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1 Tree embedding in cycle

1. Note that we consider all trees T defined on the same vertex set G with non-negative
lengths of edges that satisfy

i) ∀i, j : dG(i, j) ≤ dT (i, j),

ii) ∀i, j : dT (i, j) ≤ C · dG(i, j) for some value C.

Consider all trees minimizing the stretch C and among all of them choose T ∗ that min-
imizes

∑
{u,v}∈T ∗ dT ∗(u, v). First, we claim that in such a tree all lengths of edges in T

have the length of the corresponding shorter arc in G.

Claim 1. All edges {i, j} ∈ T ∗ have length exactly dG(i, j).

Proof. Assume for contradiction that not all edges {i, j} ∈ T ∗ have length exactly dG(i, j).
Then there exists an edge {i, j} ∈ T ∗ with dT ∗(i, j) > dG(i, j) and we can strictly decrease
its length to dG(i, j) and get a new tree T ′. Since the distances in T ′ are only reduced,
property ii) still holds trivially for T ′. We now show that property i) is also satisfied.
Consider any two vertices u, v. The length of the shortest path P between u and v in
T ′ is the sum of all distances between intermediate vertices on unique path joining them.
Since each distance between intermediate vertices in T ′ is at least the length of the arc in
G, we get

dT ′(u, v) =
∑

{i,j}∈P

dT ′(i, j) ≥
∑

{i,j}∈P

dG(i, j) ≥ dG(u, v),

i.e., property i) also holds. Since properties i) and ii) are satisfied, we receive a valid
tree T ′ with a smaller sum

∑
{i,j}∈T ′ dT ′(i, j), which is a contradiction to the definition of

T ∗.

Next, we claim that in an optimal tree T ∗ there is no “bend”.

Claim 2. In T ∗ there are no three vertices u, v, w ∈ V (T ) such that {u,w}, {v, w} ∈ E(T )
and the shorter arcs between u,w and between v, w in G are one subset of the other.

Proof. Assume there exists a vertex w ∈ V and edges {u,w}, {v, w} ∈ E(T ) as in the
statement of the claim. Without loss of generality we assume vw ⊂ uw, i.e., dG(u, v) +
dG(v, w) = dG(u,w). Then we can remove the edge {u,w} from T and replace it with an
edge between u and v of length dG(u, v). Note that after this operation the new graph
T ′ is still a tree. Consider any two vertices s, t ∈ V (T ∗). Note that dT ′(s, t) ≤ dT ∗(s, t),
since if the path did not the edge {u,w} it will stay the same in T ′, while if the path
used the edge {u,w} in T ∗, we replace {u,w} by the pair of edges {u, v}, {v, w} and get
a walk of the same length in T ′. Hence, property ii) still holds in T ′. Moreover, the
property i) holds by the same argument as in the previous claim. Since T ′ has a smaller
sum

∑
{u,v}∈T ′ dT ′(u, v) compared to T ∗, we get again a contradiction to our choice of

T ∗.
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From the second claim it follows that T ∗ is a path, since otherwise a vertex with degree at
least 3 would yield the forbidden configuration from its statement. Moreover, combining
the two claims, we conclude that the path T ∗ “wraps” clockwise or counterclockwise
around the cycle, i.e., if we call its vertices u1, u2, . . . , un with an edge between ui and
ui+1 of length dG(ui, ui+1), then either for all i we have the length equal to the length
of the corresponding clockwise arc, or for all i the length is equal to the length of the
corresponding counterclockwise arc. Hence, assuming the path is wrapping around the
circle in clockwise direction, starting at the first vertex u1 of the path, the path between
vertices u1 and u1 − 1 in T ∗ has length at least n − 1 because the path needs to wrap
around the entire circle. Consequently, with the deterministic tree embedding approach
we need C ≥ (n− 1) which is achieved by a path that we get by removing any edge from
the cycle. Therefore, the deterministic embedding cannot be made to yield small stretch
factor.

2. Consider a distribution over trees that we get by by removing uniformly at random one
of the n cycle edges and setting all lenghts of the given path to 1. We obtain a path T in
which all distances between vertices are clearly at least as large as in the cycle. Therefore
property i) holds. For any two vertices u, v in T , the removed edge is on the shortest

path between u and v in the cycle with probability dG(u,v)
n . If this happens, the shortest

distance between u and v in T equals n− dG(u, v). If the removed edge lies on the longer
path in G, their distance in T equals dG(u, v). Hence, for the expected distance between
any pair of vertices u, v in T we have

Exp[dT (u, v)] =
dG(u, v)

n
(n− dG(u, v))︸ ︷︷ ︸

removed edge on shortest path

+
n− dG(u, v)

n
dG(u, v)︸ ︷︷ ︸

removed edge on longer path

≤ dG(u, v) + dG(u, v) ≤ 2dG(u, v)

Therefore, there exists a distribution over tree embeddings that achieves a stretch 2 in a
cycle of length n.

2 Steiner Forest

We use the tree embedding algorithm from the lecture (chapter 5.1) in order to create a tree
T , on the same set of vertices than G, that has two properties:

i) for all vertices u, v : dG(u, v) < dT (u, v)

ii) for all vertices u, v : E(dT (u, v)) ≤ O(log(n)) · dG(u, v)

We now can find the shortest paths between all terminals (si, ti) in T ; their union gives the
optimal algorithm for the tree T , i.e., OPT (T ). Now for every edge e = {u, v} in OPT (T ) we
consider the shortest path from u to v in G and add it to ALG(G). We claim that ALG(G) is
at most O(log(n)) ·OPT (G) in expectation. First, we observe that

ALG(G) ≤ OPT (T )

because of property i) of the tree. In other words, each edge between two vertices u and v in
the optimal solution in T is replaced by a path in G that has length at most dT (u, v). So, their
union has total length at most OPT (T ). Next, using property ii) of the tree we have that

E[OPT (T )] ≤ O(log(n)) ·OPT (G).

To see this, we define a solution S in T as follows: For each edge e = {u, v} in OPT (G), the
path from u to v in T is added to S. Note that every edge in OPT (G) is replaced by a path
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of distance at most O(log(n)) · dG(u, v) in expectation. Hence, the total distance in S is at
most O(log(n)) · OPT (G) in expectation. Finally, E[OPT (T )] ≤ E[S] as the optimal solution
is always at most a specific solution. Putting the above inequalities together yields

E[ALG(G)] ≤ E[OPT (T )] ≤ O(log(n)) ·OPT (G),

as needed.

3 Analyze the Ball-Carving with Exponential Clocks

1. In this exercise we are asked to give an upper bound UB on the diameter(= 2 · rv) of
every ball Bv with high probability. In other words we search UB such that

Pr(∀v ∈ G : 2 · rv ≤ UB) ≥ 1− 1

poly(n)
.

We will show the following statement which is equivalent to the previous one by negating.

Pr(∃v ∈ G : 2 · rv > UB) ≤ 1

poly(n)
. (1)

First of all, we know that the radius of a vertex follows the exponential distribution with
density function f(x) = β · e−βx. Hence, Pr(rv > x) = e−βx. Therefore, we can write

Pr(∃v : 2 · rv > UB) ≤ n · Pr(fixed v : 2 · rv > UB) = n · Pr
(
rv >

UB

2

)
= n · e−

β·UB
2

Now, we would like to have that

n · e−
β·UB

2 ≤ 1

poly(n)
(2)

By taking the logarithm of both sides and isolating UB on one side, (2) can be written as

−UB ≤
2 · log

(
1

poly(n)·n

)
β

which can be further transformed into

UB ≥ 2 · log(poly(n) · n)
β

= Θ

(
log(n)

β

)
Finally, UB = Θ

(
log(n)

β

)
satisfies (1). Therefore, (1) is also satisfied and we found tight

upper bound on the diameter of each Bv.

2. Let us assume that a vertex w lies on the shortest path from u to v but w ∈ Bz for some
z ̸= v. By the choice of Bz we know that

(rz − d(z, w)) > (rv − d(v, w)).

Furthermore,
d(u, v) = d(u,w) + d(w, v)

because w lies on the shortest path from u to v. Also,

d(z, u) ≤ d(z, w) + d(w, u)

by the triangle inequality. Combining these three properties we get

(rz − d(z, u)) ≥ (rz − d(z, w)− d(w, u)) > (rv − d(v, w)− d(w, u)) = (rv − d(v, u)).

Therefore, u should also be in Bz which is a contradiction.
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