Polylog-Competitive Deterministic Local Routing and Scheduling

Bernhard¹² Haeupler

Shyamal³ Patel

Antti² Roeyskoe

Cliff³ Stein

Goran⁴ Zuzic

1: INSAIT, 2: ETH Zürich, 3: Columbia University, 4: Google Research

- Undirected graph
- Packets with set start and destination vertices

- Undirected graph
- Packets with set start and destination vertices
- Time step: each vertex can forward a packet over each incident edge

- Undirected graph
- Packets with set start and destination vertices
- Time step: each vertex can forward a packet over each incident edge

- Undirected graph
- Packets with set start and destination vertices
- Time step: each vertex can forward a packet over each incident edge

- Undirected graph
- Packets with set start and destination vertices
- Time step: each vertex can forward a packet over each incident edge

- Undirected graph
- Packets with set start and destination vertices
- Time step: each vertex can forward a packet over each incident edge
- Goal: minimize time to *deliver* all packets (*completion time*)

Routing Tables

Routing Table Problem

Given undirected graph, design *routing tables* that solve the packet routing problem *competitively*

Routing Tables

Routing Table Problem

Given undirected graph, design *routing tables* that solve the packet routing problem *competitively*

Local forwarding rules for each vertex

- Which packets to forward over which edges
 - Based only on the packets at that vertex, at that time

Routing Tables

Routing Table Problem

Given undirected graph, design *routing tables* that solve the packet routing problem *competitively*

Local forwarding rules for each vertex

- Which packets to forward over which edges
- Based only on the packets at that vertex, at that time

That solve packet routing competitively

ullet C-competitive: for **every** packet routing instance, the forwarding rules achieve completion time $C \cdot \mathrm{OPT}_{\mathrm{global}}$

Example

Time 0

Time 0.1

Time 1

Time 1.1

Time 2

Time 2.1

Time 3

Time 0

Time 0

Time 0

Time 0.1

Time 1

Time 1

Time 1

Time 1.1

Time 2

Time 2

Time 2

Time 2.1

Example: B's Perspective

Time 3

Example: B's Perspective

Time 4

Our Results

Main Result

For every graph, there exists $deterministic poly(\log n)$ -competitive routing tables.

Determinism is Great!

Determinism is Great!

- Generating true randomness is slow and expensive
 - Requires specialized, slow hardware
 - Routers process millions of packets per second, and must be fast

Determinism is Great!

- Generating true randomness is slow and expensive
 - Requires specialized, slow hardware
 - Routers process millions of packets per second, and must be fast
- Guaranteed not to fail!
 - Even if the chance is low, the Internet going down is extremely bad

So far:

- Problem definition
- Our result

So far:

- Problem definition
- Our result

- Previous state of the art
 - ightarrow Competitive **randomized** local routing rules

So far:

- Problem definition
- Our result

- Previous state of the art
 - ightarrow Competitive **randomized** local routing rules
 - ... and why the approach seems inherently random

So far:

- Problem definition
- Our result

- Previous state of the art
 - $\rightarrow \ \mbox{Competitive } \mbox{{\bf randomized} local routing rules}$
 - ... and why the approach seems inherently random
- Our deterministic approach

Vertices must select

- Vertices must select
 - Where to next forward each packet, and

- Vertices must select
 - Where to next forward each packet, and
 - Which packet to forward over each edge

- Vertices must select
 - Where to next forward each packet, and
 - Which packet to forward over each edge

Suppose a helpful person has written a path on each packet

Suppose a helpful person has written a path on each packet

- Congestion C: maximum number of times any edge is used
- Dilation D: length of longest path

Suppose a helpful person has written a path on each packet

- Congestion C: maximum number of times any edge is used
- Dilation D: length of longest path

If we forward packets following the fixed paths:

• Completion time $\geq \max(C, D)$

Suppose a helpful person has written a path on each packet

- Congestion C: maximum number of times any edge is used
- Dilation D: length of longest path

If we forward packets following the fixed paths:

- Completion time $\geq \max(C, D)$
- $\mathcal{O}(C+D)$ possible (offline) [LMR94]

Suppose a helpful person has written a path on each packet

- Congestion C: maximum number of times any edge is used
- Dilation D: length of longest path

If we forward packets following the fixed paths:

- Completion time $\geq \max(C, D)$
- $\mathcal{O}(C+D)$ possible (offline) [LMR94]
- Simple local randomized algorithm [LMR94]
 - Randomly delay each packet $\Rightarrow \log(n)$ overhead

Suppose a helpful person has written a path on each packet

- Congestion C: maximum number of times any edge is used
- Dilation D: length of longest path

If we forward packets following the fixed paths:

- Completion time $\geq \max(C, D)$
- $\mathcal{O}(C+D)$ possible (offline) [LMR94]
- Simple local randomized algorithm [LMR94]
 - Randomly delay each packet $\Rightarrow \log(n)$ overhead
- **Deterministic**: nothing o(CD) known

Paths cannot be selected based on the global packet set

Paths cannot be selected based on the global packet set

 $\,\rightarrow\,$ Oblivious Path Selection: select based only on source and destination

Paths cannot be selected based on the global packet set

→ Oblivious Path Selection: select based only on source and destination

Classic Result: Oblivious Routing/Räcke Trees [Räc02]

For any graph, there exists a distribution of paths between every pair of vertices, such that for any set of packets, sampling paths from the distribution achieves **congestion** at most $\mathcal{O}(\log n)$ times the global optimum congestion.

Paths cannot be selected based on the global packet set

ightarrow Oblivious Path Selection: select based only on source and destination

Classic Result: Oblivious Routing/Räcke Trees [Räc02]

For any graph, there exists a distribution of paths between every pair of vertices, such that for any set of packets, sampling paths from the distribution achieves **congestion** at most $\mathcal{O}(\log n)$ times the global optimum congestion.

• But paths may be long! $(D \gg \text{OPT})$

Paths cannot be selected based on the global packet set

ightarrow Oblivious Path Selection: select based only on source and destination

Classic Result: Oblivious Routing/Räcke Trees [Räc02]

For any graph, there exists a distribution of paths between every pair of vertices, such that for any set of packets, sampling paths from the distribution achieves **congestion** at most $\mathcal{O}(\log n)$ times the global optimum congestion.

• But paths may be long! $(D \gg \text{OPT})$

Hop-Bounded Oblivious Routing [GHZ21]

For any graph, there exists a distribution of paths between every pair of vertices, such that for any set of packets, sampling paths from the distribution achieves **completion time** at most poly(log n) times the global optimum completion time.

Paths cannot be selected based on the global packet set

ightarrow Oblivious Path Selection: select based only on source and destination

Classic Result: Oblivious Routing/Räcke Trees [Räc02]

For any graph, there exists a distribution of paths between every pair of vertices, such that for any set of packets, sampling paths from the distribution achieves **congestion** at most $\mathcal{O}(\log n)$ times the global optimum congestion.

• But paths may be long! $(D \gg \text{OPT})$

Hop-Bounded Oblivious Routing [GHZ21]

For any graph, there exists a distribution of paths between every pair of vertices, such that for any set of packets, sampling paths from the distribution achieves **completion time** at most poly(log n) times the global optimum completion time.

Randomized Approach: Summary

- Oblivious path selection: sample from hop-bounded oblivious routing
- Local scheduling: sample a random delay

Deterministic Local Scheduling / Oblivious Path Selection

Deterministic local scheduling:

- any strategy achieves $\mathcal{O}(C \cdot D)$
- Nothing better is known

Deterministic oblivious path selection:

- I.E. single fixed path between every vertex pair
- $\Omega(\sqrt{n} \cdot \mathrm{OPT})$ lower bound [KKT90]
- Even on hypercubes!

Our Results (again)

Main Result

For every graph, there exists $deterministic poly(\log n)$ -competitive routing tables.

 $\label{eq:Packet Routing = Sparse Semi-Oblivious Path Selection} \\ + \ \mathsf{Local Det}. \ \mathsf{Noise-Tolerant Scheduling}$

```
Packet Routing = Sparse Semi-Oblivious Path Selection
+ Local Det. Noise-Tolerant Scheduling
[with polynomially many possible paths]
```

```
Packet Routing = Sparse Semi-Oblivious Path Selection
+ Local Det. Noise-Tolerant Scheduling
[with polynomially many possible paths]
```

Sparse Semi-Oblivious Path Selection: [ZHR23]

```
Packet Routing = Sparse Semi-Oblivious Path Selection
+ Local Det. Noise-Tolerant Scheduling
[with polynomially many possible paths]
```

- Sparse Semi-Oblivious Path Selection: [ZHR23]
- Local Det. Noise-Tolerant Scheduling: [this paper]

But How?

```
Packet Routing = Sparse Semi-Oblivious Path Selection
+ Local Det. Noise-Tolerant Scheduling
[with polynomially many possible paths]
```

- Sparse Semi-Oblivious Path Selection: [ZHR23]
- Local Det. Noise-Tolerant Scheduling: [this paper]
- "+": This talk [and paper]

Sparse Semi-Oblivious Path Selection

Sparse Semi-Oblivious Path Selection

• Multiple (up to α) fixed paths between each vertex pair

Sparse Semi-Oblivious Path Selection

- Multiple (up to α) fixed paths between each vertex pair
- ullet Guarantee: for any set of packets, can *globally* select one path for each packet among the lpha options,

Sparse Semi-Oblivious Path Selection

- Multiple (up to α) fixed paths between each vertex pair
- Guarantee: for any set of packets, can *globally* select one path for each packet among the α options, s.t. $C + D \le \beta \cdot \mathrm{OPT}_{C+D}$

Sparse Semi-Oblivious Path Selection

- Multiple (up to α) fixed paths between each vertex pair
- Guarantee: for any set of packets, can *globally* select one path for each packet among the α options, s.t. $C + D \le \beta \cdot \mathrm{OPT}_{C+D}$

Existence of Sparse Semi-Oblivious Routings [ZHR23]

For every graph, there exists a $\beta = \text{poly}(\log n)$ -competitive $\alpha = \mathcal{O}(\log^2 n)$ -sparse semi-oblivious routing.

Sparse Semi-Oblivious Path Selection

- Multiple (up to α) fixed paths between each vertex pair
- Guarantee: for any set of packets, can *globally* select one path for each packet among the α options, s.t. $C + D \le \beta \cdot \mathrm{OPT}_{C+D}$

Existence of Sparse Semi-Oblivious Routings [ZHR23]

For every graph, there exists a $\beta = \text{poly}(\log n)$ -competitive $\alpha = \mathcal{O}(\log^2 n)$ -sparse semi-oblivious routing.

- Key issue: how to locally select correct path
 - \dots amongst the $\alpha-1$ paths of *noise*

What can you hope to deliver in presence of noise?

• A subset $S \subseteq P$ is (α, T) -good, if

What can you hope to deliver in presence of noise?

- A subset $S \subseteq P$ is (α, T) -good, if
 - 1. It is large: $|S| \geq \frac{1}{\alpha}|P|$
 - 2. If other packets didn't exist, it could be scheduled $C(S) + D(S) \le T$

What can you hope to deliver in presence of noise?

- A subset $S \subseteq P$ is (α, T) -good, if
 - 1. It is large: $|S| \geq \frac{1}{\alpha}|P|$
 - 2. If other packets didn't exist, it could be scheduled $C(S) + D(S) \le T$

Noise-Tolerant Scheduling:

What can you hope to deliver in presence of noise?

- A subset $S \subseteq P$ is (α, T) -good, if
 - 1. It is large: $|S| \geq \frac{1}{\alpha}|P|$
 - 2. If other packets didn't exist, it could be scheduled $C(S) + D(S) \le T$

Noise-Tolerant Scheduling:

• Given (α, T) and packet scheduling instance

What can you hope to deliver in presence of noise?

- A subset $S \subseteq P$ is (α, T) -good, if
 - 1. It is large: $|S| \geq \frac{1}{\alpha}|P|$
 - 2. If other packets didn't exist, it could be scheduled $C(S) + D(S) \le T$

Noise-Tolerant Scheduling:

- Given (α, T) and packet scheduling instance
- Deliver half of every (α, T) -good subset

Noise-Tolerant Scheduling:

- Given (α, T) ,
- Deliver half of every (α, T) -good subset
- In time relative to αT

Noise-Tolerant Scheduling:

- Given (α, T) ,
- Deliver half of every (α, T) -good subset
- In time relative to αT

Noise-Tolerant Scheduling:

- Given (α, T) ,
- Deliver half of every (α, T) -good subset
- In time relative to αT

Harder problem than (regular) scheduling

ullet Recall: nothing better than $\mathcal{O}(C \cdot D)$ known for local det. scheduling

Noise-Tolerant Scheduling:

- Given (α, T),
- Deliver half of every (α, T) -good subset
- In time relative to αT

Harder problem than (regular) scheduling

ullet Recall: nothing better than $\mathcal{O}(C \cdot D)$ known for local det. scheduling We do not break this

Noise-Tolerant Scheduling:

- Given (α, T),
- Deliver half of every (α, T) -good subset
- In time relative to αT

- ullet Recall: nothing better than $\mathcal{O}(C \cdot D)$ known for local det. scheduling We do not break this
 - ullet Restriction: poly-size domain path set ${\mathcal P}$

Noise-Tolerant Scheduling:

- Given (α, T),
- Deliver half of every (α, T) -good subset
- In time relative to αT

- Recall: nothing better than $\mathcal{O}(C \cdot D)$ known for local det. scheduling We do not break this
 - ullet Restriction: poly-size domain path set ${\mathcal P}$
 - ullet \mathcal{P} : given set guaranteed to contain all packet paths

Noise-Tolerant Scheduling:

- Given (α, T),
- Deliver half of every (α, T) -good subset
- In time relative to αT

- ullet Recall: nothing better than $\mathcal{O}(C \cdot D)$ known for local det. scheduling We do not break this
 - ullet Restriction: poly-size domain path set ${\mathcal P}$
 - ullet \mathcal{P} : given set guaranteed to contain all packet paths
 - Here: domain path set = semi-oblivious routing (αn^2 paths!)

Noise-Tolerant Scheduling:

- Given (α, T) ,
- Deliver half of every (α, T) -good subset
- In time relative to αT

Domain path set: given set guaranteed to contain all packet paths

Noise-Tolerant Scheduling:

- Given (α, T),
- Deliver half of every (α, T) -good subset
- In time relative to αT

Domain path set: given set guaranteed to contain all packet paths

Competitive Local Det. Noise-Tolerant Scheduling

For every graph and poly-size domain path set \mathcal{P} , there exists a *local* and *deterministic* Noise-Tolerant Scheduling algorithm that uses $\alpha T \cdot \operatorname{poly}(\log n)$ time steps.

The " \pm "

Packet Routing = Sparse Semi-Oblivious Path Selection + Local Det. Noise-Tolerant Scheduling

The <u>" +"</u>

Packet Routing = Sparse Semi-Oblivious Path Selection + Local Det. Noise-Tolerant Scheduling

The "+"

Packet Routing = Sparse Semi-Oblivious Path Selection + Local Det. Noise-Tolerant Scheduling

The Algorithm:

1. $\mathcal{P} \leftarrow \alpha$ -sparse β -competitive semi-oblivious routing

The $^{\prime\prime}+^{\prime\prime}$

 $\label{eq:Packet Routing Sparse Semi-Oblivious Path Selection} \\ + \mbox{Local Det. Noise-Tolerant Scheduling}$

- 1. $\mathcal{P} \leftarrow \alpha$ -sparse β -competitive semi-oblivious routing
- 2. Repeat $\mathcal{O}(\log n)$ times:

The $^{\prime\prime}+^{\prime\prime}$

 $\label{eq:Packet Routing Sparse Semi-Oblivious Path Selection} \\ + \mbox{Local Det. Noise-Tolerant Scheduling}$

- 1. $\mathcal{P} \leftarrow \alpha$ -sparse β -competitive semi-oblivious routing
- 2. Repeat $\mathcal{O}(\log n)$ times:
 - a. For $i = 1, 2, ..., \alpha$:

The $^{\prime\prime}+^{\prime\prime}$

 $\label{eq:Packet Routing Sparse Semi-Oblivious Path Selection} \\ + \mbox{Local Det. Noise-Tolerant Scheduling}$

- 1. $\mathcal{P} \leftarrow \alpha$ -sparse β -competitive semi-oblivious routing
- 2. Repeat $\mathcal{O}(\log n)$ times:
 - a. For $i = 1, 2, ..., \alpha$:
 - i. For each (s, t), set (s, t)-packets' paths to P(s, t)

The "+"

Packet Routing = Sparse Semi-Oblivious Path Selection + Local Det. Noise-Tolerant Scheduling

- 1. $\mathcal{P} \leftarrow \alpha$ -sparse β -competitive semi-oblivious routing
- 2. Repeat $\mathcal{O}(\log n)$ times:
 - a. For $i = 1, 2, ..., \alpha$:
 - i. For each (s, t), set (s, t)-packets' paths to $P(s, t)_i$
 - ii. Run $(2\alpha, T)$ -local det. noise-tolerant scheduling with return

End of Talk

Questions?

References

[GHZ21]	Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic. "Hop-constrained oblivious routing". In: STOC '21:
	53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021. Ed. by Samir Khuller and Virginia Vassilevska Williams. ACM, 2021, pp. 1208–1220. DOI:
	10.1145/3406325.3451098.URL: https://doi.org/10.1145/3406325.3451098.

- [KKT90] Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. "Tight Bounds for Oblivious Routing in the Hypercube". In: Proceedings of the 2nd Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA '90, Island of Crete, Greece, July 2-6, 1990. Ed. by Frank Thomson Leighton. ACM, 1990, pp. 31–36. DOI: 10.1145/97444.97453. URL: https://doi.org/10.1145/97444.97453.
- [LMR94] Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. "Packet Routing and Job-Shop Scheduling in O(Congestion + Dilation) Steps". In: Comb. 14.2 (1994), pp. 167–186. DOI: 10.1007/BF01215349. URL: https://doi.org/10.1007/BF01215349.
- [Räc02] Harald Räcke. "Minimizing Congestion in General Networks". In: 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings. IEEE Computer Society, 2002, pp. 43–52. DOI: 10.1109/SFCS.2002.1181881. URL: https://doi.org/10.1109/SFCS.2002.1181881.
- [ZHR23] Goran Zuzic, Bernhard Haeupler, and Antti Roeyskoe. "Sparse Semi-Oblivious Routing: Few Random Paths Suffice". In: Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing, PODC 2023, Orlando, FL, USA, June 19-23, 2023. Ed. by Rotem Oshman et al. ACM, 2023, pp. 222–232. DOI: 10.1145/3583668.3594585. URL: https://doi.org/10.1145/3583668.3594585.