
Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Practical Probability
Applying pGCL to Lattice Scheduling

David Cock

25 July 2013

NICTA Funding and Supporting Members and Partners

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 1/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Overview

In this talk, I present a verified lattice scheduler, that
eliminates leakage via a shared cache, while guaranteeing
non-starvation. In additition, this work:

• Applies our existing pGCL package for Isaelle.

• Presents a multilevel probabilistic refinement proof.

• Integrates with the seL4 proof.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 2/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Outline

• Lattice Scheduling

• The Probabilistic Scheduler
• Refinement

• Lottery Scheduling
• Data Refinement

• seL4 Integration

• Non-Leakage

• Summary

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 3/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

• Consider a system with two classification tags: A and B.
Information tagged with A may only be seen by an
agent cleared to see A, likewise for B.

• Any output from an agent clear for A is tagged A,
likewise for B.

• There are four possible clearances: A, B, A and B, and
nothing. These are domains.

• The who-may-talk-to-whom order is a lattice:

{A,B}

{A}

;;

{B}

cc

{ }

cc

OO

;;

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 4/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

• Consider a system with two classification tags: A and B.
Information tagged with A may only be seen by an
agent cleared to see A, likewise for B.

• Any output from an agent clear for A is tagged A,
likewise for B.

• There are four possible clearances: A, B, A and B, and
nothing. These are domains.

• The who-may-talk-to-whom order is a lattice:

{A,B}

{A}

;;

{B}

cc

{ }

cc

OO

;;

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 4/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

• Consider a system with two classification tags: A and B.
Information tagged with A may only be seen by an
agent cleared to see A, likewise for B.

• Any output from an agent clear for A is tagged A,
likewise for B.

• There are four possible clearances: A, B, A and B, and
nothing. These are domains.

• The who-may-talk-to-whom order is a lattice:

{A,B}

{A}

;;

{B}

cc

{ }

cc

OO

;;

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 4/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

• Consider a system with two classification tags: A and B.
Information tagged with A may only be seen by an
agent cleared to see A, likewise for B.

• Any output from an agent clear for A is tagged A,
likewise for B.

• There are four possible clearances: A, B, A and B, and
nothing. These are domains.

• The who-may-talk-to-whom order is a lattice:

{A,B}

{A}

;;

{B}

cc

{ }

cc

OO

;;

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 4/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__

OO

??

• For brevity, label the domains and then forget the sets.

• Enforcing rules for explicit communication in such a
system is a well-studied problem.

• Implicit communication is harder.

• We’re specifically concerned with covert channels due
to sharing hardware.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 5/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__

OO

??

• For brevity, label the domains and then forget the sets.

• Enforcing rules for explicit communication in such a
system is a well-studied problem.

• Implicit communication is harder.

• We’re specifically concerned with covert channels due
to sharing hardware.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 5/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__

OO

??

• For brevity, label the domains and then forget the sets.

• Enforcing rules for explicit communication in such a
system is a well-studied problem.

• Implicit communication is harder.

• We’re specifically concerned with covert channels due
to sharing hardware.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 5/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__

OO

??

• For brevity, label the domains and then forget the sets.

• Enforcing rules for explicit communication in such a
system is a well-studied problem.

• Implicit communication is harder.

• We’re specifically concerned with covert channels due
to sharing hardware.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 5/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Cache Channel

33333333

3 2

domain switch
33333333

22222222

22222222

Conflict!

Even if two domains are unable to communicate, they leave
detectable traces in the machine state.

For example, 2 cannot read 3’s cache lines, but it can infer
where they are, by timing its own memory accesses.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 6/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Cache Channel

33333333

3 2

domain switch
33333333

22222222

22222222

Conflict!

Even if two domains are unable to communicate, they leave
detectable traces in the machine state.
For example, 2 cannot read 3’s cache lines, but it can infer
where they are, by timing its own memory accesses.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 6/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Cache Channel

How do we mitigate this channel?

• We could flush the cache everytime . . . expensive!

• We don’t need to flush when transitioning up.

• Transition up as long as possible. . . then flush and start
again.

This is Lattice Scheduling

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 7/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Cache Channel

How do we mitigate this channel?

• We could flush the cache everytime

. . . expensive!

• We don’t need to flush when transitioning up.

• Transition up as long as possible. . . then flush and start
again.

This is Lattice Scheduling

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 7/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Cache Channel

How do we mitigate this channel?

• We could flush the cache everytime . . . expensive!

• We don’t need to flush when transitioning up.

• Transition up as long as possible. . . then flush and start
again.

This is Lattice Scheduling

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 7/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Cache Channel

How do we mitigate this channel?

• We could flush the cache everytime . . . expensive!

• We don’t need to flush when transitioning up.

• Transition up as long as possible. . . then flush and start
again.

This is Lattice Scheduling

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 7/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Cache Channel

How do we mitigate this channel?

• We could flush the cache everytime . . . expensive!

• We don’t need to flush when transitioning up.

• Transition up as long as possible. . .

then flush and start
again.

This is Lattice Scheduling

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 7/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Cache Channel

How do we mitigate this channel?

• We could flush the cache everytime . . . expensive!

• We don’t need to flush when transitioning up.

• Transition up as long as possible. . . then flush and start
again.

This is Lattice Scheduling

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 7/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__

OO

??

• The schedule relation S, is a subset of the up
transitions.

• This schedule is incomplete: There’s no way to leave 3.

• We must add downward transitions, but how?

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 8/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__

OO

??

• The schedule relation S, is a subset of the up
transitions.

• This schedule is incomplete: There’s no way to leave 3.

• We must add downward transitions, but how?

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 8/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__ ??

• The schedule relation S, is a subset of the up
transitions.

• This schedule is incomplete: There’s no way to leave 3.

• We must add downward transitions, but how?

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 8/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__ ??

• The schedule relation S, is a subset of the up
transitions.

• This schedule is incomplete: There’s no way to leave 3.

• We must add downward transitions, but how?

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 8/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__ ??

• The schedule relation S, is a subset of the up
transitions.

• This schedule is incomplete: There’s no way to leave 3.

• We must add downward transitions, but how?

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 8/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__ ??

• Designate a downgrader, ⊥.

• The downgrader clears the cache.

Lemma (Downgrading)

If S allows a downward transition, it is to the downgrader, ⊥:

(c, n) ∈ S clearance c * clearance n

n = ⊥

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 9/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__ ??

• Designate a downgrader, ⊥.

• The downgrader clears the cache.

Lemma (Downgrading)

If S allows a downward transition, it is to the downgrader, ⊥:

(c, n) ∈ S clearance c * clearance n

n = ⊥

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 9/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

��

1

??

2

__

ww⊥

__ ??

• Designate a downgrader, ⊥.

• The downgrader clears the cache.

Lemma (Downgrading)

If S allows a downward transition, it is to the downgrader, ⊥:

(c, n) ∈ S clearance c * clearance n

n = ⊥

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 9/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Lattice Scheduler

We’ll verify a scheduler written in pGCL, an imperative,
probabilistic language:

record stateA = current_domain :: dom_id

scheduleS =

c is current_domain in

current_domain :∈ (λ_. {n. (c, n) ∈ S})

This program selects a new domain nondeterministically
from among those with a valid transition from the current.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 10/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

��

1

??

2

__

ww⊥

__ ??

• We want to refine this to a realistic implementation.

• The refinement may produce any trace permitted here.

• For example: ⊥, 2,⊥, 2,
• The specification permits starvation.

• Randomisation gives us a neat solution.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 11/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

��

1

??

2

__

ww⊥

__ ??

• We want to refine this to a realistic implementation.

• The refinement may produce any trace permitted here.

• For example: ⊥, 2,⊥, 2,
• The specification permits starvation.

• Randomisation gives us a neat solution.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 11/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

��

1

??

2

__

ww⊥

__ ??

• We want to refine this to a realistic implementation.

• The refinement may produce any trace permitted here.

• For example: ⊥, 2,⊥, 2,

• The specification permits starvation.

• Randomisation gives us a neat solution.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 11/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

��

1

??

2

__

ww⊥

__ ??

• We want to refine this to a realistic implementation.

• The refinement may produce any trace permitted here.

• For example: ⊥, 2,⊥, 2,
• The specification permits starvation.

• Randomisation gives us a neat solution.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 11/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

��

1

??

2

__

ww⊥

__ ??

• We want to refine this to a realistic implementation.

• The refinement may produce any trace permitted here.

• For example: ⊥, 2,⊥, 2,
• The specification permits starvation.

• Randomisation gives us a neat solution.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 11/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Outline

• Lattice Scheduling

• The Probabilistic Scheduler
• Refinement

• Lottery Scheduling
• Data Refinement

• seL4 Integration

• Non-Leakage

• Summary

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 12/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Random Transitions

3

1.0

��

1

1.0
??

2

0.5
__

0.5ww⊥
0.25

__
0.75

??

• Assign a probability to each transition such that
T (c, n) > 0 only if (c, n) ∈ S.

• Outgoing probabilities sum to 1 (or less).

• The previous trace now has probability 0!

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 13/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

A Probabilistic Scheduler

scheduleT =

c is current_domain in

current_domain :∈ (λ_. {⊥, 1, 2, 3} at (λ_ n. T (c, n))

Lemma (Non-starvation)

Taking at least 8 steps from any initial domain, we reach any
final domain with non-zero probability:

∀s. 0 < wp scheduleT 8+n (in_dom df) s

Note that predicates (expectations) in pGCL are real-valued.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 14/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

A Probabilistic Scheduler

scheduleT =

c is current_domain in

current_domain :∈ (λ_. {⊥, 1, 2, 3} at (λ_ n. T (c, n))

Lemma (Non-starvation)

Taking at least 8 steps from any initial domain, we reach any
final domain with non-zero probability:

∀s. 0 < wp scheduleT 8+n (in_dom df) s

Note that predicates (expectations) in pGCL are real-valued.
Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 14/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Refinement in pGCL

What about downgrading, does it still hold? We show this
using refinement, but first some notes on pGCL:

• pGCL generalises Boolean logic with real values:
True is 1, False is 0.

• Entailment (`) generalises (�), which is really just ≤:

False→ True 0 ≤ 1

λx . False ` λx . True λx . 0 � λx . 1

• Predicates are lifted to expectations:

«P» = λx . if P x then 1 else 0

• We reason about weakest-preexpectations:

Q � wp prog R

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 15/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Refinement in pGCL

What about downgrading, does it still hold? We show this
using refinement, but first some notes on pGCL:
• pGCL generalises Boolean logic with real values:

True is 1, False is 0.

• Entailment (`) generalises (�), which is really just ≤:

False→ True 0 ≤ 1

λx . False ` λx . True λx . 0 � λx . 1

• Predicates are lifted to expectations:

«P» = λx . if P x then 1 else 0

• We reason about weakest-preexpectations:

Q � wp prog R

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 15/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Refinement in pGCL

What about downgrading, does it still hold? We show this
using refinement, but first some notes on pGCL:
• pGCL generalises Boolean logic with real values:

True is 1, False is 0.
• Entailment (`) generalises (�), which is really just ≤:

False→ True 0 ≤ 1

λx . False ` λx . True λx . 0 � λx . 1

• Predicates are lifted to expectations:

«P» = λx . if P x then 1 else 0

• We reason about weakest-preexpectations:

Q � wp prog R

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 15/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Refinement in pGCL

What about downgrading, does it still hold? We show this
using refinement, but first some notes on pGCL:
• pGCL generalises Boolean logic with real values:

True is 1, False is 0.
• Entailment (`) generalises (�), which is really just ≤:

False→ True 0 ≤ 1

λx . False ` λx . True λx . 0 � λx . 1

• Predicates are lifted to expectations:

«P» = λx . if P x then 1 else 0

• We reason about weakest-preexpectations:

Q � wp prog R

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 15/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Refinement in pGCL

What about downgrading, does it still hold? We show this
using refinement, but first some notes on pGCL:
• pGCL generalises Boolean logic with real values:

True is 1, False is 0.
• Entailment (`) generalises (�), which is really just ≤:

False→ True 0 ≤ 1

λx . False ` λx . True λx . 0 � λx . 1

• Predicates are lifted to expectations:

«P» = λx . if P x then 1 else 0

• We reason about weakest-preexpectations:

Q � wp prog R
Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 15/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Refinement in pGCL

pGCL refinement has the usual properties:

Definition
Program b refines program a, written a v b, exactly when all
expectation-entailments on a also hold on b:

P � wp a Q

P � wp b Q

Lemma

The transition scheduler refines the lattice scheduler:

scheduleS v scheduleT

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 16/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Refinement in pGCL

pGCL refinement has the usual properties:

Definition
Program b refines program a, written a v b, exactly when all
expectation-entailments on a also hold on b:

P � wp a Q

P � wp b Q

Lemma

The transition scheduler refines the lattice scheduler:

scheduleS v scheduleT

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 16/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Refinement in pGCL

pGCL refinement has the usual properties:

Definition
Program b refines program a, written a v b, exactly when all
expectation-entailments on a also hold on b:

P � wp a Q

P � wp b Q

Lemma

The transition scheduler refines the lattice scheduler:

scheduleS v scheduleT

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 16/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

First Refinement

DOWNGRADING // scheduleS

v
��

NON-STARVATION

scheduleT

• Downgrading is preserved by refinement,

and therefore
holds for scheduleT.

• Non-starvation holds only for scheduleT.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 17/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

First Refinement

DOWNGRADING //

��

scheduleS

v
��

NON-STARVATION

scheduleT

• Downgrading is preserved by refinement, and therefore
holds for scheduleT.

• Non-starvation holds only for scheduleT.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 17/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

First Refinement

DOWNGRADING //

��

scheduleS

v
��

NON-STARVATION // scheduleT

• Downgrading is preserved by refinement, and therefore
holds for scheduleT.

• Non-starvation holds only for scheduleT.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 17/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Outline

• Lattice Scheduling

• The Probabilistic Scheduler
• Refinement

• Lottery Scheduling
• Data Refinement

• seL4 Integration

• Non-Leakage

• Summary

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 18/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Lottery Scheduler

Our scheduler is so far very abstract. The next step is to
implement the randomisation. We use a lottery:

• We only need a uniform random choice from Z32.

• Each option is assigned some number, x , of tickets.

• The chance of winning is x
232 .

• We need to assume that the lottery relation holds:

T (c, n) = 2−32‖{t . lottery (domains s c) t = n}‖

• Different state spaces: need more than simple
refinement.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 19/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Lottery Scheduler

record domain = lottery :: 32 word⇒ dom_id

record stateC = current_domain :: dom_id

domains :: dom_id⇒ domain

scheduleM t = do c ← gets current_domain

dl ← gets domains

let n = lottery (dl c) t in

modify (λs. sLcurrent_domain := nM)
od

scheduleC = t from (λs. UNIV) at 2−32 in

Exec (scheduleM t)

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 20/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Data Refinement

Definition (Probabilistic Data Refinement)
Program b, on state type σ, refines program a, state τ , given
precondition G : σ → Bool and under projection θ : σ → τ ,
written a vG,θ b, exactly when any expectation entailment on
a implies the same for b, on the projected state and with a
guarded pre-expectation:

P � wp a Q

«G»&&(P ◦ θ) � wp b (Q ◦ θ)

a&& b = max (a + b − 1) 0

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 21/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Correspondence

Definition (Probabilistic Correspondence)
Programs a and b are said to be in probabilistic
correspondence, pcorres θ G a b, given condition G and
under projection θ if, for any post-expectation Q, the guarded
pre-expectations coincide:

«G»&&(wp a Q ◦ θ) = «G»&& wp b (Q ◦ θ)

Lemma
The specifications scheduleT and scheduleC correspond
given condition LR and under projection φ:

pcorres φ LR scheduleT scheduleC

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 22/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Correspondence

Definition (Probabilistic Correspondence)
Programs a and b are said to be in probabilistic
correspondence, pcorres θ G a b, given condition G and
under projection θ if, for any post-expectation Q, the guarded
pre-expectations coincide:

«G»&&(wp a Q ◦ θ) = «G»&& wp b (Q ◦ θ)

Lemma
The specifications scheduleT and scheduleC correspond
given condition LR and under projection φ:

pcorres φ LR scheduleT scheduleC

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 22/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Second Refinement

DOWNGRADING // scheduleS

��
NON-STARVATION // scheduleT

scheduleC

• The double arrow represents correspondence.

• Correspondence composes with refinement.

• Downgrading and non-starvation are preserved.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 23/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Second Refinement

DOWNGRADING // scheduleS

��
NON-STARVATION // scheduleT

φ,LR
��

scheduleC

• The double arrow represents correspondence.

• Correspondence composes with refinement.

• Downgrading and non-starvation are preserved.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 23/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Second Refinement

DOWNGRADING // scheduleS

��
NON-STARVATION // scheduleT

φ,LR
��

scheduleC

• The double arrow represents correspondence.

• Correspondence composes with refinement.

• Downgrading and non-starvation are preserved.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 23/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Second Refinement

DOWNGRADING // scheduleS

��
NON-STARVATION // scheduleT

φ,LR
��

scheduleC

• The double arrow represents correspondence.

• Correspondence composes with refinement.

• Downgrading and non-starvation are preserved.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 23/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Outline

• Lattice Scheduling

• The Probabilistic Scheduler
• Refinement

• Lottery Scheduling
• Data Refinement

• seL4 Integration

• Non-Leakage

• Summary

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 24/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Nondeterministic State Monad

• The seL4 specification is written using a
nondeterministic state monad.

• We can embed this cleanly into pGCL.

• In fact, we just used it: scheduleM and Exec.

• L4.verified used a particular notion of nondeterministic
correspondence.

• We know how to lift these results, probabilistically:

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 25/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Nondeterministic State Monad

• The seL4 specification is written using a
nondeterministic state monad.

• We can embed this cleanly into pGCL.

• In fact, we just used it: scheduleM and Exec.

• L4.verified used a particular notion of nondeterministic
correspondence.

• We know how to lift these results, probabilistically:

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 25/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Nondeterministic State Monad

• The seL4 specification is written using a
nondeterministic state monad.

• We can embed this cleanly into pGCL.

• In fact, we just used it: scheduleM and Exec.

• L4.verified used a particular notion of nondeterministic
correspondence.

• We know how to lift these results, probabilistically:

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 25/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Nondeterministic State Monad

• The seL4 specification is written using a
nondeterministic state monad.

• We can embed this cleanly into pGCL.

• In fact, we just used it: scheduleM and Exec.

• L4.verified used a particular notion of nondeterministic
correspondence.

• We know how to lift these results, probabilistically:

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 25/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Lemma (Lifting Correspondence)
Given correspondence between M and M ′: with

corres_underlying {(s, s′). s = φ s′} True rrel G (G◦φ) M M ′

and standard side-conditions:

no_fail G M empty_fail M empty_fail M ′

and that M is deterministic on the image of the projection,

∀s. ∃(r , s′). M (φ s) = {(False, (r , s′))}

then we have probabilistic correspondence:

pcorres φ (G ◦ φ) (Exec M) (Exec M ′)

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 26/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Lemma

If the kernel preserves the lottery relation,

{|LR|} stepKernel {|λ_. LR|}

and the current domain,

{|λs. CD s = d |} stepKernel {|λ_ s. CD s = d |}

and is total,

no_fail > stepKernel empty_fail stepKernel

then with the concrete scheduler, it refines the transition
scheduler:

scheduleT vLR,φ stepKernel;;scheduleC

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 27/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Composed Refinement

DOWNGRADING // scheduleS

��
NON-STARVATION // scheduleT

φ,LR
��

callKernelD

��

stepKernel; ; scheduleC scheduleC
φ,LR

ks

callKernelH

��
callKernelC

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 28/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Outline

• Lattice Scheduling

• The Probabilistic Scheduler
• Refinement

• Lottery Scheduling
• Data Refinement

• seL4 Integration

• Non-Leakage

• Summary

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 29/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Hardware Model

Ultimately, we want to know that our scheduler eliminates
leakage via the cache. We append a machine model:

record (sh, pr) machine = private :: dom_id⇒ pr

shared :: sh

• A private state per domain.

• A shared state between domains (the cache).

• Domains are underspecified, but may only update their
own private state and the shared state.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 30/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Leakage via Shared State

2

3

2

1

S

3

3

2

1

S

3

2

1

S

• Propagating taint takes at least 2 steps.

• A single-step policy isn’t enough.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 31/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Lemma (Non-leakage)
If the clearance of domain h is not entirely contained within
that of domain l,

clearance h * clearance l

then any function of the state after execution, which depends
only on elements within l ’s clearance,

Q ◦mask l

is invariant under modifications to h’s private state (as
represented by replace):

wp (runDom;;scheduleT)n (Q ◦mask) =

(wp (runDom;;scheduleT)n (Q ◦mask)) ◦ (replace h p)

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 32/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Final Refinement

DOWNGRADING // scheduleS

��

NON-LEAKAGE

��
NON-STARVATION // scheduleT

φ,LR

��

ψ,LR

+3 runDom ;; scheduleT

φ,LR

��
stepKernel ;; scheduleC scheduleC

φ,LR

ks
ψ,LR

+3 runDom ;; scheduleC

• We’ve have non-leakage for the probabilistic scheduler
(scheduleT), and it is preserved by refinement.

• We now have all 3 properties for the concrete
implementation.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 33/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Outline

• Lattice Scheduling

• The Probabilistic Scheduler
• Refinement

• Lottery Scheduling
• Data Refinement

• seL4 Integration

• Non-Leakage

• Summary

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 34/36

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

What The Message?

• Probabilistic programs need not be harder to verify than
traditional ones.

• Good tool support now exists

— pGCL for Isabelle
available from:
http://www.cse.unsw.edu.au/~davec/pGCL/

Will also to be submitted to AFP.

• Some problems in security are unavoidably
probabilistic.

• Probabilistic results can compose well with large
existing proofs.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 35/36

http://www.cse.unsw.edu.au/~davec/pGCL/

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

What The Message?

• Probabilistic programs need not be harder to verify than
traditional ones.

• Good tool support now exists

— pGCL for Isabelle
available from:
http://www.cse.unsw.edu.au/~davec/pGCL/

Will also to be submitted to AFP.

• Some problems in security are unavoidably
probabilistic.

• Probabilistic results can compose well with large
existing proofs.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 35/36

http://www.cse.unsw.edu.au/~davec/pGCL/

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

What The Message?

• Probabilistic programs need not be harder to verify than
traditional ones.

• Good tool support now exists

— pGCL for Isabelle
available from:
http://www.cse.unsw.edu.au/~davec/pGCL/

Will also to be submitted to AFP.

• Some problems in security are unavoidably
probabilistic.

• Probabilistic results can compose well with large
existing proofs.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 35/36

http://www.cse.unsw.edu.au/~davec/pGCL/

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

What The Message?

• Probabilistic programs need not be harder to verify than
traditional ones.

• Good tool support now exists — pGCL for Isabelle
available from:
http://www.cse.unsw.edu.au/~davec/pGCL/

Will also to be submitted to AFP.

• Some problems in security are unavoidably
probabilistic.

• Probabilistic results can compose well with large
existing proofs.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 35/36

http://www.cse.unsw.edu.au/~davec/pGCL/

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

What The Message?

• Probabilistic programs need not be harder to verify than
traditional ones.

• Good tool support now exists — pGCL for Isabelle
available from:
http://www.cse.unsw.edu.au/~davec/pGCL/

Will also to be submitted to AFP.

• Some problems in security are unavoidably
probabilistic.

• Probabilistic results can compose well with large
existing proofs.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 35/36

http://www.cse.unsw.edu.au/~davec/pGCL/

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

What The Message?

• Probabilistic programs need not be harder to verify than
traditional ones.

• Good tool support now exists — pGCL for Isabelle
available from:
http://www.cse.unsw.edu.au/~davec/pGCL/

Will also to be submitted to AFP.

• Some problems in security are unavoidably
probabilistic.

• Probabilistic results can compose well with large
existing proofs.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 35/36

http://www.cse.unsw.edu.au/~davec/pGCL/

Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Questions?

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 36/36

	Lattice Scheduling
	The Probabilistic Scheduler
	Refinement

	Lottery Scheduling
	Data Refinement

	seL4 Integration
	Non-Leakage
	Summary

