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Overview

In this talk, I present a verified lattice scheduler, that
eliminates leakage via a shared cache, while guaranteeing
non-starvation. In additition, this work:

• Applies our existing pGCL package for Isaelle.

• Presents a multilevel probabilistic refinement proof.

• Integrates with the seL4 proof.
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• Consider a system with two classification tags: A and B.
Information tagged with A may only be seen by an
agent cleared to see A, likewise for B.

• Any output from an agent clear for A is tagged A,
likewise for B.

• There are four possible clearances: A, B, A and B, and
nothing. These are domains.

• The who-may-talk-to-whom order is a lattice:

{A,B}

{A}

;;

{B}

cc

{ }

cc

OO

;;

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 4/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

• Consider a system with two classification tags: A and B.
Information tagged with A may only be seen by an
agent cleared to see A, likewise for B.

• Any output from an agent clear for A is tagged A,
likewise for B.

• There are four possible clearances: A, B, A and B, and
nothing. These are domains.

• The who-may-talk-to-whom order is a lattice:

{A,B}

{A}

;;

{B}

cc

{ }

cc

OO

;;

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 4/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

• Consider a system with two classification tags: A and B.
Information tagged with A may only be seen by an
agent cleared to see A, likewise for B.

• Any output from an agent clear for A is tagged A,
likewise for B.

• There are four possible clearances: A, B, A and B, and
nothing. These are domains.

• The who-may-talk-to-whom order is a lattice:

{A,B}

{A}

;;

{B}

cc

{ }

cc

OO

;;

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 4/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

• Consider a system with two classification tags: A and B.
Information tagged with A may only be seen by an
agent cleared to see A, likewise for B.

• Any output from an agent clear for A is tagged A,
likewise for B.

• There are four possible clearances: A, B, A and B, and
nothing. These are domains.

• The who-may-talk-to-whom order is a lattice:

{A,B}

{A}

;;

{B}

cc

{ }

cc

OO

;;

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 4/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__

OO

??

• For brevity, label the domains and then forget the sets.

• Enforcing rules for explicit communication in such a
system is a well-studied problem.

• Implicit communication is harder.

• We’re specifically concerned with covert channels due
to sharing hardware.
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The Cache Channel

33333333

3 2

domain switch
33333333

22222222

22222222

Conflict!

Even if two domains are unable to communicate, they leave
detectable traces in the machine state.

For example, 2 cannot read 3’s cache lines, but it can infer
where they are, by timing its own memory accesses.
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The Cache Channel

How do we mitigate this channel?

• We could flush the cache everytime . . . expensive!

• We don’t need to flush when transitioning up.

• Transition up as long as possible. . . then flush and start
again.

This is Lattice Scheduling
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• The schedule relation S, is a subset of the up
transitions.

• This schedule is incomplete: There’s no way to leave 3.

• We must add downward transitions, but how?

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 8/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__

OO

??

• The schedule relation S, is a subset of the up
transitions.

• This schedule is incomplete: There’s no way to leave 3.

• We must add downward transitions, but how?

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 8/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__ ??

• The schedule relation S, is a subset of the up
transitions.

• This schedule is incomplete: There’s no way to leave 3.

• We must add downward transitions, but how?

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 8/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__ ??

• The schedule relation S, is a subset of the up
transitions.

• This schedule is incomplete: There’s no way to leave 3.

• We must add downward transitions, but how?

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 8/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__ ??

• The schedule relation S, is a subset of the up
transitions.

• This schedule is incomplete: There’s no way to leave 3.

• We must add downward transitions, but how?

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 8/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

3

1

??

2

__

⊥

__ ??

• Designate a downgrader, ⊥.

• The downgrader clears the cache.

Lemma (Downgrading)

If S allows a downward transition, it is to the downgrader, ⊥:

(c, n) ∈ S clearance c * clearance n

n = ⊥
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The Lattice Scheduler

We’ll verify a scheduler written in pGCL, an imperative,
probabilistic language:

record stateA = current_domain :: dom_id

scheduleS =

c is current_domain in

current_domain :∈ (λ_. {n. (c, n) ∈ S})

This program selects a new domain nondeterministically
from among those with a valid transition from the current.
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• We want to refine this to a realistic implementation.

• The refinement may produce any trace permitted here.

• For example: ⊥, 2,⊥, 2, . . ..
• The specification permits starvation.

• Randomisation gives us a neat solution.
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Random Transitions

3
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• Assign a probability to each transition such that
T (c, n) > 0 only if (c, n) ∈ S.

• Outgoing probabilities sum to 1 (or less).

• The previous trace now has probability 0!
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A Probabilistic Scheduler

scheduleT =

c is current_domain in

current_domain :∈ (λ_. {⊥, 1, 2, 3} at (λ_ n. T (c, n))

Lemma (Non-starvation)

Taking at least 8 steps from any initial domain, we reach any
final domain with non-zero probability:

∀s. 0 < wp scheduleT 8+n (in_dom df ) s

Note that predicates (expectations) in pGCL are real-valued.
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Refinement in pGCL

What about downgrading, does it still hold? We show this
using refinement, but first some notes on pGCL:

• pGCL generalises Boolean logic with real values:
True is 1, False is 0.

• Entailment (`) generalises (�), which is really just ≤:

False→ True 0 ≤ 1

λx . False ` λx . True λx . 0 � λx . 1

• Predicates are lifted to expectations:

«P» = λx . if P x then 1 else 0

• We reason about weakest-preexpectations:

Q � wp prog R
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Refinement in pGCL

pGCL refinement has the usual properties:

Definition
Program b refines program a, written a v b, exactly when all
expectation-entailments on a also hold on b:

P � wp a Q

P � wp b Q

Lemma

The transition scheduler refines the lattice scheduler:

scheduleS v scheduleT
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First Refinement

DOWNGRADING // scheduleS

v
��

NON-STARVATION

scheduleT

• Downgrading is preserved by refinement,

and therefore
holds for scheduleT.

• Non-starvation holds only for scheduleT.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 17/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

First Refinement

DOWNGRADING //

��

scheduleS

v
��

NON-STARVATION

scheduleT

• Downgrading is preserved by refinement, and therefore
holds for scheduleT.

• Non-starvation holds only for scheduleT.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 17/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

First Refinement

DOWNGRADING //

��

scheduleS

v
��

NON-STARVATION // scheduleT

• Downgrading is preserved by refinement, and therefore
holds for scheduleT.

• Non-starvation holds only for scheduleT.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 17/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Outline

• Lattice Scheduling

• The Probabilistic Scheduler
• Refinement

• Lottery Scheduling
• Data Refinement

• seL4 Integration

• Non-Leakage

• Summary

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 18/36



Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

The Lottery Scheduler

Our scheduler is so far very abstract. The next step is to
implement the randomisation. We use a lottery:

• We only need a uniform random choice from Z32.

• Each option is assigned some number, x , of tickets.

• The chance of winning is x
232 .

• We need to assume that the lottery relation holds:

T (c, n) = 2−32‖{t . lottery (domains s c) t = n}‖

• Different state spaces: need more than simple
refinement.
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The Lottery Scheduler

record domain = lottery :: 32 word⇒ dom_id

record stateC = current_domain :: dom_id

domains :: dom_id⇒ domain

scheduleM t = do c ← gets current_domain

dl ← gets domains

let n = lottery (dl c) t in

modify (λs. sLcurrent_domain := nM)
od

scheduleC = t from (λs. UNIV) at 2−32 in

Exec (scheduleM t)
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Data Refinement

Definition (Probabilistic Data Refinement)
Program b, on state type σ, refines program a, state τ , given
precondition G : σ → Bool and under projection θ : σ → τ ,
written a vG,θ b, exactly when any expectation entailment on
a implies the same for b, on the projected state and with a
guarded pre-expectation:

P � wp a Q

«G»&&(P ◦ θ) � wp b (Q ◦ θ)

a&& b = max (a + b − 1) 0
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Correspondence

Definition (Probabilistic Correspondence)
Programs a and b are said to be in probabilistic
correspondence, pcorres θ G a b, given condition G and
under projection θ if, for any post-expectation Q, the guarded
pre-expectations coincide:

«G»&&(wp a Q ◦ θ) = «G»&& wp b (Q ◦ θ)

Lemma
The specifications scheduleT and scheduleC correspond
given condition LR and under projection φ:

pcorres φ LR scheduleT scheduleC
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Second Refinement

DOWNGRADING // scheduleS

��
NON-STARVATION // scheduleT

scheduleC

• The double arrow represents correspondence.

• Correspondence composes with refinement.

• Downgrading and non-starvation are preserved.
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The Nondeterministic State Monad

• The seL4 specification is written using a
nondeterministic state monad.

• We can embed this cleanly into pGCL.

• In fact, we just used it: scheduleM and Exec.

• L4.verified used a particular notion of nondeterministic
correspondence.

• We know how to lift these results, probabilistically:
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Lemma (Lifting Correspondence)
Given correspondence between M and M ′: with

corres_underlying {(s, s′). s = φ s′} True rrel G (G◦φ) M M ′

and standard side-conditions:

no_fail G M empty_fail M empty_fail M ′

and that M is deterministic on the image of the projection,

∀s. ∃(r , s′). M (φ s) = {(False, (r , s′))}

then we have probabilistic correspondence:

pcorres φ (G ◦ φ) (Exec M) (Exec M ′)
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Lemma

If the kernel preserves the lottery relation,

{|LR|} stepKernel {|λ_. LR|}

and the current domain,

{|λs. CD s = d |} stepKernel {|λ_ s. CD s = d |}

and is total,

no_fail > stepKernel empty_fail stepKernel

then with the concrete scheduler, it refines the transition
scheduler:

scheduleT vLR,φ stepKernel;;scheduleC
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Composed Refinement

DOWNGRADING // scheduleS

��
NON-STARVATION // scheduleT

φ,LR
��

callKernelD

��

stepKernel; ; scheduleC scheduleC
φ,LR

ks

callKernelH

��
callKernelC
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Hardware Model

Ultimately, we want to know that our scheduler eliminates
leakage via the cache. We append a machine model:

record (sh, pr) machine = private :: dom_id⇒ pr

shared :: sh

• A private state per domain.

• A shared state between domains (the cache).

• Domains are underspecified, but may only update their
own private state and the shared state.
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Leakage via Shared State

2

3

2

1

S

3

3

2

1

S

3

2

1

S

• Propagating taint takes at least 2 steps.

• A single-step policy isn’t enough.
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Lemma (Non-leakage)
If the clearance of domain h is not entirely contained within
that of domain l,

clearance h * clearance l

then any function of the state after execution, which depends
only on elements within l ’s clearance,

Q ◦mask l

is invariant under modifications to h’s private state (as
represented by replace):

wp (runDom;;scheduleT)n (Q ◦mask) =

(wp (runDom;;scheduleT)n (Q ◦mask)) ◦ (replace h p)
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Final Refinement

DOWNGRADING // scheduleS

��

NON-LEAKAGE

��
NON-STARVATION // scheduleT

φ,LR

��

ψ,LR

+3 runDom ;; scheduleT

φ,LR

��
stepKernel ;; scheduleC scheduleC

φ,LR

ks
ψ,LR

+3 runDom ;; scheduleC

• We’ve have non-leakage for the probabilistic scheduler
(scheduleT), and it is preserved by refinement.

• We now have all 3 properties for the concrete
implementation.
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What The Message?

• Probabilistic programs need not be harder to verify than
traditional ones.

• Good tool support now exists

— pGCL for Isabelle
available from:
http://www.cse.unsw.edu.au/~davec/pGCL/

Will also to be submitted to AFP.

• Some problems in security are unavoidably
probabilistic.

• Probabilistic results can compose well with large
existing proofs.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 35/36

http://www.cse.unsw.edu.au/~davec/pGCL/


Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

What The Message?

• Probabilistic programs need not be harder to verify than
traditional ones.

• Good tool support now exists

— pGCL for Isabelle
available from:
http://www.cse.unsw.edu.au/~davec/pGCL/

Will also to be submitted to AFP.

• Some problems in security are unavoidably
probabilistic.

• Probabilistic results can compose well with large
existing proofs.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 35/36

http://www.cse.unsw.edu.au/~davec/pGCL/


Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

What The Message?

• Probabilistic programs need not be harder to verify than
traditional ones.

• Good tool support now exists

— pGCL for Isabelle
available from:
http://www.cse.unsw.edu.au/~davec/pGCL/

Will also to be submitted to AFP.

• Some problems in security are unavoidably
probabilistic.

• Probabilistic results can compose well with large
existing proofs.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 35/36

http://www.cse.unsw.edu.au/~davec/pGCL/


Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

What The Message?

• Probabilistic programs need not be harder to verify than
traditional ones.

• Good tool support now exists — pGCL for Isabelle
available from:
http://www.cse.unsw.edu.au/~davec/pGCL/

Will also to be submitted to AFP.

• Some problems in security are unavoidably
probabilistic.

• Probabilistic results can compose well with large
existing proofs.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 35/36

http://www.cse.unsw.edu.au/~davec/pGCL/


Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

What The Message?

• Probabilistic programs need not be harder to verify than
traditional ones.

• Good tool support now exists — pGCL for Isabelle
available from:
http://www.cse.unsw.edu.au/~davec/pGCL/

Will also to be submitted to AFP.

• Some problems in security are unavoidably
probabilistic.

• Probabilistic results can compose well with large
existing proofs.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 35/36

http://www.cse.unsw.edu.au/~davec/pGCL/


Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

What The Message?

• Probabilistic programs need not be harder to verify than
traditional ones.

• Good tool support now exists — pGCL for Isabelle
available from:
http://www.cse.unsw.edu.au/~davec/pGCL/

Will also to be submitted to AFP.

• Some problems in security are unavoidably
probabilistic.

• Probabilistic results can compose well with large
existing proofs.

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 35/36

http://www.cse.unsw.edu.au/~davec/pGCL/


Lattice Scheduling

The Probabilistic
Scheduler
Refinement

Lottery Scheduling
Data Refinement

seL4 Integration

Non-Leakage

Summary

Questions?

Practical ProbabilityApplying pGCL to Lattice Scheduling Copyright NICTA 2013
David Cock 36/36


	Lattice Scheduling
	The Probabilistic Scheduler
	Refinement

	Lottery Scheduling
	Data Refinement

	seL4 Integration
	Non-Leakage
	Summary

