Sparse Semi-Oblivious Routing: Few Random Paths Suffice

Goran Zuzic^{1, 2} (r) Bernhard Haeupler^{1, 3} (r) Antti Roeyskoe¹

1: ETH Zürich

2: Google Research

3: Carnegie Mellon University

PODC 2023

Packet Routing

Given a graph and a set of packets (with fixed source and destination vertices), find a **low-congestion low-dilation** set of paths routing the packets

Packet Routing

Given a graph and a set of packets (with fixed source and destination vertices), find a **low-congestion low-dilation** set of paths routing the packets

Congestion: maximum number of times any edge is used

Packet Routing

Given a graph and a set of packets (with fixed source and destination vertices), find a **low-congestion low-dilation** set of paths routing the packets

Congestion: maximum number of times any edge is used

Dilation: maximum length of any path in *P*

Packet Routing

Given a graph and a set of packets (with fixed source and destination vertices), find a **low-congestion low-dilation** set of paths routing the packets

Congestion: maximum number of times any edge is used

Dilation: maximum length of any path in *P*

Packet scheduling possible in $\mathcal{O}(\text{congestion} + \text{dilation})$ time [Lei+94]

Packet Routing

Given a graph and a set of packets (with fixed source and destination vertices), find a **low-congestion low-dilation** set of paths routing the packets

Congestion: maximum number of times any edge is used

Dilation: maximum length of any path in *P*

Packet scheduling possible in $\mathcal{O}(\text{congestion} + \text{dilation})$ time [Lei+94]

Packet Routing

Given a graph and a set of packets (with fixed source and destination vertices), find a **low-congestion low-dilation** set of paths routing the packets

Congestion: maximum number of times any edge is used

Dilation: maximum length of any path in *P*

Packet scheduling possible in $\mathcal{O}(\text{congestion} + \text{dilation})$ time [Lei+94]

Oblivious Routing

The path for any packet must be selected **obliviously**: without knowledge of other packets

Oblivious Routing

The path for any packet must be selected **obliviously**: without knowledge of other packets

Oblivious routing = for every source and destination, distribution over paths

Oblivious Routing

The path for any packet must be selected **obliviously**: without knowledge of other packets

Oblivious routing = for every source and destination, distribution over paths

Competitive: low **maximum expected edge congestion** compared to offline optimum

Oblivious Routing

The path for any packet must be selected **obliviously**: without knowledge of other packets

Oblivious routing = for every source and destination, distribution over paths

Competitive: low **maximum expected edge congestion** compared to offline optimum

 $\mathcal{O}(\log n)$ -competitive oblivious routings

Oblivious Routing

The path for any packet must be selected **obliviously**: without knowledge of other packets

Oblivious routing = for every source and destination, distribution over paths

Competitive: low **maximum expected edge congestion** compared to offline optimum

 $\mathcal{O}(\log n)$ -competitive oblivious routings

• exist [Räc08], and

Oblivious Routing

The path for any packet must be selected **obliviously**: without knowledge of other packets

Oblivious routing = for every source and destination, distribution over paths

Competitive: low **maximum expected edge congestion** compared to offline optimum

 $\mathcal{O}(\log n)$ -competitive oblivious routings

- exist [Räc08], and
- are optimal [BL97; Mag+97]

Oblivious Routing

The path for any packet must be selected **obliviously**: without knowledge of other packets

Oblivious routing = for every source and destination, distribution over paths

Competitive: low **maximum expected edge congestion** compared to offline optimum

 $\mathcal{O}(\log n)$ -competitive oblivious routings

- exist [Räc08], and
- are optimal [BL97; Mag+97]

Dilation can also be considered [GHZ21]

Inherently random!

Inherently random!

• Selecting single paths at best $\mathcal{O}(\sqrt{n})$ -competitive [BH85; KKT91]

Inherently random!

- Selecting single paths at best $\mathcal{O}(\sqrt{n})$ -competitive [BH85; KKT91]
- Need $\Omega(\sqrt{n})$ paths for every source-destination pair

Inherently random!

- Selecting single paths at best $\mathcal{O}(\sqrt{n})$ -competitive [BH85; KKT91]
- Need $\Omega(\sqrt{n})$ paths for every source-destination pair

In practical settings, not all central control is expensive [Kum+18]:

Inherently random!

- Selecting single paths at best $\mathcal{O}(\sqrt{n})$ -competitive [BH85; KKT91]
- Need $\Omega(\sqrt{n})$ paths for every source-destination pair

In practical settings, not all central control is expensive [Kum+18]:

• changing paths (support) is expensive, but

Inherently random!

- Selecting single paths at best $\mathcal{O}(\sqrt{n})$ -competitive [BH85; KKT91]
- Need $\Omega(\sqrt{n})$ paths for every source-destination pair

In practical settings, not all central control is expensive [Kum+18]:

- changing paths (support) is expensive, but
- changing sending ratios (distribution) is cheap

Semi-Oblivious Routing

Semi-Oblivious Routing

For every source-destination pair, a set of *candidate paths* must be selected. Then, the *routing paths* are chosen centrally, with full information of the packets

Semi-Oblivious Routing

Semi-Oblivious Routing

For every source-destination pair, a set of *candidate paths* must be selected. Then, the *routing paths* are chosen centrally, with full information of the packets

 $\alpha\text{-sparsity:}$ can only select up to α paths between every source and destination

$$\alpha = 2$$

$$\alpha = 2$$

$$\alpha = 2$$

$$\alpha = 2$$

Packets: $A \rightarrow B$, $A \rightarrow C$

Packets: $A \rightarrow B$, $A \rightarrow C$

congestion 1 dilation 3

Practical Efficiency

Semi-oblivious routing is **efficient in practice** [Kum+18]

Practical Efficiency

Semi-oblivious routing is **efficient in practice** [Kum+18]

[Kum+18]'s construction is simple: sample $\alpha=4$ paths from an oblivious routing, for every vertex pair

Practical Efficiency

Semi-oblivious routing is **efficient in practice** [Kum+18]

[Kum+18]'s construction is simple: sample $\alpha=$ 4 paths from an oblivious routing, for every vertex pair

Practical efficiency despite only negative theoretical results

Semi-Oblivious Routing: What Is Known

Only negative results:

Semi-Oblivious Routing: What Is Known

Only negative results:

• Polynomial α cannot be $o(\log(n)/\log\log n)$ -competitive [HKL07]

Semi-Oblivious Routing: What Is Known

Only negative results:

- Polynomial α cannot be $o(\log(n)/\log\log n)$ -competitive [HKL07]
- $\alpha = 1$ cannot be $\mathcal{O}(\sqrt{n})$ -competitive [BH85; KKT91]

Our Results

Sparse semi-oblivious routings: $\alpha = \mathcal{O}(\log(n)/\log\log n)$ suffices for $\operatorname{poly}(\log n)$ -competitiveness

Sparse semi-oblivious routings: $\alpha = \mathcal{O}(\log(n)/\log\log n)$ suffices for $\operatorname{poly}(\log n)$ -competitiveness

• Contrasts required support size of $\mathcal{O}(\sqrt{n})$ for oblivious routing.

Sparse semi-oblivious routings: $\alpha = \mathcal{O}(\log(n)/\log\log n)$ suffices for $\operatorname{poly}(\log n)$ -competitiveness

- Contrasts required support size of $\mathcal{O}(\sqrt{n})$ for oblivious routing.
- Construction by sampling: theoretical justification for practical efficiency!

Sparse semi-oblivious routings: $\alpha = \mathcal{O}(\log(n)/\log\log n)$ suffices for $\operatorname{poly}(\log n)$ -competitiveness

- Contrasts required support size of $\mathcal{O}(\sqrt{n})$ for oblivious routing.
- Construction by sampling: theoretical justification for practical efficiency!
- Congestion + dilation competitive with $\alpha = \mathcal{O}(\log^2 n)$

Sparse semi-oblivious routings: $\alpha = \mathcal{O}(\log(n)/\log\log n)$ suffices for $\operatorname{poly}(\log n)$ -competitiveness

- Contrasts required support size of $\mathcal{O}(\sqrt{n})$ for oblivious routing.
- Construction by sampling: theoretical justification for practical efficiency!
- Congestion + dilation competitive with $\alpha = \mathcal{O}(\log^2 n)$

A matching lower bound: $\alpha = o(\log(n)/\log\log n)$ cannot be $\operatorname{poly}(\log n)$ -competitive

Construction

- Fix an oblivious routing
- Let $\alpha := \mathcal{O}(\log(n)/\log\log n)$
- \bullet For every vertex pair, sample α paths between those vertices from the oblivious routing

Construction

- Fix an oblivious routing
- Let $\alpha := \mathcal{O}(\log(n)/\log\log n)$
- \bullet For every vertex pair, sample α paths between those vertices from the oblivious routing

Theorem

A semi-oblivious routing constructed as above is $\mathcal{O}(\log^2 n)$ -competitive with the sampled from oblivious routing

Construction

- Fix an oblivious routing
- Let $\alpha := \mathcal{O}(\log(n)/\log\log n)$
- \bullet For every vertex pair, sample α paths between those vertices from the oblivious routing

Theorem

A semi-oblivious routing constructed as above is $\mathcal{O}(\log^2 n)$ -competitive with the sampled from oblivious routing

Note: competitive with the oblivious routing, not offline optimum

Approach: Probabilistic method:

Approach: Probabilistic method: Prove that for a fixed set of packets, a sampled semi-oblivious routing "fails catastrophically" with exponentially small probability in the number of packets

Approach: Probabilistic method: Prove that for a fixed set of packets, a sampled semi-oblivious routing "fails catastrophically" with exponentially small probability in the number of packets

Easy finish: union bound over packet sets:

Approach: Probabilistic method: Prove that for a fixed set of packets, a sampled semi-oblivious routing "fails catastrophically" with exponentially small probability in the number of packets

Easy finish: union bound over packet sets:

• Up to $2^{(n^2)}$ possible packet sets

Approach: Probabilistic method: Prove that for a fixed set of packets, a sampled semi-oblivious routing "fails catastrophically" with exponentially small probability in the number of packets

Easy finish: union bound over packet sets:

- Up to $2^{(n^2)}$ possible packet sets
- But only $(n^2)^k = \exp(2k \log n)$ with k packets

Approach: Probabilistic method: Prove that for a fixed set of packets, a sampled semi-oblivious routing "fails catastrophically" with exponentially small probability in the number of packets

Easy finish: union bound over packet sets:

- Up to $2^{(n^2)}$ possible packet sets
- But only $(n^2)^k = \exp(2k \log n)$ with k packets

Approach: Probabilistic method: Prove that for a fixed set of packets, a sampled semi-oblivious routing "fails catastrophically" with exponentially small probability in the number of packets

Easy finish: union bound over packet sets:

- Up to $2^{(n^2)}$ possible packet sets
- But only $(n^2)^k = \exp(2k \log n)$ with k packets

Fails catastrophically:

Has to be extremely unlikely

Approach: Probabilistic method: Prove that for a fixed set of packets, a sampled semi-oblivious routing "fails catastrophically" with exponentially small probability in the number of packets

Easy finish: union bound over packet sets:

- Up to $2^{(n^2)}$ possible packet sets
- But only $(n^2)^k = \exp(2k \log n)$ with k packets

- Has to be extremely unlikely
- But no catastrophic failure has to guarantee progress

Approach: Probabilistic method: Prove that for a fixed set of packets, a sampled semi-oblivious routing "fails catastrophically" with exponentially small probability in the number of packets

Easy finish: union bound over packet sets:

- Up to $2^{(n^2)}$ possible packet sets
- But only $(n^2)^k = \exp(2k \log n)$ with k packets

- Has to be extremely unlikely
- But no catastrophic failure has to guarantee progress
- Weak Routing: route at least half of the packets

Approach: Probabilistic method: Prove that for a fixed set of packets, a sampled semi-oblivious routing "fails catastrophically" with exponentially small probability in the number of packets

Easy finish: union bound over packet sets:

- Up to $2^{(n^2)}$ possible packet sets
- But only $(n^2)^k = \exp(2k \log n)$ with k packets

- Has to be extremely unlikely
- But no catastrophic failure has to guarantee progress
- Weak Routing: route at least half of the packets
 - Competitively with oblivious routing congestion of full packet set

Approach: Probabilistic method: Prove that for a fixed set of packets, a sampled semi-oblivious routing "fails catastrophically" with exponentially small probability in the number of packets

Easy finish: union bound over packet sets:

- Up to $2^{(n^2)}$ possible packet sets
- But only $(n^2)^k = \exp(2k \log n)$ with k packets

- Has to be extremely unlikely
- But no catastrophic failure has to guarantee progress
- Weak Routing: route at least half of the packets
 - Competitively with oblivious routing congestion of full packet set
 - \rightarrow can route any packet set, $\mathcal{O}(\log n)$ competitiveness loss

Oblivious routing guarantees every edge has low expected congestion

Oblivious routing guarantees every edge has low expected congestion

• Then, standard analysis gives high probability congestion is low

Oblivious routing guarantees every edge has low expected congestion

- Then, standard analysis gives high probability congestion is low
 - High Probability: $1 n^{-c}$ for an arbitrary constant c

Oblivious routing guarantees every edge has low expected congestion

- Then, standard analysis gives high probability congestion is low
 - High Probability: $1 n^{-c}$ for an arbitrary constant c
 - Insufficient!

Oblivious routing guarantees every edge has low expected congestion

- Then, standard analysis gives high probability congestion is low
 - High Probability: $1 n^{-c}$ for an arbitrary constant c
 - Insufficient!

"Cannot route everything" is too weak of a notion of failure

Oblivious routing guarantees every edge has low expected congestion

- Then, standard analysis gives high probability congestion is low
 - High Probability: $1 n^{-c}$ for an arbitrary constant c
 - Insufficient!

"Cannot route everything" is too weak of a notion of failure

Bounding probability of a catastrophic failure needs a more involved analysis

Fix a packet set, and sample $\alpha := \mathcal{O}(\log(n)/\log\log n)$ paths between every vertex pair a packet wants to traverse between

Fix a packet set, and sample $\alpha := \mathcal{O}(\log(n)/\log\log n)$ paths between every vertex pair a packet wants to traverse between

Loop over edges. If the number of enabled paths crossing the edge is greater than $C_{\text{max}} := \mathrm{OBL}(\mathsf{packet}\ \mathsf{set}) \cdot \mathcal{O}(\log n)$, **disable** all paths over the edge

Fix a packet set, and sample $\alpha := \mathcal{O}(\log(n)/\log\log n)$ paths between every vertex pair a packet wants to traverse between

Loop over edges. If the number of enabled paths crossing the edge is greater than $C_{\text{max}} := \mathrm{OBL}(\mathsf{packet}\ \mathsf{set}) \cdot \mathcal{O}(\log n)$, **disable** all paths over the edge

At the end: enabled paths have low congestion!

Fix a packet set, and sample $\alpha := \mathcal{O}(\log(n)/\log\log n)$ paths between every vertex pair a packet wants to traverse between

Loop over edges. If the number of enabled paths crossing the edge is greater than $C_{\text{max}} := \mathrm{OBL}(\mathsf{packet}\ \mathsf{set}) \cdot \mathcal{O}(\log n)$, **disable** all paths over the edge

At the end: enabled paths have low congestion!

Ideally: half of packets have at least one path

Fix a packet set, and sample $\alpha := \mathcal{O}(\log(n)/\log\log n)$ paths between every vertex pair a packet wants to traverse between

Loop over edges. If the number of enabled paths crossing the edge is greater than $C_{\text{max}} := \mathrm{OBL}(\mathsf{packet}\ \mathsf{set}) \cdot \mathcal{O}(\log n)$, **disable** all paths over the edge

At the end: enabled paths have low congestion!

- Ideally: half of packets have at least one path
- Sufficient: at most half of total paths are disabled

Fix a packet set, and sample $\alpha := \mathcal{O}(\log(n)/\log\log n)$ paths between every vertex pair a packet wants to traverse between

Loop over edges. If the number of enabled paths crossing the edge is greater than $C_{\text{max}} := \mathrm{OBL}(\mathsf{packet}\ \mathsf{set}) \cdot \mathcal{O}(\log n)$, **disable** all paths over the edge

At the end: enabled paths have low congestion!

- Ideally: half of packets have at least one path
- Sufficient: at most half of total paths are disabled
- Bound this probability!

$$lpha=$$
 2, $\mathit{C}_{\mathsf{max}}=$ 1 Packets: $\mathit{A} \rightarrow \mathit{C}$, $\mathit{B} \rightarrow \mathit{C}$

$$lpha=$$
 2, $\mathit{C}_{\mathsf{max}}=$ 1 Packets: $\mathit{A} \rightarrow \mathit{C}$, $\mathit{B} \rightarrow \mathit{C}$

$$lpha=$$
 2, $\mathit{C}_{\mathsf{max}}=$ 1 Packets: $\mathit{A} \rightarrow \mathit{C}$, $\mathit{B} \rightarrow \mathit{C}$

$$lpha=$$
 2, $\mathit{C}_{\mathsf{max}}=$ 1 Packets: $\mathit{A} \rightarrow \mathit{C}$, $\mathit{B} \rightarrow \mathit{C}$

$$lpha=$$
 2, $\mathit{C}_{\mathsf{max}}=$ 1 Packets: $\mathit{A} \rightarrow \mathit{C}$, $\mathit{B} \rightarrow \mathit{C}$

$$lpha=$$
 2, $\mathit{C}_{\mathsf{max}}=$ 1 Packets: $\mathit{A} \rightarrow \mathit{C}$, $\mathit{B} \rightarrow \mathit{C}$

How many paths are disabled at a single edge?

How many paths are disabled at a single edge?

ullet "Does fixed sample cross the edge": $\{0,1\}$ -random variable

How many paths are disabled at a single edge?

- "Does fixed sample cross the edge": $\{0,1\}$ -random variable
- Number of paths disabled at $e \le$ number of initial sampled paths crossing e

How many paths are disabled at a single edge?

- "Does fixed sample cross the edge": $\{0,1\}$ -random variable
- Number of paths disabled at $e \le$ number of initial sampled paths crossing e

How many paths are disabled at a single edge?

- "Does fixed sample cross the edge": $\{0,1\}$ -random variable
- Number of paths disabled at $e \le$ number of initial sampled paths crossing e

 $X_e :=$ sampled paths that cross edge e

$$\mathbb{E}[X_e] \leq \mathrm{OBL}(\mathsf{packet} \; \mathsf{set}) \cdot \alpha$$

How many paths are disabled at a single edge?

- "Does fixed sample cross the edge": $\{0,1\}$ -random variable
- Number of paths disabled at $e \le$ number of initial sampled paths crossing e

 $X_e :=$ sampled paths that cross edge e

$$\mathbb{E}[X_e] \leq \mathrm{OBL}(\mathsf{packet} \; \mathsf{set}) \cdot \alpha$$

$$\mathsf{Recall}\ \, \mathcal{C}_{\mathsf{max}} := \mathrm{OBL}(\mathsf{packet}\ \mathsf{set}) \cdot \mathcal{O}(\log n) > 2\mathbb{E}[X_e]$$

$$\mathbb{I}[k \geq C_{\mathsf{max}}] \cdot \mathbb{P}(X_e > k) \leq \exp(-k/2)$$

For a single edge, we have

$$\mathbb{I}[k \geq C_{\mathsf{max}}] \cdot \mathbb{P}(X_{\mathsf{e}} > k) \leq \exp(-k/2)$$

For a single edge, we have

$$\mathbb{I}[k \ge C_{\mathsf{max}}] \cdot \mathbb{P}(X_e > k) \le \exp(-k/2)$$

Would be nice to have:

$$\mathbb{P}\left(\sum_{e} X_{e} \cdot \mathbb{I}[X_{e} \geq C_{\mathsf{max}}] > k\right) \leq \exp(-k/2)$$

For a single edge, we have

$$\mathbb{I}[k \ge C_{\mathsf{max}}] \cdot \mathbb{P}(X_{\mathsf{e}} > k) \le \exp(-k/2)$$

Would be nice to have:

$$\mathbb{P}\left(\sum_{e} X_{e} \cdot \mathbb{I}[X_{e} \geq C_{\mathsf{max}}] > k\right) \leq \exp(-k/2)$$

Then: more than half disabled \rightarrow probability $\exp(-\alpha|\text{packet set}|/4)$

For a single edge, we have

$$\mathbb{I}[k \ge C_{\mathsf{max}}] \cdot \mathbb{P}(X_{\mathsf{e}} > k) \le \exp(-k/2)$$

Would be nice to have:

$$\mathbb{P}\left(\sum_{e} X_{e} \cdot \mathbb{I}[X_{e} \geq C_{\mathsf{max}}] > k\right) \leq \exp(-k/2)$$

Then: more than half disabled \rightarrow probability $\exp(-\alpha|\text{packet set}|/4)$

• Recall: exp(2|packet set| log n) packet sets of size |packet set|

For a single edge, we have

$$\mathbb{I}[k \geq C_{\mathsf{max}}] \cdot \mathbb{P}(X_e > k) \leq \exp(-k/2)$$

Would be nice to have:

$$\mathbb{P}\left(\sum_{e} X_{e} \cdot \mathbb{I}[X_{e} \geq C_{\max}] > k\right) \leq \exp(-k/2)$$

Then: more than half disabled \rightarrow probability $\exp(-\alpha|\mathsf{packet}|)$

- Recall: exp(2|packet set| log n) packet sets of size |packet set|
- $\alpha = \mathcal{O}(\log n)$ sufficient!

Main Result

In any graph, there exists a semi-oblivious routing with sparsity $\alpha = \mathcal{O}(\log(n)/\log\log n)$ that is $\operatorname{poly}(\log n)$ -competitive with the offline optimum

Main Result

In any graph, there exists a semi-oblivious routing with sparsity $\alpha = \mathcal{O}(\log(n)/\log\log n)$ that is $\operatorname{poly}(\log n)$ -competitive with the offline optimum

Open Problems:

 Dependence on centralised control: can you deterministically, competitively deliver packets in a distributed model with semi-oblivious routing?

Main Result

In any graph, there exists a semi-oblivious routing with sparsity $\alpha = \mathcal{O}(\log(n)/\log\log n)$ that is $\operatorname{poly}(\log n)$ -competitive with the offline optimum

Open Problems:

- Dependence on centralised control: can you deterministically, competitively deliver packets in a distributed model with semi-oblivious routing?
 - Coming soon: yes!

Main Result

In any graph, there exists a semi-oblivious routing with sparsity $\alpha = \mathcal{O}(\log(n)/\log\log n)$ that is $\operatorname{poly}(\log n)$ -competitive with the offline optimum

Open Problems:

- Dependence on centralised control: can you deterministically, competitively deliver packets in a distributed model with semi-oblivious routing?
 - Coming soon: yes!
 - But each vertex needs to know the semi-oblivious routing, can you construct one?

Main Result

In any graph, there exists a semi-oblivious routing with sparsity $\alpha = \mathcal{O}(\log(n)/\log\log n)$ that is $\operatorname{poly}(\log n)$ -competitive with the offline optimum

Open Problems:

- Dependence on centralised control: can you deterministically, competitively deliver packets in a distributed model with semi-oblivious routing?
 - Coming soon: yes!
 - But each vertex needs to know the semi-oblivious routing, can you construct one?
- Do sparse semi-oblivious routings with small routing tables exist?

Thank you! Questions?

Full version of paper