ {z}, let Y}, denote the indicator random variable for
whether h(y) € I. Define X =3 g 1,3 Yy, so that

P=pr[fwes o in eny =S o) ~pelx 222,

Recall that E[X] = 2 - 2¢ < 2.2¢, Now, we apply Chebyshev’s inequality:

winN

n
m

3 ¢ 1 ¢ 1 ¢ Var[X]
PriX>--2°| =Pr | X—-E[X]>—-2°| <Pr||[X—-EX]|>—-2"| <144 ——
(x| =P X B2 2 < X B g2 < T

To bound the variance, we use 2-independence and the fact that for all y € S\ {z} we have
Var[Y,] < E[Y,]:

W N
[\)
~

noooe
Var[X]=Var | Y Y,|= > Var[y]< > E[Y]< —20<
yeS\{z} yeS\{z} yesS\{z}
Thus, we can bound the probability that I is nearly full as follows:

Var[X] 96

20 S

3
Pg:Pr[X24-2€] < 144 -

Thereby, similarly to the proof of the script, we derive that R(x) is of size [2¢+2,2/3) with
probability O(1/2%), and we obtain a total expected runtime of

logy m

o)+ Y =" 0(1/2) - 02" = 0(1 + 3" 1) = O(log n).

=0 £=0
4 Method of Moments

1. If ¢ > k/2, then we have at least one index j;, with multiplicity m; = 1. It remains to use
k-wise independence of the random variables to obtain

E[(Y;, —p)(Yj, —p) - (Yi. —p)] = E[(Y], — p)™]E[(Y, —p)™] - E[(Y), —p)™]

and then use that E[(X;, —p)™] =E[X;, —p] =0.

For ¢ < k/2, we use that for every h, we have either my, =1 or (X;, —p)™ < (Xj, —p)*
In the former case, as argued before, we have E[(X;, — p)™"] = 0. In the latter case, we
have

E[(X;, —p)™] < E[(X;, —p)*] = E[X]] —2E[X,,]p+p* = E[X;,] —2p° +p° =p—p° < p.

Thus, in either case E[(X;, —p)™"] < p. Again the upper bound of p¢ then follows by
using the k-wise independence of the variables X, .

2. Let us first upper bound the number of indices i1,1i9,...,i € [n] that have the same
distinct indices j; < jo < ... < j.. Since each index i; can take at most ¢ values, we can
upper bound crudely by c.

Combined with the fact that for all ¢ < k/2 all sets of distinct indices j; < jo < ... < je
(no matter the multiplicities) have expected value at most p©, we obtain

E(X - = > E[Y,-p)(Ys,—p)- (Y — D)

11,42,..,0% €[N]
k/2

k c
<> >
c=1 j1<ja<...<jc€[n]
k/2

< ch ke

c=1
<92. nk/?. (k‘/Q)k .pk/2
= O((k/2)" (np)"?).

It remains to use that by Markov’s inequality, we have

E[(X —)]

PIX — pul > dy/p] = P[(X — p)F > dF /2] < dk k72

And by our calculation above, we have

E[(X — p)* k/2)% - (np)*/2 k/2)*
[<dkuk//;> l_o ((/ zlkulg/zm) 0 ((/2 >

using np = p.

