
Advanced Algorithms 2024 28/10, 2024

Sample Solutions 06

Lecturer: Maximilian Probst Teaching Assistant: Patryk Morawski

1 Reducing the Variance

Since X is an unbiased estimator, and we know its variance, we would like to apply Chebyshev’s
inequality to bound the probability that X is far away from its expectation. Unfortunately, the
variance from a single run of the algorithm is too large for Chebyshev to give us our desired
bound. Luckily though, we can easily fix this by taking the mean over multiple runs of the
algorithm - which will decrease the variance linearly in the number of runs.

More formally, for some k ∈ N, we run our algorithm A independently k-times and let
X1, . . . , Xk be the estimates we get from each of these runs. Moreover, we note that the Xi’s

are independent and let Y =
∑k

i=1 Xk

k . We have E[Y ] = x.
Let us now compute the variance of Y , i.e.,

Var[Y ] = Var[

∑k
i=1Xi

k
] =

1

k2

k∑
i=1

Var[Xi] =
1

k
Var[X],

where we used that Var[a(X + Y )] = a2(Var[X] + Var[Y ]) for any a ∈ R and any independent
random variables X and Y .

Now, by Chebyshev’s inequality we get

Pr[|Y − x| ≥ 0.001x] = Pr[|Y − E[Y ]| ≥ 0.001x] ≤ 106x2

k · 10−6x2
≤ 0.01,

for k ≥ 1014. Thus the algorithm obtained by running A at least 1014 and taking the mean over
the single estimates satisfies the conditions of the task.

2 Morris’s Approximate Counting Algorithm

1. Similarly to the computation of E[2Ym ] we have seen in the lecture, we want to proceed
by induction on m. On the first element, i.e., m = 1, Y increments to 1 with probability
1, so E [22Ym ] = 4 = 3

2m
2 + 3

2m + 1 holds. Now, suppose that for some m ∈ N+ we have
proved the statement. Then,

E[22Ym+1 ] =
m∑
j=1

E[22Ym+1 |Ym = j] Pr[Ym = j] Condition on Ym

=

m∑
j=1

(22(j+1) · 2−j + 22j · (1− 2−j)) · Pr[Ym = j] We increment Ym+1 w.p. 2−Ym

=

m∑
j=1

(4 · 2j + 22j − 2j) · Pr[Ym = j] Simplifying

= 3(
∑
j=1

2j · Pr[Ym = j]) + (

m∑
j=1

22j · Pr[Ym = j]) Reordering

1



= 3E[2Ym ] + E[22Ym ] Definition of E[2Ym ] and E[22Ym ]

= 3(m+ 1) +
3

2
m2 +

3

2
m+ 1 Induction + Lecture

=
3

2
(m+ 1)2 +

3

2
(m+ 1) + 1 :)

2. By the definition of the variance

Var[2Ym − 1] = E[(2Ym − 1− (m+ 1))2]

= E[22Ym − 2m · 2Ym +m2]

=
3

2
m2 +

3

2
m+ 1− 2m · (m+ 1) +m2

=
m2

2
− m

2
+ 1 ≤ m2

2
,

for m ≥ 2. For m = 1, notice that Ym is deterministically 1, so Var[2Ym − 1] = 0 ≤ 1
2 .

3 Bounding the Probability of a Collision in FM+

1. For distinct i, j ∈ S let Xi,j be the indicator random variable for the event that g(i) = g(j)
and let X =

∑
i,j∈[b]
i ̸=j

Xi,j be a random variable counting the number of pairwise collisions

of elements of S. Then, E[Xi,j =
1

Cϵ−4 log2 n
and therefore

E[X] =

(
|S|
2

)
1

Cϵ−4 log2 n
≤ |S|2

Cϵ−4 log2 n
≤ C ′2ϵ−4(log n+ 2)2

Cϵ−4 log2 n
≤ 1

6
,

for C ≥ 9C ′2.

Note that there exist some distinct i, j ∈ S with g(i) = g(j) if and only if X ≥ 1. Using
Markov’s inequality we therefore get

Pr[∃i,j∈S
i ̸=j

.g(i) = g(j)] = Pr[X ≥ 1] ≤ 1

6
.

2. Note that under this assumption, any time we add execute the line B ≥ B∪{(g(ai), ZEROS(h(ai))}
for some ai = j such that j hasn’t appeared in B yet, we increase the size of B by one. In
particular, between any two increments of X, we can add at most C ′ · ϵ−2 new i ∈ [n] to
B.
Moreover, since ZEROS(h(i)) ≤ n for each i ∈ [n], we have X ≤ log n+ 1 at the end of
the execution. This means, that we increment X at most log n+2 times during the whole
algorithm. Together with the above observation this implies that |S| ≤ C ′ · ϵ−2(log n+2).

3. Let the input stream a1, . . . , am be given. First, consider a modified FM+ algorithm A′,
where we replace the line B ← B∪{(g(ai), ZEROS(h(ai)))} with B ← B∪{ai, ZEROS(h(ai)))}.
That is, A’s simulates the run of the FM+ algorithm where there are no collisions under
our hash function g. For a given stream input, let S′ be the set of elements that appeared
in B during the execution of A′. Then, by subtask 2, we have that |S′| ≤ C ′ ·ϵ−2(log n+2).

Now, consider a run of the unmodified FM+ algorithm on this input sequence. By subtask
1, the event E that for any distinct i, j ∈ S′ we have g(i) ̸= g(j) happens with probability
at least 5/6, . Moreover, conditioned on the event E, our unmodified FM+ algorithm,
will do exactly the same steps as A′. In particular, the set S of elements that appeared in
B during the execution will be exactly the same as S′, i.e., for any distinct i, j ∈ S = S′

we have g(i) ̸= g(j). This shows that the probability of a collision under g of two elements
that appeared in B during the execution of FM+ is at most 1/6.

2



4 Majority Element

1. We want to consider the following algorithm.

Algorithm 1 MajorityStream(S = {a1, . . . , am})
guess← 0
count← 0
for ai ∈ S do ▷ Items arrive in streaming fashion

if ai = guess then
count← count+ 1

else if count > 1 then
count← count− 1

else
guess← ai

end if
end for
return guess

Clearly, to keep track of the guess and the counter, we need at most O(logm + log n)
space. Therefore, it remains to prove the correctness of the algorithm.

Let therefore a1, . . . , am ∈ [n] be the input stream and suppose there is an element j ∈ [n]
s.t. ai = j for more than m/2 of the ai’s. We will analyze the algorithm step-by-step
as the elements of the stream arrive. Let therefore, guessi and counteri be the values of
the variables after we have processed the element ai. Moreover, we let ni = |{1 ≤ i′ ≤
i : ai′ = j}| denote the number of times the majority element j appears among the first i
elements. We will show the following statement by induction on i.

Claim 1. For each i ∈ [m] the following holds. If 2ni > i, then guessi = j and counteri ≥
2ni − i. If 2ni ≤ i then either guessi = j or counteri ≤ i− 2ni + 1.

Indeed, the claim clearly holds after inserting the first element. Now suppose that the
claim holds for some i ∈ [n]. We have the following possible cases:

(a) 2ni > i and ai+1 = j. Then guessi+1 = j and counteri+1 = counteri + 1 ≥
2(ni + 1)− (i+ 1).

(b) 2ni > i and ai+1 ̸= j. The updated counter for j, will be at least 2ni − i − 1 =
2ni+1− i− 1. In case this value is more than 0, we are done. Otherwise, it we might
get guessi+1 = ai+1 and counteri+1 = 1, but then 2ni+1 ≤ i+ 1, so this is fine.

(c) 2ni ≤ i and ai+1 = j. If 2ni+1 > i we have either guessi = j or counteri = 1,
so counteri+1 ≥ 1 and guessi+1 = j. Otherwise, we either have guessi+1 = j or
counteri+1 ≤ i− 2ni + 1− 1 = (i+ 1)− 2ni+1 + 1.

(d) 2ni ≤ i and ai+1 ̸= j. Then, either guessi+1 = j or counteri+1 ≤ i − 2ni + 1 + 1 =
(i+ 1)− 2ni + 1.

So the claim holds for i+ 1 as well.

In particular, by the claim for i = m, since 2nm > m, we have that guessm = j, as we
were supposed to show.

2. Let m = n and for simplicity suppose n is even. We can prove the claim by focusing on the
streams of the form S = {a1, a2, . . . , an/2, an/2+1, . . . , an}, such that a1 < a2 < . . . < an/2.
So, the first half of S contains n

2 distinct elements in the increasing order. Note that

3



(
n

n/2

)
≥ 2n

n+1 since
∑n

i=0

(
n
i

)
= 2n and

(
n

n/2

)
≥

(
n
k

)
for every 0 ≤ k ≤ n (using Stirling’s

approximation, we can get a slightly better bound, say
(

n
n/2

)
= Θ( 2n√

n
)). As a result, we

have at least 2n

n+1 streams of length n where the first half of the stream is a sequence of
elements in [n] in strictly increasing order.

We prove the claim by contradiction. Suppose that we have a deterministic streaming
algorithm for deciding the existence of majority using n− (log n+1) bits of memory. Let
A and B be two different sorted sequence of length n

2 , each contains n
2 distinct elements

from [n]. Run the algorithm on streams S1 = {A, x, x, . . . [n2 times] . . . , x} and S2 =
{B, x, x, . . . [n2 times] . . . , x} where x is an element appeared in A but not in B. This
element should exists as A and B are different and both of them has exactly n

2 distinct
elements. Observe that a correct algorithm should return 1 for S1 (since x appears more
that n

2 times), and 0 for S2 (since there is no element occurring more than n
2 times). Since

the algorithm stores n− (log n+ 1) bits, at most

2n−(logn+1) =
2n

2n

different configurations can be stored in the memory. So by pigeonhole principle, there are
two A and B with the above properties such that content of the memory of the algorithm
is same after it receives A or B. This forces the algorithm to output a similar value for
S1 and S2 while the output for these streams should be different. This means that any
correct algorithm for this problem has to store at least n− log n = Ω(n) bits.

4


