The final publication is available at link.springer.com.
http://dx.doi.org/10.1007/978-3-319-10181-1_20

Code Generation for Event-B

Andreas Fiirst', Thai Son Hoang!, David Basin!, Krishnaji Desai?, Naoto Sato®, and
Kunihiko Miyazaki®

! Institute of Information Security, ETH-Zurich, Switzerland
{fuersta,htson,basin}@inf.ethz.ch
? Hitachi India Pvt. Ltd., India
krishnaji@hitachi.co.in
3 Yokohama Research Lab, Hitachi Ltd., J apan
{naoto.sato.je,kunihiko.miyazaki.zt}@hitachi.com

Abstract. We present an approach to generating program code from Event-B
models that is correct-by-construction. Correctness is guaranteed by the com-
bined use of well-definedness restrictions, refinement, and assertions. By enforc-
ing the well-definedness of the translated model, we prevent runtime errors that
originate from semantic differences between the target language and Event-B,
such as different interpretations of the range of integer values. Using refine-
ment, we show that the generated code correctly implements the original Event-B
model. We provide a simple yet powerful scheduling language that allows one to
specify an execution sequence of the model’s guarded events where assertions are
used to express properties established by the event execution sequence, which are
necessary for well-definedness and refinement proofs.

Keywords: Event-B, code generation, correct-by-construction.

1 Introduction

The Event-B modelling language [2] is a formal method that is well suited for devel-
oping embedded controllers that satisfy strong safety requirements. The advantage of
Event-B and its notion of refinement is that we can express and prove safety properties
on an abstract model of the system that includes both the controller and its working
environment. Details of the system are afterwards gradually introduced into the formal
models via refinement. Refinement in Event-B preserves the proved safety properties
of the abstract model.

Once the system’s model is sufficiently detailed, the controller part of the model
can be extracted. This must afterwards be translated into a sequential program that runs
on given hardware. We identify three main challenges for this translation. First, the
Event-B model must be restricted to a well-defined subset in order to generate code
for a particular programming language. Well-definedness for the sublanguage thereby
reflects the available data types of the target language. For example, arithmetic oper-
ations that are valid in the Event-B model, but not well-defined for a target language,
might result in overflows at runtime because of the different domains of the integer
type. Second, Event-B’s semantics is such that the event that is executed next is chosen
non-deterministically from the set of enabled events. This non-determinism must be re-
placed by a schedule that defines an execution order on the events. As the scheduling

language becomes more sophisticated, one can generate more efficient program code.
Finally, it is evident that the translation must preserve the safety properties of the Event-
B model.

There has been extensive related work on code generation for Event-B [2,4-6,
9, 10]. The different approaches have limitations including restricted scheduling lan-
guages [6, 9, 10], ignoring the differences between the mathematical notation of Event-
B and the target languages [2,4-6, 10], and missing formal justification of the ap-
proach’s correctness [6, 9, 10]. More details on the limitations of the existing approaches
are provided in Section 5.

To overcome these limitations, we present an approach to generating code from
Event-B models that focuses on the translation’s correctness. We therefore concentrate
on a single target language, namely C. Furthermore, our approach provides a flexible
scheduling language that is not only useful for encoding different scheduling strategies
but also for proving that the specified schedules are valid, that is, they do not result in
programs with behaviours that are not described by the original Event-B model.

final
Event-B model

/

,
1. restriction | refines 2. scheduling

S

N
4. model generation 1 3. code generation

restricted schedules

Event-B model

refines
scheduled
Event-B model

- R
is equivalent

- v
source code

Fig. 1. Overview of our code generation approach

Our code generation approach has four steps. Figure 1 depicts the different entities
involved and their relationships together with the corresponding step in which they are
provided by the user or the code generator. The “final Event-B model” represents the
final refinement step of an Event-B development and is the starting point for our code
generation approach. First, we restrict the Event-B model via refinement to ensure that
the variables are of suitable types and operations on them are well-defined. Second,
we use a special scheduling language to specify a schedule for the restricted Event-B
model, that describes the intended execution order on the events. Third, we execute our
code generator with the schedule as input. Based on the schedule, the code generator
translates the restricted model into a sequential program and thereby generates source
code. Finally, our code generator also generates a scheduled Event-B model represent-
ing the semantics of the sequential program, and we prove that this scheduled model
refines the restricted Event-B model.

The correctness of our translation relies on (i) the use of partial functions and
well-definedness to ensure that the operations on the data types provided by the target
language are valid, (ii) assertions that are annotated in the schedule and subsequently
translated into invariants of the scheduled Event-B model, and (iii) the proof that the

scheduled model refines the restricted Event-B model, which relies on the automatically
generated invariants.

Overall, our contribution is an approach to code generation from Event-B models
that guarantees that generated programs correctly implement their Event-B specifica-
tions and therefore will not incur runtime errors such as arithmetic overflows. The nov-
elty of our approach is the use of well-definedness in the restriction step to prevent
runtime errors, a flexible scheduling language with assertions for specifying scheduling
information during the second step, and the use of refinement in the fourth step of our
approach to prove the generated program code’s correctness. Based on our approach,
we implemented a plug-in for the Rodin platform [3] and successfully generated code
for industrial-scale case studies including an elevator control system and a train con-
trol system, both with strong safety properties. To make this paper self-contained, we
illustrate our approach using a comparatively simple academic example from [2].

Structure. We briefly overview the Event-B modelling method in Section 2.1 and the
“cars on a bridge” case study from [2] in Section 2.2. We use this example to illustrate
the four steps of our approach to generating code from Event-B models in Section 3.
In Section 4, we provide evidence for the general applicability of our approach. In
Section 5, we compare our approach with the existing code generation tools for Event-
B. We draw conclusions and discuss future work in Section 6.

2 Background

2.1 Event-B

Event-B [2] represents an extension as well as a simplification of the classical B-method
[1], which has been focused around the general notion of events. Event-B has a seman-
tics based on transition systems and simulation between such systems. We will not
describe in detail the semantics of Event-B here; full details are provided in [2]. In-
stead, we will describe some Event-B modelling concepts that are important for the
later presentation.

Event-B models are related by refinement and are organized in terms of the two
basic constructs: contexts and machines. Contexts specify the static part of a model and
may contain carrier sets, constants, axioms, and theorems. Carrier sets are similar to
types. Axioms constrain carrier sets and constants, whereas theorems express properties
derivable from axioms. The role of a context is to isolate the parameters of a formal
model (carrier sets and constants) and their properties, which are intended to hold for
all instances.

Machines specify behavioral properties of Event-B models. Machines may contain
variables, invariants, theorems, and events. Variables v define the state of a machine,
and are constrained by invariants I(v). Theorems are properties derivable from the
invariants. Possible state changes are described by events.

The term e = any ¢t where G(¢,v) then S(¢,v) end represents an event
e, where ¢ is the event’s parameters, G(t,v) is the event’s guard (the conjunction of
one or more predicates), and S(t, v) is the event’s action. The guard states the condition

under which an event may occur, and the action describes how the state variables evolve
when the event occurs. An event’s action is composed of one or more assignments of the
form z := E(t,v), where z is a variable in v and F (t,v) is an expression of the same
type as x. Assignments in Event-B may also be nondeterministic. However, we ignore
these assignments in our approach since we only translate deterministic assignments
and force the user to first refine non-deterministic assignments into deterministic ones.
All assignments of an action S(¢, v) occur simultaneously. A dedicated event without
any parameter or guard is used for initialisation.

Refinement provides a means to gradually introduce details about the system’s dy-
namic behaviour into formal models [2]. A machine CM can refine another machine
AM. We call AM the abstract machine and CM the concrete machine. The states of
the abstract machine are related to the states of the concrete machine by gluing invari-
ants J(v, w), where v are the variables of the abstract machine and w are the variables
of the concrete machine. A special case of refinement (called superposition refinement)
is when v is kept in the refinement, i.e. v C w. Intuitively, any behaviour of CM can
be simulated by a behaviour of AM with respect to the gluing invariants J(v, w).

Refinement can be reasoned about on a per-event basis. Each event e of the abstract
machine is refined by one or more concrete events f. Simplifying somewhat, we can
say that f refines e if f’s guard is stronger than e’s guard (guard strengthening), and the
gluing invariants J (v, w) establish a simulation of f by e (simulation).

2.2 Running Example

In this section, we describe the “cars on a bridge” example taken from [2, Chapter 2]
that we use as a running example to illustrate our approach to code generation. The
system’s main functionality is to control the cars on a bridge between an island and the
mainland. Due to the bridge’s width, only traffic in one direction is allowed at a time.
The system is equipped with four sensors to detect the presence of cars entering and
leaving the bridge. The system controls the two traffic lights located at both ends of the
bridge. Moreover, the maximum number of cars allowed on the island is limited. The
Event-B model is gradually developed in four machines. The last refinement includes
environment events modelling the movement of cars that triggers the sensors and con-
troller events setting the traffic lights accordingly. For the purpose of illustrating our
approach to generating code, we focus on the following events of the last refinement.

ML_outl : ML _out2 : IL_tl_green : ML_OUT_DEP :
when when when when
ml_out-10 = TRUE ml_out-10 = TRUE il-tl = red ML_OUT_SR = on
a+b+1<d at+b+1=4d 0<b ml_tl = green
then then a=20 then
a:=a+1 a:=a+1 ml_pass =1 ML_OUT_SR := off
ml_pass :=1 ml_tl := red ml-out_-10 = FALSE ml_out-10 := TRUE
ml-out_10 := FALSE ml_pass :=1 IL.OUT_SR = on A:=A+1
end ml_out_-10 := FALSE then end
end il_tl := green

ml_tl := red

il-pass := 0

end

The events ML_outl, ML _out2, and IL_tl_green are controller events and the event
ML_OUT_DEP is an environment event. We omit other events for clarity. The constant

d represent the maximum number of cars allowed on the island. The variables a, b, c,
ml_pass, il_pass are controller variables and the variable A is an environment variable.
Other variables are shared variables representing the sensors (from the environment to
the controller), i.e., ml_out_10, il_out_10, mi_in_10, il_in_10, ML_OUT _SR, and
IL_OUT_SR, or the actuators (from the controller to the environment), i.e., ml_tl and
1l_tl. The interested reader can find the exact meaning of the variables in [2, Chapter 2].

3 A Code Generator for Event-B

In our approach, the code generator translates an Event-B model into C source code. As
depicted in Figure 1, prior to generating code we must restrict the Event-B model and
provide a schedule. Using the schedule as an input, the code generator then generates
two outputs, C source code and an Event-B machine that we use to prove the correctness
of the generated source code.

3.1 Well-definedness Restrictions

The final model of an Event-B development may still include parts that are not well-
defined with respect to the target language. Using refinement, we restrict these remain-
ing parts and thereby obtain a restricted model that is well-defined. Our plug-in checks
that the model is restricted before generating source code for it. In the following, we
describe the semantic differences between Event-B and C and describe our approach to
establishing well-definedness.

Basic Types. The two basic types that our code generator supports are 32-bit integers
and booleans. While the boolean type in C is equivalent to type BOOL in Event-B, the
integer types have different ranges. We therefore define in Event-B the range of the C
integer type as a constant C_INT (C_INT = —2147483648..2147483647) and require
that every integer variable belongs to this set. C_INT can be seen as a restricted data type
in the model and we say that a variable is of type C_INT whenever it belongs to the set
described by the constant C_INT, i.e., variable € C_INT.

Arrays. We support one- and two-dimensional arrays for both basic types. Arrays are
represented by total functions in Event-B. If a variable or constant is not of a basic
type, then it must be of one of the array types in the table below, where k and [are
natural numbers smaller than the maximum value in C_INT. We use 7 () to represent
the translation of a string x that complies with Event-B syntax.

Event-B |C
fEO..k—CINT int f£[T(k)+1]
g€O0..k— BOOL bool g[T(k)+1]

fE€0..kx0..1— CINT|int £[T(k}+1] [T(1)+1]
g€0..kx0..1—- BOOL |bool g[T(k)+1]1[T(1)+1]

The restriction on k and [guarantees that the size of a generated array is always positive
and at most the maximum number in C_INT. However, the maximal allowed size of an
array depends on the target system and its memory management. Hence, we cannot
guarantee that the memory allocation at the beginning of the running program will
succeed.

Arithmetic Operators. Careless use of arithmetic operators is the source of integer over-
flows in software. Since the integer type in Event-B does not have a lower or upper
bound, the addition of two positive integer numbers always results in a positive integer
number. In a C program, however, this result might be larger than the maximum integer
number and cause a runtime error or be mapped to a negative number. Either way, the
outcome of the computation is different from that in the Event-B model. Due to the
restriction of integer variables to the type C_INT, assignments of the form x := x + y
are already checked for well-definedness when proving the preservation of the invariant
x € C_INT. The intermediate results of multiple arithmetic operations and arithmetic
operations in predicates, however, are not checked. To enforce the well-definedness of
all arithmetic operations, we introduce special operators that are adapted to the integer
type C_INT and we restrict the use of each arithmetic operator to just these.

cplus ={dar b-a € CINTAbE CINT ANa+bec CINT |a+b}
cminus = {Aa+—b-a € CINTAbe CINT ANa—be C.INT |a—b}
cmul = {Aa+ b-a € CINTAbe CINT ANaxbe C.INT |ax*b}
cdiv={Aa— b-a€ CINTAbE CINTAb#OAa~be CINT |a-=+b}
comod ={Xa+— b-a € CINTAbE CINTAO0O<LaA0<b|amodb}

The result of an integer division in Event-B is always rounded towards zero as in the
C99 standard. In C89 and C90, however, it is implementation dependant whether the
result of an integer division is rounded towards zero or towards minus infinity. This
difference is important when the integer division results is a negative number. When
using a compiler compliant to C89 or C90, the definition of the c_div operation must
be adapted to prevent negative results and a possibly inconsistent translation. No such
action is required for the modulo operator since the domain of Event-B’s modulo oper-
ation is already restricted to natural numbers.

Due to the use of lambda expressions in the operator’s definition, arithmetic oper-
ations change from infix notation to function applications in the model. We keep this
style in the translation to source code and define macros to replace the function calls
during compilation by the standard operators.

#define cplus(x,y) (x+y)
#define caminus(x,y) (x-y)
#define cmul (x,y) (x*y)
#define c.div(x,y) (x/y)
#define cmod(x,y) (x%y)

Events. For the translation of events to source code, an event’s parameters must be
fixed to specific values. Theoretically, an event parameter that is fixed to a single value
is not that useful as any occurrence of the parameter in guards and actions could just be
replaced by its fixed value. For practical reasons, we support event parameters as local
storage for computation results. If the result of a computation is used in more than one
action, it is more efficient to do the computation only once and store the result.

A core concept of our approach is that the guards of the events are not translated, but
their evaluation to true is guaranteed by the flow control structures of the schedule or
more precisely by the specified branch conditions, loop conditions, and assertions. The
only guards that are translated are those that specify the value of an event parameter. We
require in the restricted Event-B model that for every event parameter there is exactly
one guard of the form parameter = ..., where the right-hand side of the equation
must be an expression of type BOOL or C_INT.

Since an event’s actions denote parallel assignments, the order of the actions does
not matter in Event-B. This changes when we translate the actions into a sequence of
single assignments. As a result, the right-hand side of the assignments in the source
code cannot refer to the before-values of the variables. To overcome this issue, we
restrict the actions of the event so that the right-hand side of an assignment does not
refer to variables that already occurred on the left-hand side of a previous assignment. If
this restriction is not guaranteed, the developer must either rearrange the actions where
possible or introduce parameters as auxiliary variables to store the before-value of the
conflicting variables. This task could be automated in a future version of our plug-in.

Expressions and Predicates. We restrict expressions and predicates to a subset of the
Event-B syntax for which we provide the translation mappings presented in Table 2 in
Section 3.3. In developments with arrays, there are often events with guards that contain
quantifiers to express predicates on arrays. We therefore developed patterns for trans-
lating quantified predicates. Due to space restrictions we only present predicates with
a single universal quantifier and omit translation patterns for existential quantification
and combinations of multiple quantifiers. In our approach, the quantified predicate is
translated to a function call of a dedicated function that evaluates the quantified predi-
cate.

Assignments. In Table 3 in Section 3.3 we present the allowed assignments for updating
variables in an event’s action. The right-hand side of an assignment to a variable of type
BOOL or C_INT must be an expression of the corresponding type. The update of arrays
is slightly more difficult. We provide different translation rules for updating arrays at
one or more positions and for overwriting an array with a set of index-value pairs. The
bound variable used in the set comprehension is translated to the iteration variable of a
for-loop.

Example. Returning to the “cars on a bridge” example, we first restrict the context of
the development, i.e., the values for the constant d to C'_INT. There are two options
that we can take.

1. We apply generic instantation [7] to give d a concrete value (say d = 20) and prove
that d € C_INT as a theorem.

2. We add an axiom, i.e., d € C_INT to further constrain d. In this way, d is left
undefined and the user must define its concrete value within the program code. It is
then the user’s task to ensure that the concrete value satisfies the axioms.

In terms of safety guaranties, the first option is preferable as we prove that the values
chosen for the constants imply the specified axioms. Hence, the current version of our
plug-in follows this approach. The second option provides more flexibility as the defi-
nition of the constants’ values can be written into a header file. The constants represent
the parameters of the system and can easily be changed without generating new code.
However, we have no practical way yet to enforce that the values in the header file are
checked with respect to the model’s axioms.

We also restrict the variables of the machine of the development. More precisely,
integer variables of the machine (e.g., a, b, ¢) must be restricted to C'_INT. This can

be done by proving the corresponding condition, i.e., a € C_INT, b € C_INT, and
¢ € C_INT as invariants or theorems of the machine. In our example, we can prove
these conditions as theorems derivable from the restriction of d to C_INT, the fact
that all variables are natural numbers, and the invariant ¢ + b + ¢ < d. Moreover,
we replace all occurrences of arithmetic operators in the events’ actions by their well-
defined version. For example, events ML_outl and ML_out2 are restricted as follows.

ML_outl : ML_out2 :

when when

ml-out_-10 = TRUE ml-out_-10 = TRUE

a+b+1<d a+b+1=d

then then

a:= c_plus(a — 1) a:= c_plus(a — 1)

ml_pass :=1 ml_tl := red

ml-out_10 := FALSE ml-pass :=1

end ml_out_-10 := FALSE
end

Note that arithmetic operations used in event guards need not be restricted, except for
those used to define parameters, since only parameter definitions are translated.
3.2 Scheduling the Model

To specify the execution order on the events of the restricted model, we provide the
following scheduling language in our plug-in.

<schedule> = <sequence>

<sequence> = <sequence> ;{a} <sequence> | <block>
<block> = event | <branch> | <loop>

<branch> if (c) <body> else <body> fi

<loop> do (c) <body> od

<body> t:= "" | <sequence>

The symbols a and c represent a list of assertions and a loop or branch condition, re-
spectively. The difference between a body and a sequence is that the body can be empty.
For convenience, we can omit {a} if there are no assertions required between two se-
quentially composed sequences. Furthermore, if there is no else part in the branch, we
can just write i f (c) <body> fi.

Example. The first part of our schedule is as follows. The numbers are automatically
generated in the editor of our plug-in.

0 if (ml-out.10 = TRUE)
1 if (cplus (c_plus (ar+b)+—1)<d)
2: ML_out1l
3 else
4 ML_out1l
fi

fi;

{ml_out_.10=FALSE}
5: if(il-tl=red A 0<b A a=0 A ml_pass=1 A IL_.OUT-SR=on)
6: IL_.tl_green

fi;

Note that arithmetic operations used in the branches must be restricted. Moreover,
the assertion {mi_out_10 = FALSE?} before the branch at position 5: allows us to
avoid checking this condition in the branch.

3.3 Translation to Source Code

The translation of the schedule is straightforward using if-else statements and while-
loops. We omit the translation rules here and just give an example. Event blocks as well
as branch and loop conditions are translated according to Tables 1-3. Note that we do
not translate assertions, which are only used for the proof of correctness.

Table 1. Translation of Events

Event-B C

evt-name {

ANYs, t int s = T(E;(v,c));

WHERE bool t = T(Ep(v,c,s));
s =E;(v,c)
s € C_.INT (theorem)|vi = T(E;(v,c,s,t));
t=Ey(v,c,s) vb = T(Ep(v,c,s,t));
t € BOOL (theorem) |}

THEN
vi:= E;(v,¢,s,t)
vb:= E(v,c,s,t)

END

The translation of the basic predicates and expressions is straight forward and simi-
lar to the translation mappings of the other approaches. Noteworthy is the possibility in
our approach to translate quantified predicates, which are useful to express conditions
in connection with arrays.

Table 2. Translation of Predicates and Expressions

Event-B C Event-B C
- T (x) TN Ay (T(z) &8 ... && T(y)
T true TV Vy (T(x) 11 .. |1 T(y)
1L false T=y (T(x) 11 T(y)
a="b (T(a)==T(b)) TSy (I T(x) 11 T(y) &&
a#b (T(a)!=T(b)) (!T(y) 11 T(z))
a<b (T(a)<T (b)) f(a) flal
a<b (T(a)<=T(b)) flam—b) £(T(a), T(b))
a>b (T(a)>T(b)) c.operator(a — b) c-operator (7T (a), T(b))
a>b (T(a)>=T (b))
Vi-i € cupto(j — k)|evalouid()
identifier|identifier =P(v,c,1)
bool evalouid() {
TRUE true for (int i=T7(j); i<=T(k); i++){
FALSE |false if (!T(P(v,c,1t)))
return false;
}
return true;
}

Noteworthy in our translation of assignments are the different patterns for updating
arrays. We can either update an array at one or more fixed positions or we can iterate
through the array and use a predicate to evaluate at runtime which positions are updated.

Table 3. Translation of Assignments

Event-B C

vi:=b vi = T(b);
vb:=r vb = T(r);
fla):=b flal = T(b);
glar b):=r glal [b] = T(r);
fi=f<a{al »bl} <4 ... s {am — bm} f1T(al)] = T(bl);

£[T(am)] = T(bm);

fi=f<{ii€cupto(j— k)N P(v,c,1i) | for (int i=T(j); i<=T(k); i++){
Ei(v,c, i) — Ea(v,c,i)}| 1£(T(P(v,c,i))
fIT(E1(v,¢,4))] = T(Ez2(v,c,i));

Example. The C code generated corresponding to the above snippet of our schedule is
as follows.

if (ml_out_10 == true) {
if (c_plus(c_plus(a,b),1l) < d){
a = c_plus(a,l);
ml_pass = 1;
ml_out_10 = false;
}
elsef
a = c_plus(a,l);
ml_tl = red;
ml_pass = 1;
ml_out_10 = false;
}
}
if ((il1_tl == red && (0 < b && (a == 0 && (ml_pass == 1 && IL_OUT_SR == on))))) {
il_tl = green;
ml_tl = red;
il _pass = 0;

}

3.4 Proving the Correctness of the Scheduled Model

To prove the correctness of the generated source code, we generate a scheduled model
that includes the schedule encoded in the machine as follows. We introduce a new vari-
able pc that represents the program counter and add events that simulate the update of
the program counter according to the schedule. The controller events are refined by re-
moving all guards except for parameter initialisations and adding the action pc := pc+1
to simulate the increment of the program counter. The additional events for the different
blocks are as follows.

Branch. For every branch, we generate a set of events. The events differ slightly de-
pending on whether the branch has an “else” part or not. The symbols s and m represent
the block’s start and middle position, respectively within the schedule and e is the next
valid position in the schedule after the end of the branch. These numbers are automati-
cally computed by the plug-in. The branch condition is represented by bc.

if_true :

if_false (long form) :

if_false (short form) :

if_exit (long form) :

when when when when
pc=s pc=s pc=s pc=m
be —be —be then
then then then pc:=e
pc:=pc+1 pc:i=m+1 pc:=e end
end end end

Loop. For a loop we generate the following events. The symbols s and e represent the
block’s start and end position, respectively. Both numbers are automatically computed
by the plug-in. The loop condition is represented by lc.

do_true : do_false : do_return :
when when when
pc=s pc==s pc=ce

le —-le then
then then pc:i=s
pc:=pc+1 pc:=e+1 end
end end

Example. Based on the (automatically generated) program counter associated with the
statements, the scheduled Event-B model corresponding to the above schedule snippet
is as follows. Most events are required for modelling the control flow of the schedule
determined by the program counter pc.

if_-ml_out_10_true :

if_ml_out_10_false :

if_ml_out_true :

when when when

pc=20 pc=0 pc=1

ml_out_-10 = TRUE ml_out-10 = FALSE cplus(c_plus(a — b) — 1) < d
then then then

pc:=pc+1 pc:=5 pc:=pc+1

end end end

ML_outl : if_ml_out_exit : if_ml_out_false :

when when when

pc =2 pc =3 pc=1

then then —cplus(c_plus(a — b) — 1) < d
a:= c.plus(a — 1) pc:=5 then

ml_pass :=1 end pc:=4

ml_out_10 := FALSE end

pc:i=pc+1

end

ML _outl : if_il_tl_green_true :

when when

pc =4 pc=2>5

then ltl=red N\O < bAa=0Amlpass=1ANIL.OUT_-SR = on
a:= c.plus(a — 1) then

ml_tl := red pc:=pc+1

ml_pass :=1 end

ml_out_10 := FALSE

pc:=pc+1

end

IL_tl_green : if_il_tl_green_false :
when when

pc =6 pc=2>5
then —(iltl =red NO < bAa=0Amlpass=1ANIL.OUT.SR = on)
il-tl := green then

ml-tl := red pc:=T7

il_pass := 0 end

pc:=pc+1

end

In addition, we generate invariants to capture the effect of the control flow and the
user-defined assertions.

invariants :

if-mlout_Pre: pc=1= ml.out-10 = TRUE

ml_outl_Pre : pc = 2= ml_out_10 = TRUE A c_plus(c-plus(a — b) — 1) < d
if_mlout_Post : pc =3 = ml_out_-10 = FALSE

ml_out2_Pre : pc =4 = ml_out-10 = TRUE A =(c_plus(c-plus(a — b) — 1) < d)
if_il_tl_green_Pre : pc = 5 = ml_out_-10 = FALSE

IL_tl_green_Pre : pc = 6 = ml_out_-10 = FALSE A
(iltl=red NO < bAa=0Amlpass =1AIL.OUT_SR = on)

Notice how the invariants take into account the effect of the nested branches, e.g. when
pc = 2, and of assertions, e.g. when pc = 6. Proving that the scheduled Event-B model
refines the restricted Event-B model is straightforward with these invariants, except for
the following problem regarding shared variables.

Shared Variables and Atomicity Our schedule imposes an atomicity assumption, cap-
tured by the scheduled Event-B model, representing the semantics of the program code.
The atomicity is indicated by the values of the program counter pc. For example, we
assume that the evaluation of conditions in branches and loops are atomic. Moreover,
we also assume that the assignments of the original events (which are translated as se-
quential updates) are executed atomically. However, we break the atomicity assumption
between checking the guards and executing the actions of the original events. In partic-
ular, the evaluation of the event guards is often distributed to different branch and loop
conditions. For example, the guard of IL_tl_green is partially checked by the branch
condition at pc = 5 and partially guaranteed (assertion ml_out_10 = FALSE) by the
control flow before that. Since this atomicity assumption differs from the atomicity as-
sumption of the restricted Event-B model, where the evaluation of an event’s guards
and the execution of its actions are assumed to be atomic, inconsistency can arise. This
is in particular the case when shared variables are used in the event’s guard. Since we
schedule only controller events, the environment events in the scheduled Event-B model
can updated the shared variable at any time. This is reflected by unprovable invariant
preservation proof obligations of the scheduled Event-B model. In our example, vari-
able ml_out_10 is assumed to be shared between the controller and the environment.
More specifically, the environment can change the value of ml_out_10 with its event
ML_OUT_DEP as follows.

ML_OUT_DEP :

when

ML_OUT_SR = on
ml_tl = green

then

ML_.OUT_SR := off
ml_out_10 := TRUE
A:=A+1

end

An attempt to prove that ML_OUT_DEP maintains invariants like IL_tl_green_Pre
will fail, since our model does not prevent the occurrence of ML_OUT_DEP between
checking the branch condition at pc = 5 and executing IL_tl_green’s action at pc = 6.

To remedy the situation, we add a guard, e.g., pc = 0 to ML_.OUT_DEP to prevent
the environment event from occurring during the controller’s execution. The meaning

of this guard is an assumption on the overall system such that when a car leaves the
corresponding sensor, then the controller has finished processing the last message and is
ready to process the next message. Notice that a similar assumption regarding the speed
of the controller has also been made for the original development in [2]. In general,
guarding the environment events might give rise to assumptions that are unrealistic. In
this case, we must return to the original development and perform further refinement,
e.g., to introduce a private copy of the shared variables for the controller. Essentially,
we anticipate the possible interference of the environment and account for that earlier
in the development.

4 Experience

As stated in the introduction, we applied our approach to different developments. In
addition to the “cars on a bridge” example, we generated code for two more sophis-
ticated case studies: an elevator control system and a train control system. While the
elevator control system is a simplification of real elevator systems, we developed the
core functionality of the train control system from a real specification [7].

Table 4. Statistics

train control system
elevator control system
“cars on a bridge” controller

controller variables: ‘5 2 15
shared variables: 8 12 21
controller events: 8 30 34
refinement steps: 3 3 105
schedule lines: 18 88 90
invariants encoding the schedule: 14 67 69
events encoding the schedule: 18 99 92
POs for refinement: 454 9075 8757
lines of C code: 127 312 373

The numbers in Table 4 show that the elevator and train system are comparable in
terms of the size of their schedules and the number of proof obligations required to
prove refinement. This may be surprising since the train control system is substantially
more complex than the elevator control system and required considerably more effort
to develop, which is reflected by the large number of refinement steps. This is because
the train control system’s development includes several refinement steps that already
account for the later restriction step and translation to code. Hence, both control sys-
tems are refined to a level where they are close to their final implementation and the
translation to program code becomes straightforward. With the restriction of a model
as the first step of our code generation approach, we force the developer to refine the

model to a concrete level and therefore keep the translation effort in check. For this rea-
son our approach works equally well for small academic examples and large, complex
industrial systems.

The number of proof obligations generated to prove that the scheduled Event-B
model refines the restricted model is rather high. For every invariant/event pair, we
have a proof obligation of the form pc = M + pc = N = ..., where N and M are
numbers. However, most of them are trivial as N # M holds. The number of relevant
proof obligations (i.e. N = M) is less than 180 for all three developments and at
least 77% are automatically discharged. In fact, our plug-in can generate these relevant
proof obligations directly from the schedule rather than having Rodin generating them
together with all the irrelevant ones. The remaining task is to prove that this set of proof
obligations indeed implies those proof obligations generated to prove the refinement
relation. This proof can be done once at the meta-level and is valid for all translations.

5 Related Work

Here we discuss related work in more detail.

Merging Rules. Merging rules are introduced in [2] as a mechanism for synthesising
sequential programs from Event-B models. There are two rules for creating branches
and loops that constitute patterns for developing sequential programs. As a result, the
form of the programs are limited and not every program can be synthesised from its
Event-B model. For example, a sequential statement is only possible after a loop.

B2C Tool. The B2C tool [10] was developed to generate code for a specific Event-
B model of an instruction set architecture. As a result, the plug-in supports only the
translation of the Event-B syntax used in this particular model. The most significant
shortcoming is that it does not support contexts and therefore cannot be used when
constants and sets are used in a machine.

With the B2C tool, there is no possibility to specify a desired execution order of the
events. For every event in the model, a C function is created that checks the guards be-
fore the actions are executed. In a function named “iterate”, all these event functions are
combined in a sequence of function calls equivalent to the event ordering in the Event-B
machine. As soon as a function call is successful (the actions were executed) the iterate
function returns. In the main function, first the initialisation function is called and then
a while loop calls the iterate function as long as there is no deadlock in the system. The
disadvantage of leaving the iterate function after a successful action execution of an
event is that events at the bottom of the iteration sequence might never be executed.

EB2ALL Tool. EB2ALL [9] is a set of tools for generating code for different target
languages. Currently there are four plug-ins included for translations to C, C++,C#, and
Java respectively. The EB2ALL tool is based on the B2C tool. The authors of the tool
argue that its correctness is justified by an observable equivalence between the Event-
B model and the generated code together with some meta-proofs. It is not specified
what notion of observational equivalence is intended and no details on the meta-proof

are provided. Furthermore, they state that the generated code usually must be altered
manually after generation and that correctness is maintained if the manually added code
is also verified in some way. Again, formal details are lacking.

In EB2ALL, the default scheduling is the same as in B2C. The tool provides an
optimisation by automatically grouping events that have common guards. This is done
by analysing the refinement relation of the events. Two events that both refine the same
abstract event have the guards of the abstract event in common. Within the iterate func-
tion, these common guards are translated into an if-statement surrounding the function
calls of the corresponding events. The intention is that if the guards of the abstract
event evaluate to false, then there is no need to check the guards of the refining events.
Unfortunately, this approach only works if the guards of the abstract event are all de-
terministic and translatable. Furthermore, this only produces more efficient code when
many events refine one single abstract event. Otherwise, the overhead of additional if-
statements may outweigh any efficiency gains.

Tasking Event-B. Tasking Event-B [6] is a tool developed for code generation from
Event-B models into code with a special focus on concurrent processes. Currently, the
tool supports translations to C, Ada and Java. As in EB2ALL, expressions with multi-
ple arithmetic operators are supported. Currently it is not checked whether arithmetic
operators maintain the lower and upper bound of the target data type; hence runtime
overflows are possible.

Tasking Event-B is the most mature among the existing tools for code generation
with respect to scheduling. It is the only tool that provides a scheduling language for
user defined scheduling of events. Unfortunately, the language is very restrictive. The
bodies of loops and branches are limited to single events. Hence, there is no support for
schedules that include structures such as nested branches or a sequence of events within
a loop.

Scheduling Patterns. We are unaware of any tool support for the scheduling patterns
introduced in [4,5]. The attractiveness of the work is the proof of correctness for the
patterns done using set transformers. However, this reasoning must be done manually.
Furthermore, our scheduling language is more expressive than the scheduling language
defined in [4]. For example, nested branches are not possible in [4].

Classical B. Our scheduling language has features similar to (classical) B [1], for ex-
ample conditional statements, sequential statements and loops. In B, the last model of a
refinement chain is a special construction, the IMPLEMENTATION, from which program
code can be generated. Variables of the IMPLEMENTATION must be either concrete vari-
ables (i.e., of some implementable datatype) or variables of some predefined libraries.
Updates of the variables must be well-defined, which is captured by the preconditions
of the corresponding assignments. However, loop and branch conditions do not have
preconditions to enforce their well-definedness. As a consequence, they are restricted
to predicates over simple expressions (e.g., no arithmetic operations are allowed). In
our approach, we check all conditions for well-defineness, hence they can contain any
expressions. Furthermore, our approach allows us to state assertions between two se-
quential blocks. As a result, proof obligations can be generated for each block sepa-

rately. In B, the effects of the sequentially composed statements are combined together,
which often results in complicated proof obligations.

6 Conclusion

We presented our approach to generating program code from Event-B models. Our
approach is correct-by-construction and relies on reasoning about well-definedness, as-
sertions, and refinement. Although we presented only the translation to C source code,
our approach is also applicable to other languages by adapting the notion of well-
definedness and the restriction step to the corresponding target language.

As future work we would like to consider loop termination and liveness proper-
ties in general. The challenge here is to integrate standard loop variant reasoning into
the scheduled Event-B model. Naturally, this will lead to reasoning about deadlock-
freedom and event convergence properties as shown in [8].

Furthermore, as mentioned in Section 4, we have identified the set of relevant proof
obligations which can be generated directly from the schedule. We are working on the
meta-proof that this set of proof obligations indeed guarantees that the scheduled Event-
B model refines the restricted Event-B model. Note that our approach is also correct
without the meta-proof, but requires more proof obligations to be proved.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University Press
(1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: An Open
Toolset for Modelling and Reasoning in Event-B. Software Tools for Technology Transfer
12(6), 447-466 (Nov 2010)

4. Bostrom, P.: Creating Sequential Programs from Event-B Models. In: Méry, D., Merz, S.
(eds.) IFM. Lecture Notes in Computer Science, vol. 6396, pp. 74-88. Springer (2010)

5. Bostrom, P., Degerlund, F., Sere, K., Waldén, M.A.: Derivation of concurrent programs by
stepwise scheduling of Event-B models. Formal Asp. Comput. 26(2), 281-303 (2014)

6. Edmunds, A., Butler, M.: Tasking Event-B: An Extension to Event-B for Generating Con-
current Code. In: 4th Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software (2011)

7. First, A., Hoang, T.S., Basin, D., Sato, N., Miyazaki, K.: Formal System Modelling Using
Abstract Data Types in Event-B. In: Ameur, Y.A., Schewe, K.D. (eds.) Abstract State Ma-
chines, Alloy, B, TLA, VDM, and Z. Lecture notes in computer science 5000 (2008) - 6999
(2012), vol. 8477, pp. 222-237. Springer, Berlin (2014)

8. Hoang, T.S., Abrial, J.R.: Reasoning about Liveness Properties in Event-B. In: Qin, S., Qiu,
Z. (eds.) Formal Methods and Software Engineering. Lecture Notes in Computer Science,
vol. 6991, pp. 456—471. Springer-Verlag, Durham, United Kingdom (Oct 2011)

9. Méry, D., Singh, N.K.: Automatic Code Generation from Event-B Models. In: Proceedings
of the Second Symposium on Information and Communication Technology. pp. 179-188.
SoICT ’11, ACM, New York, NY, USA (2011)

10. Wright, S.: Automatic Generation of C from Event-B. In: Workshop on Integration of Model-
based Formal Methods and Tools (February 2009)

