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Multi-Commodity Flow Problem

Input:

Undirected graph G with edge capacities u

Demand D: ”send D(a, b) between a, b ∈ V ”

Output:

F =
∑

(a,b)∈supp(D) Fa,b

F must be capacity-respecting

Variants:

|Fa,b| = λD(a, b) (Concurrent)

|Fa,b| ≤ D(a, b) (Non-Concurrent)

Goal: maximize |F |
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Our Results

Approx. Time C/NC Output

Oϵ(1) (m+k)nϵ Both Implicit

Near-linear time algorithm

Finds implicit representation of Oϵ(1)-competitive flow

Even existence of o(mk)-size, O(1)-competitive implicit
representations was open

Generalizes to min-cost multi-commodity flow

Works in parallel, with depth nϵ

Key ingredient: low-step MCMCF emulators
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Setting with Lengths

Graphs: undirected, with capacities u(e) and lengths l(e)

Flows: assign flow to paths in G

cong(F ) := maxe F (e)/u(e) := maxe
∑

P:e∈P F (P)/u(e)

totlen(F ) :=
∑

P F (P) · len(P)
step(F ) := maxP∈supp(F ) |P|

Flow F routes demand D if
∑

(a, b)-path P F (P) = D(a, b)
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A t-step emulator of a graph G is a

graph H on same vertex set

with mapping Π from edges in H to paths in G ,

Such that

⇒: For every flow F ∗ routing D in G , exists F ′ routing D in H, s.t.

cong(F ′) ≤ κ · cong(F ∗)
totlen(F ′) ≤ s · totlen(F ∗)
step(F ′) ≤ t

⇐: For any F ′ on H, for F = Π(F ′),

cong(F ) ≤ cong(F ′)
totlen(F ) ≤ totlen(F ′)

Parameters: congestion slack κ, length slack s
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Emulators: Our Results

Emulators (Constructive)

For any ϵ > 0 and G , an emulator H with

step bound t = Oϵ(1),

length slack s = Oϵ(1), and

congestion slack κ = nϵ

can be computed in time |E (G )|1+ϵ

The mapping Π is implicit

We also give an existential result with a tighter tradeoff
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The Flow Algorithm

Emulators reduce MCMC-flow problems into short MCMCF-problems, but

1. ”Congestion slack κ = nϵ”

Recall: want constant approximation

2. How to even solve a short MCMC-flow problem?

Solutions:

1. Boosting: (κ, s)-approx to O(s)-approx

Recall: s = Oϵ(1)
Similar to [GK98]; enabled by implicit representation!

2. Novel high-commodity short flow algorithm

Built on length-constrained expander routing
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Length-Constrained Expander Workshop
- Here at STOC!

Tuesday 25th - Introduction and overview

Length-constrained expanders

Low-step emulators

Wednesday 26th - Fast algorithms

O(1)-approx min cost multicommodity flow via emulators

Algorithmics of LC expander decomposition

Thursday 27th - Dynamic algorithms

Dynamic emulators → O(1)-approx fully dynamic distance oracles!

Open directions of research



End of Talk

Questions?
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