
Low-Step Multi-Commodity Flow Emulators

Bernhard12

Haeupler
D Ellis3

Hershkowitz
Jason4

Li
Antti2

Roeyskoe
Thatchaphol5

Saranurak

1: INSAIT, 2: ETH Zürich, 3: Brown University, 4: CMU, 5: U of Michigan

Multi-Commodity Flow Problem

Input:

Undirected graph G with edge capacities u

Demand D: ”send D(a, b) between a, b ∈ V ”

Output:

F =
∑

(a,b)∈supp(D) Fa,b

F must be capacity-respecting

Variants:

|Fa,b| = λD(a, b) (Concurrent)

|Fa,b| ≤ D(a, b) (Non-Concurrent)

Goal: maximize |F |

Multi-Commodity Flow Problem

Input:

Undirected graph G with edge capacities u

Demand D: ”send D(a, b) between a, b ∈ V ”

Output:

F =
∑

(a,b)∈supp(D) Fa,b

F must be capacity-respecting

Variants:

|Fa,b| = λD(a, b) (Concurrent)

|Fa,b| ≤ D(a, b) (Non-Concurrent)

Goal: maximize |F |

Multi-Commodity Flow Problem

Input:

Undirected graph G with edge capacities u

Demand D: ”send D(a, b) between a, b ∈ V ”

Output:

F =
∑

(a,b)∈supp(D) Fa,b

F must be capacity-respecting

Variants:

|Fa,b| = λD(a, b) (Concurrent)

|Fa,b| ≤ D(a, b) (Non-Concurrent)

Goal: maximize |F |

Multi-Commodity Flow Problem

Input:

Undirected graph G with edge capacities u

Demand D: ”send D(a, b) between a, b ∈ V ”

Output:

F =
∑

(a,b)∈supp(D) Fa,b

F must be capacity-respecting

Variants:

|Fa,b| = λD(a, b) (Concurrent)

|Fa,b| ≤ D(a, b) (Non-Concurrent)

Goal: maximize |F |

Multi-Commodity Flow Problem

Input:

Undirected graph G with edge capacities u

Demand D: ”send D(a, b) between a, b ∈ V ”

Output:

F =
∑

(a,b)∈supp(D) Fa,b

F must be capacity-respecting

Variants:

|Fa,b| = λD(a, b) (Concurrent)

|Fa,b| ≤ D(a, b) (Non-Concurrent)

Goal: maximize |F |

Multi-Commodity Flow Problem

Input:

Undirected graph G with edge capacities u

Demand D: ”send D(a, b) between a, b ∈ V ”

Output:

F =
∑

(a,b)∈supp(D) Fa,b

F must be capacity-respecting

Variants:

|Fa,b| = λD(a, b) (Concurrent)

|Fa,b| ≤ D(a, b) (Non-Concurrent)

Goal: maximize |F |

Multi-Commodity Flow Problem

Input:

Undirected graph G with edge capacities u

Demand D: ”send D(a, b) between a, b ∈ V ”

Output:

F =
∑

(a,b)∈supp(D) Fa,b

F must be capacity-respecting

Variants:

|Fa,b| = λD(a, b) (Concurrent)

|Fa,b| ≤ D(a, b) (Non-Concurrent)

Goal: maximize |F |

Multi-Commodity Flow Problem

Input:

Undirected graph G with edge capacities u

Demand D: ”send D(a, b) between a, b ∈ V ”

Output:

F =
∑

(a,b)∈supp(D) Fa,b

F must be capacity-respecting

Variants:

|Fa,b| = λD(a, b) (Concurrent)

|Fa,b| ≤ D(a, b) (Non-Concurrent)

Goal: maximize |F |

Multi-Commodity Flow Problem

Input:

Undirected graph G with edge capacities u

Demand D: ”send D(a, b) between a, b ∈ V ”

Output:

F =
∑

(a,b)∈supp(D) Fa,b

F must be capacity-respecting

Variants:

|Fa,b| = λD(a, b) (Concurrent)

|Fa,b| ≤ D(a, b) (Non-Concurrent)

Goal: maximize |F |

Multi-Commodity Flow Problem

Input:

Undirected graph G with edge capacities u

Demand D: ”send D(a, b) between a, b ∈ V ”

Output:

F =
∑

(a,b)∈supp(D) Fa,b

F must be capacity-respecting

Variants:

|Fa,b| = λD(a, b) (Concurrent)

|Fa,b| ≤ D(a, b) (Non-Concurrent)

Goal: maximize |F |

MCF Algorithms

n = |V | m = |E | k = |supp(D)|

.

MCF Algorithms

n = |V | m = |E | k = |supp(D)|

Approx. Time C/NC

[Mad10] (1 + δ) O(mn/δ) Both

MCF Algorithms

n = |V | m = |E | k = |supp(D)|

Approx. Time C/NC

[Mad10] (1 + δ) O(mn/δ) Both

[KMP12] (1 + δ) O(m4/3poly(k/δ)) NC

[She17] (1 + δ) O(mk/δ) C

Flow-Decomposition Barrier

Recall: the output is k single-commodity flows

→ Ω(mk) lower bound?

As

Bs

Cs

At

Bt

Ct

1

1

1

k k k k

1

1

1

Solutions?

Assume unit-capacity? (non-concurrent only)

Output value only?

Flow-Decomposition Barrier

Recall: the output is k single-commodity flows

→ Ω(mk) lower bound?

As

Bs

Cs

At

Bt

Ct

1

1

1

k k k k

1

1

1

Solutions?

Assume unit-capacity? (non-concurrent only)

Output value only?

Flow-Decomposition Barrier

Recall: the output is k single-commodity flows

→ Ω(mk) lower bound?

As

Bs

Cs

At

Bt

Ct

1

1

1

k k k k

1

1

1

Solutions?

Assume unit-capacity? (non-concurrent only)

Output value only?

Flow-Decomposition Barrier

Recall: the output is k single-commodity flows

→ Ω(mk) lower bound?

As

Bs

Cs

At

Bt

Ct

1

1

1

k k k k

1

1

1

Solutions?

Assume unit-capacity? (non-concurrent only)

Output value only?

Flow-Decomposition Barrier

Recall: the output is k single-commodity flows

→ Ω(mk) lower bound?

As

Bs

Cs

At

Bt

Ct

1

1

1

k k k k

1

1

1

Solutions?

Assume unit-capacity? (non-concurrent only)

Output value only?

Flow-Decomposition Barrier

Recall: the output is k single-commodity flows

→ Ω(mk) lower bound?

As

Bs

Cs

At

Bt

Ct

1

1

1

k k k k

1

1

1

Solutions?

Assume unit-capacity? (non-concurrent only)

Output value only?

MCF Algorithms

n = |V | m = |E | k = |supp(D)|

Approx. Time C/NC Output

[Mad10] (1 + δ) Ω(mn) Both Explicit

[KMP12] (1 + δ) Ω(mk) NC Explicit

[She17] (1 + δ) Ω(mk) C Explicit

I hate trying to get Beamer layouts to work

MCF Algorithms

n = |V | m = |E | k = |supp(D)|

Approx. Time C/NC Output

[Mad10] (1 + δ) Ω(mn) Both Explicit

[KMP12] (1 + δ) Ω(mk) NC Explicit

[She17] (1 + δ) Ω(mk) C Explicit

[RST14] log4(n) (m+k)Õ(1) Both Value

I hate trying to get Beamer layouts to work

MCF Algorithms

n = |V | m = |E | k = |supp(D)|

Approx. Time C/NC Output

[Mad10] (1 + δ) Ω(mn) Both Explicit

[KMP12] (1 + δ) Ω(mk) NC Explicit

[She17] (1 + δ) Ω(mk) C Explicit

[RST14] log4(n) (m+k)Õ(1) Both Value

[Chu21] (log n)Oϵ(1) (m + k)nϵ NC† Explicit

[CZ23] (log log n)Oϵ(1) (m + k)nϵ NC† Explicit

†: Unit-capacity graphs only

MCF Algorithms

n = |V | m = |E | k = |supp(D)|

Approx. Time C/NC Output

[Mad10] (1 + δ) Ω(mn) Both Explicit

[KMP12] (1 + δ) Ω(mk) NC Explicit

[She17] (1 + δ) Ω(mk) C Explicit

[RST14] log4(n) (m+k)Õ(1) Both Value

[Chu21] (log n)Oϵ(1) (m + k)nϵ NC† Explicit

[CZ23] (log log n)Oϵ(1) (m + k)nϵ NC† Explicit

Ours Oϵ(1) (m + k)nϵ Both Implicit

†: Unit-capacity graphs only

MCF Algorithms

n = |V | m = |E | k = |supp(D)|

Approx. Time C/NC Output

[Mad10] (1 + δ) Ω(mn) Both Explicit

[KMP12] (1 + δ) Ω(mk) NC Explicit

[She17] (1 + δ) Ω(mk) C Explicit

[RST14] log4(n) (m+k)Õ(1) Both Value

[Chu21] (log n)Oϵ(1) (m + k)nϵ NC† Explicit

[CZ23] (log log n)Oϵ(1) (m + k)nϵ NC† Explicit

Ours Oϵ(1) (m + k)nϵ Both Implicit

†: Unit-capacity graphs only

Implicit Representation

As

Bs

Cs

At

Bt

Ct

1

1

1

1

1

1

k k k k

Implicit Representation

As

Bs

Cs

At

Bt

Ct

1

1

1

1

1

1
k

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

2

1

4

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

2

1

4

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

2

1

4

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

2

1

4

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

2

1

4

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

2

1

4

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

2

1

4

Implicit Representation

Stacked copies of vertex set
on top of original graph

Edges correspond to short
paths on previous level

Topmost layer defines flow

Edge = flow path

Capacity = flow value

Can compute

Flow value

Congestion

ith edge of jth path

A

B

C

D

E

A

B

C

D

E

A

B

C

E

D

2

1

4

Our Results

Approx. Time C/NC Output

Oϵ(1) (m+k)nϵ Both Implicit

Near-linear time algorithm

Finds implicit representation of Oϵ(1)-competitive flow

Even existence of o(mk)-size, O(1)-competitive implicit
representations was open

Generalizes to min-cost multi-commodity flow

Works in parallel, with depth nϵ

Key ingredient: low-step MCMCF emulators

Our Results

Approx. Time C/NC Output

Oϵ(1) (m+k)nϵ Both Implicit

Near-linear time algorithm

Finds implicit representation of Oϵ(1)-competitive flow

Even existence of o(mk)-size, O(1)-competitive implicit
representations was open

Generalizes to min-cost multi-commodity flow

Works in parallel, with depth nϵ

Key ingredient: low-step MCMCF emulators

Our Results

Approx. Time C/NC Output

Oϵ(1) (m+k)nϵ Both Implicit

Near-linear time algorithm

Finds implicit representation of Oϵ(1)-competitive flow

Even existence of o(mk)-size, O(1)-competitive implicit
representations was open

Generalizes to min-cost multi-commodity flow

Works in parallel, with depth nϵ

Key ingredient: low-step MCMCF emulators

Our Results

Approx. Time C/NC Output

Oϵ(1) (m+k)nϵ Both Implicit

Near-linear time algorithm

Finds implicit representation of Oϵ(1)-competitive flow

Even existence of o(mk)-size, O(1)-competitive implicit
representations was open

Generalizes to min-cost multi-commodity flow

Works in parallel, with depth nϵ

Key ingredient: low-step MCMCF emulators

Our Results

Approx. Time C/NC Output

Oϵ(1) (m+k)nϵ Both Implicit

Near-linear time algorithm

Finds implicit representation of Oϵ(1)-competitive flow

Even existence of o(mk)-size, O(1)-competitive implicit
representations was open

Generalizes to min-cost multi-commodity flow

Works in parallel, with depth nϵ

Key ingredient: low-step MCMCF emulators

Our Results

Approx. Time C/NC Output

Oϵ(1) (m+k)nϵ Both Implicit

Near-linear time algorithm

Finds implicit representation of Oϵ(1)-competitive flow

Even existence of o(mk)-size, O(1)-competitive implicit
representations was open

Generalizes to min-cost multi-commodity flow

Works in parallel, with depth nϵ

Key ingredient: low-step MCMCF emulators

Our Results

Approx. Time C/NC Output

Oϵ(1) (m+k)nϵ Both Implicit

Near-linear time algorithm

Finds implicit representation of Oϵ(1)-competitive flow

Even existence of o(mk)-size, O(1)-competitive implicit
representations was open

Generalizes to min-cost multi-commodity flow

Works in parallel, with depth nϵ

Key ingredient: low-step MCMCF emulators

Outline

So far:

Problem definition

Our results

Next:

Setting with lengths

Emulators: definition and results

Brief overview of algorithm

Outline

So far:

Problem definition

Our results

Next:

Setting with lengths

Emulators: definition and results

Brief overview of algorithm

Outline

So far:

Problem definition

Our results

Next:

Setting with lengths

Emulators: definition and results

Brief overview of algorithm

Outline

So far:

Problem definition

Our results

Next:

Setting with lengths

Emulators: definition and results

Brief overview of algorithm

Outline

So far:

Problem definition

Our results

Next:

Setting with lengths

Emulators: definition and results

Brief overview of algorithm

Setting with Lengths

Graphs: undirected, with capacities u(e) and lengths l(e)

Flows: assign flow to paths in G

cong(F) := maxe F (e)/u(e) := maxe
∑

P:e∈P F (P)/u(e)

totlen(F) :=
∑

P F (P) · len(P)
step(F) := maxP∈supp(F) |P|

Flow F routes demand D if
∑

(a, b)-path P F (P) = D(a, b)

Setting with Lengths

Graphs: undirected, with capacities u(e) and lengths l(e)

Flows: assign flow to paths in G

cong(F) := maxe F (e)/u(e) := maxe
∑

P:e∈P F (P)/u(e)

totlen(F) :=
∑

P F (P) · len(P)
step(F) := maxP∈supp(F) |P|

Flow F routes demand D if
∑

(a, b)-path P F (P) = D(a, b)

Setting with Lengths

Graphs: undirected, with capacities u(e) and lengths l(e)

Flows: assign flow to paths in G

cong(F) := maxe F (e)/u(e) := maxe
∑

P:e∈P F (P)/u(e)

totlen(F) :=
∑

P F (P) · len(P)
step(F) := maxP∈supp(F) |P|

Flow F routes demand D if
∑

(a, b)-path P F (P) = D(a, b)

Setting with Lengths

Graphs: undirected, with capacities u(e) and lengths l(e)

Flows: assign flow to paths in G

cong(F) := maxe F (e)/u(e) := maxe
∑

P:e∈P F (P)/u(e)

totlen(F) :=
∑

P F (P) · len(P)
step(F) := maxP∈supp(F) |P|

Flow F routes demand D if
∑

(a, b)-path P F (P) = D(a, b)

Setting with Lengths

Graphs: undirected, with capacities u(e) and lengths l(e)

Flows: assign flow to paths in G

cong(F) := maxe F (e)/u(e) := maxe
∑

P:e∈P F (P)/u(e)

totlen(F) :=
∑

P F (P) · len(P)

step(F) := maxP∈supp(F) |P|

Flow F routes demand D if
∑

(a, b)-path P F (P) = D(a, b)

Setting with Lengths

Graphs: undirected, with capacities u(e) and lengths l(e)

Flows: assign flow to paths in G

cong(F) := maxe F (e)/u(e) := maxe
∑

P:e∈P F (P)/u(e)

totlen(F) :=
∑

P F (P) · len(P)
step(F) := maxP∈supp(F) |P|

Flow F routes demand D if
∑

(a, b)-path P F (P) = D(a, b)

Setting with Lengths

Graphs: undirected, with capacities u(e) and lengths l(e)

Flows: assign flow to paths in G

cong(F) := maxe F (e)/u(e) := maxe
∑

P:e∈P F (P)/u(e)

totlen(F) :=
∑

P F (P) · len(P)
step(F) := maxP∈supp(F) |P|

Flow F routes demand D if

∑
(a, b)-path P F (P) = D(a, b)

Setting with Lengths

Graphs: undirected, with capacities u(e) and lengths l(e)

Flows: assign flow to paths in G

cong(F) := maxe F (e)/u(e) := maxe
∑

P:e∈P F (P)/u(e)

totlen(F) :=
∑

P F (P) · len(P)
step(F) := maxP∈supp(F) |P|

Flow F routes demand D if
∑

(a, b)-path P F (P) = D(a, b)

Low-Step Flow Emulators (Informal)

A graph simplification that

Preserves min-cost multi-commodity flows, and

Allows us to focus only on flows with a short step-length

i.e., all flow paths have few edges

Low-Step Flow Emulators (Informal)

A graph simplification that

Preserves min-cost multi-commodity flows, and

Allows us to focus only on flows with a short step-length

i.e., all flow paths have few edges

Low-Step Flow Emulators (Informal)

A graph simplification that

Preserves min-cost multi-commodity flows, and

Allows us to focus only on flows with a short step-length

i.e., all flow paths have few edges

Low-Step Flow Emulators (Informal)

A graph simplification that

Preserves min-cost multi-commodity flows, and

Allows us to focus only on flows with a short step-length

i.e., all flow paths have few edges

Low-Step Flow Emulators (Informal)

A graph simplification that

Preserves min-cost multi-commodity flows, and

Allows us to focus only on flows with a short step-length

i.e., all flow paths have few edges

Low-Step Flow Emulators

A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)
totlen(F ′) ≤ s · totlen(F ∗)
step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F) ≤ cong(F ′)
totlen(F) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s

Low-Step Flow Emulators

A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)
totlen(F ′) ≤ s · totlen(F ∗)
step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F) ≤ cong(F ′)
totlen(F) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s

Low-Step Flow Emulators

A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)
totlen(F ′) ≤ s · totlen(F ∗)
step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F) ≤ cong(F ′)
totlen(F) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s

Low-Step Flow Emulators

A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)
totlen(F ′) ≤ s · totlen(F ∗)
step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F) ≤ cong(F ′)
totlen(F) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s

Low-Step Flow Emulators

A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)
totlen(F ′) ≤ s · totlen(F ∗)
step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F) ≤ cong(F ′)
totlen(F) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s

Low-Step Flow Emulators

A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)

totlen(F ′) ≤ s · totlen(F ∗)
step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F) ≤ cong(F ′)
totlen(F) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s

Low-Step Flow Emulators

A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)
totlen(F ′) ≤ s · totlen(F ∗)

step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F) ≤ cong(F ′)
totlen(F) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s

Low-Step Flow Emulators

A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)
totlen(F ′) ≤ s · totlen(F ∗)
step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F) ≤ cong(F ′)
totlen(F) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s

Low-Step Flow Emulators

A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)
totlen(F ′) ≤ s · totlen(F ∗)
step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F) ≤ cong(F ′)
totlen(F) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s

Low-Step Flow Emulators

A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)
totlen(F ′) ≤ s · totlen(F ∗)
step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F) ≤ cong(F ′)

totlen(F) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s

Low-Step Flow Emulators

A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)
totlen(F ′) ≤ s · totlen(F ∗)
step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F) ≤ cong(F ′)
totlen(F) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s

Low-Step Flow Emulators

A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)
totlen(F ′) ≤ s · totlen(F ∗)
step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F) ≤ cong(F ′)
totlen(F) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s

Emulators: Our Results

Emulators (Constructive)

For any ϵ > 0 and G , an emulator H with

step bound t = Oϵ(1),

length slack s = Oϵ(1), and

congestion slack κ = nϵ

can be computed in time |E (G)|1+ϵ

The mapping Π is implicit

We also give an existential result with a tighter tradeoff

Emulators: Our Results

Emulators (Constructive)

For any ϵ > 0 and G , an emulator H with

step bound t = Oϵ(1),

length slack s = Oϵ(1), and

congestion slack κ = nϵ

can be computed in time |E (G)|1+ϵ

The mapping Π is implicit

We also give an existential result with a tighter tradeoff

Emulators: Our Results

Emulators (Constructive)

For any ϵ > 0 and G , an emulator H with

step bound t = Oϵ(1),

length slack s = Oϵ(1), and

congestion slack κ = nϵ

can be computed in time |E (G)|1+ϵ

The mapping Π is implicit

We also give an existential result with a tighter tradeoff

Emulators: Our Results

Emulators (Constructive)

For any ϵ > 0 and G , an emulator H with

step bound t = Oϵ(1),

length slack s = Oϵ(1), and

congestion slack κ = nϵ

can be computed in time |E (G)|1+ϵ

The mapping Π is implicit

We also give an existential result with a tighter tradeoff

Emulators: Our Results

Emulators (Constructive)

For any ϵ > 0 and G , an emulator H with

step bound t = Oϵ(1),

length slack s = Oϵ(1), and

congestion slack κ = nϵ

can be computed in time |E (G)|1+ϵ

The mapping Π is implicit

We also give an existential result with a tighter tradeoff

Emulators: Our Results

Emulators (Constructive)

For any ϵ > 0 and G , an emulator H with

step bound t = Oϵ(1),

length slack s = Oϵ(1), and

congestion slack κ = nϵ

can be computed in time |E (G)|1+ϵ

The mapping Π is implicit

We also give an existential result with a tighter tradeoff

Emulators: Our Results

Emulators (Constructive)

For any ϵ > 0 and G , an emulator H with

step bound t = Oϵ(1),

length slack s = Oϵ(1), and

congestion slack κ = nϵ

can be computed in time |E (G)|1+ϵ

The mapping Π is implicit

We also give an existential result with a tighter tradeoff

Emulators: Our Results

Emulators (Constructive)

For any ϵ > 0 and G , an emulator H with

step bound t = Oϵ(1),

length slack s = Oϵ(1), and

congestion slack κ = nϵ

can be computed in time |E (G)|1+ϵ

The mapping Π is implicit

We also give an existential result with a tighter tradeoff

Emulators: Our Results

Emulators (Constructive)

For any ϵ > 0 and G , an emulator H with

step bound t = Oϵ(1),

length slack s = Oϵ(1), and

congestion slack κ = nϵ

can be computed in time |E (G)|1+ϵ

The mapping Π is implicit

We also give an existential result with a tighter tradeoff

The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)
Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing

The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems

, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)
Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing

The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)
Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing

The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)
Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing

The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)
Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing

The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)
Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing

The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)
Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing

The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)
Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing

The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)

Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing

The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)
Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing

The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)
Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing

The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)
Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing

Length-Constrained Expander Workshop
- Here at STOC!

Tuesday 25th - Introduction and overview

Length-constrained expanders

Low-step emulators

Wednesday 26th - Fast algorithms

O(1)-approx min cost multicommodity flow via emulators

Algorithmics of LC expander decomposition

Thursday 27th - Dynamic algorithms

Dynamic emulators → O(1)-approx fully dynamic distance oracles!

Open directions of research

End of Talk

Questions?

References

[Chu21] Julia Chuzhoy. “Decremental all-pairs shortest paths in deterministic near-linear time”. In: STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021. Ed. by
Samir Khuller and Virginia Vassilevska Williams. ACM, 2021, pp. 626–639. doi: 10.1145/3406325.3451025.
url: https://doi.org/10.1145/3406325.3451025.

[CZ23] Julia Chuzhoy and Ruimin Zhang. “A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest
Paths”. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023,
Orlando, FL, USA, June 20-23, 2023. Ed. by Barna Saha and Rocco A. Servedio. ACM, 2023,
pp. 1159–1172. doi: 10.1145/3564246.3585196. url: https://doi.org/10.1145/3564246.3585196.

[GK98] Naveen Garg and Jochen Könemann. “Faster and Simpler Algorithms for Multicommodity Flow and Other
Fractional Packing Problems”. In: 39th Annual Symposium on Foundations of Computer Science, FOCS ’98,
November 8-11, 1998, Palo Alto, California, USA. IEEE Computer Society, 1998, pp. 300–309. doi:
10.1109/SFCS.1998.743463. url: https://doi.org/10.1109/SFCS.1998.743463.

[KMP12] Jonathan A. Kelner, Gary L. Miller, and Richard Peng. “Faster approximate multicommodity flow using
quadratically coupled flows”. In: Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, New York, NY, USA, May 19 - 22, 2012. Ed. by Howard J. Karloff and Toniann Pitassi. ACM,
2012, pp. 1–18. doi: 10.1145/2213977.2213979. url: https://doi.org/10.1145/2213977.2213979.

[Mad10] Aleksander Madry. “Faster approximation schemes for fractional multicommodity flow problems via dynamic
graph algorithms”. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010. Ed. by Leonard J. Schulman. ACM, 2010, pp. 121–130.
doi: 10.1145/1806689.1806708. url: https://doi.org/10.1145/1806689.1806708.

[RST14] Harald Räcke, Chintan Shah, and Hanjo Täubig. “Computing Cut-Based Hierarchical Decompositions in
Almost Linear Time”. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014. Ed. by Chandra Chekuri. SIAM, 2014,
pp. 227–238. doi: 10.1137/1.9781611973402.17. url: https://doi.org/10.1137/1.9781611973402.17.

[She17] Jonah Sherman. “Area-convexity, l∞ regularization, and undirected multicommodity flow”. In: Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017. Ed. by Hamed Hatami, Pierre McKenzie, and Valerie King. ACM, 2017,
pp. 452–460. doi: 10.1145/3055399.3055501. url: https://doi.org/10.1145/3055399.3055501.

https://doi.org/10.1145/3406325.3451025
https://doi.org/10.1145/3406325.3451025
https://doi.org/10.1145/3564246.3585196
https://doi.org/10.1145/3564246.3585196
https://doi.org/10.1109/SFCS.1998.743463
https://doi.org/10.1109/SFCS.1998.743463
https://doi.org/10.1145/2213977.2213979
https://doi.org/10.1145/2213977.2213979
https://doi.org/10.1145/1806689.1806708
https://doi.org/10.1145/1806689.1806708
https://doi.org/10.1137/1.9781611973402.17
https://doi.org/10.1137/1.9781611973402.17
https://doi.org/10.1145/3055399.3055501
https://doi.org/10.1145/3055399.3055501

	References

