Measuring and Mitigating Side Channels

David Cock

3 February 2014

Australian Government

Department of Broadband. Communications and the Digital Economy

Australian Research Council

SYDNEY

Investment

0

Outline

• Introduction

- Side Channels
- Covert Channels
- A Motivating Example

Theory

- Measures of Leakage
- Noise
- Formal Models

Practice

- The Unmitigated Cache Channel
- Relaxed Determinism
- Cache Partitioning
- Scheduled Reply

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

David Cock 2/25

Pushing the Limits of Verification

- We have a functionally verified, high-performance microkernel.
- We'd like to use it in high-security environments.
- We want trustworthy solutions.
- We have verified non-leakage over explicit channels.
- What about side-channels and covert-channels? Can you verify that sort of thing?

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply Side channels are the leakage of sensitive information over unanticipated channels: radio waves, sound, response time...

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

David Cock 4/25

Measuring and Mitigating Side Channels Copyright NICTA 2014

▶ 《圖》 《트》 《트》

Side channels are the leakage of sensitive information over unanticipated channels: radio waves, sound, response time...

- An old problem Declassified documents refer to incidents in the 1940s
- The US Tempest program targets "compromising emanations".
- The US DoD Orange Book (1970s) defined standards for leakage-resistance.

ntroduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

^oractice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

Measuring and Mitigating Side Channels Copyright NICTA 2014 🔹 🔍 🖉 🕨 🔹 👘 🖄 🚊 👘 🔍 🍄 David Cock 4/25

Block ciphers (DES, AES, ...) often use lookup tables.

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

Measuring and Mitigating Side Channels Copyright NICTA 2014

▶ 《圖 ▶ 《 문 ▶ 《 문

David Cock 5/25

Block ciphers (DES, AES, ...) often use lookup tables.

Indexed by a combination of key and plaintext.

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

Block ciphers (DES, AES, ...) often use lookup tables.

- Indexed by a combination of key and plaintext.
- Leaking the indices compromises the key.

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

David Cock 5/25

Block ciphers (DES, AES, ...) often use lookup tables.

- Indexed by a combination of key and plaintext.
- Leaking the indices compromises the key.
- The cache line used, depends on the index.

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

Measuring and Mitigating Side Channels Copyright NICTA 2014 🔹 🔍 🖉 🖉 🖉 🖉 🖉 🖓 🖓 David Cock 5/25

Block ciphers (DES, AES, ...) often use lookup tables.

- Indexed by a combination of key and plaintext.
- Leaking the indices compromises the key.
- The cache line used, depends on the index.
- A co-resident process can probe this.

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

David Cock 5/25

Covert channels are a related problem.

- Side channels Cryptanalysts, the external threat.
- Covert channels The insider threat.
- Interest arose with utility computing: 1970s.
- Recent revival thanks to cloud computing.
- Same mechanisms Different threat model.

Introduction Side Channels Covert Channels A Motivating Examp

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

David Cock 6/25

We focus on the mechanism of leakage: A covert channel is **actively** exploited, a side channel is **accidentally** exploited.

Introduction Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

We focus on the mechanism of leakage: A covert channel is **actively** exploited, a side channel is **accidentally** exploited.

Observation

A covert-channel-free system is also side-channel free.

Introduction Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

Measuring and Mitigating Side Channels Copyright NICTA 2014 🔹 🗖 🕨 🔹 🗄 💆 🗮

A Motivating Example

- It is simple to detect cache misses, via timing.
- By warming the cache, then looking for misses, we can tell which lines **another** process has touched.
- (Potentially) high bandwidth, limited by sampling rate.
- Coarse-grained exploit: sample on context switch.

Outline

• Introduction

- Side Channels
- Covert Channels
- A Motivating Example

• Theory

- Measures of Leakage
- Noise
- Formal Models

• Practice

- The Unmitigated Cache Channel
- Relaxed Determinism
- Cache Partitioning
- Scheduled Reply

Measuring and Mitigating Side Channels Copyright NICTA 2014

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakag Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

David Cock 9/25

• Randomness is characteristic.

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

Measuring and Mitigating Side Channels Copyright NICTA 2014

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

- Randomness is characteristic.
- Take the receiver's view: Given what I've seen, what might the message be?

Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

- Randomness is characteristic.
- Take the receiver's view: Given what I've seen, what might the message be?
- The best you can to is to assign **probabilities**.
- The uncertainty is usually summarized by Shannon entropy:

$$H_1 = -\sum_x P(x) \times \log_2 P(x)$$

• This is **expected** number of yes/no questions needed to identify the message.

Introduction Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

- Randomness is characteristic.
- Take the receiver's view: Given what I've seen, what might the message be?
- The best you can to is to assign **probabilities**.
- The uncertainty is usually summarized by Shannon entropy:

$$H_1 = -\sum_x P(x) \times \log_2 P(x)$$

- This is **expected** number of yes/no questions needed to identify the message.
- The bandwidth is the rate of decrease of H₁.

Introduction Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply By the Shannon-Hartley theorem:

$$Capacity = Bandwidth \times log_2 \left(1 + \frac{Signal}{Noise}\right)$$

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage

Noise

Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

Measuring and Mitigating Side Channels Copyright NICTA 2014 🔹 《 모 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 《 C David Cock 11/25

How to Reduce Bandwidth

By the Shannon-Hartley theorem:

$$Capacity = \frac{Rate}{2} \times \log_2 \left(1 + \frac{Signal}{Noise}\right)$$

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage

Noise

Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

How to Reduce Bandwidth

By the Shannon-Hartley theorem:

$$C_{apacity} = \frac{Rate}{2} \times \log_2 \left(1 + \frac{Signal}{Noise}\right)$$

Decrease the signal...

NICTA

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage

Noise

Formal Mode

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply By the Shannon-Hartley theorem:

$$Capacity = \frac{Rate}{2} \times \log_2 \left(1 + \frac{Signal}{Noise}\right)$$

Decrease the signal...

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage

Noise

Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply By the Shannon-Hartley theorem:

$$c_{apacity} = \frac{Rate}{2} \times log_{2} \left(1 + \frac{Signal}{Noise}\right)$$

Decrease the signal... or increase the noise. Which is the better option?

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage

Noise

Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

Correlated vs. Anti-correlated Noise

Measuring and Mitigating Side Channels Copyright NICTA 2014

< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 ● ⑦ ♀ ♡ David Cock 12/25

Correlated vs. Anti-correlated Noise

 Uncorrelated ('random') noise gets us there, but slowly, by increasing the noise term.

Correlated vs. Anti-correlated Noise

- Uncorrelated ('random') noise gets us there, but slowly, by increasing the noise term.
- Anti-correlated noise is much more effective, reducing the signal term, when it's possible.

Outline

• Introduction

- Side Channels
- Covert Channels
- A Motivating Example

Theory

- Measures of Leakage
- Noise
- Formal Models

Practice

- The Unmitigated Cache Channel
- Relaxed Determinism
- Cache Partitioning
- Scheduled Reply

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

つ ९ C David Cock 13/25

We evaluated three approaches:

Cache Colouring Takes advantage of seL4's allocation model to isolate processes and eliminate the cache channel.

Relaxed Determinism Prevents **local** exploitation of the channel by synchronising visible clocks.

Scheduled Delivery Prevents **remote** exploitation by pacing message delivery using a real-time scheduler.

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

```
/* Transmit */
                               /* Monitor */
char A[LINES][16]; int S;
                               int R, C1, C2;
while(1) {
                               while(1) {
  for(i=0:i<S:i++)</pre>
                                  do {
    A[i][0] ^= 1:
                                    C1=C:
}
                                    yield();
/* Receive */
                                    C2=C;
char B[LINES][16];
                                  } while(C1==C2):
volatile int C;
                                  R=C2-C1;
while(1) {
                               }
  for(i=0;i<LINES;i++) {</pre>
    B[i][0] ^= 1;
    C++:
  }
```

/ 2;

Introduction

NICTA

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel

Relaxed Determinism Cache Partitioning Scheduled Reply

Measuring and Mitigating Side Channels Copyright NICTA 2014

▲ 토 ▶ ▲ 토 ▶ 토 ∽ ♀ <</td>Pavid Cock 15/25

The iMX.31 Channel — 4.25kb/s @ 1000Hz

Measuring and Mitigating Side Channels Copyright NICTA 2014 - 《 모 》 《 문 》 《 문 》 《 문 》 문 - 원 역 C David Cock 16/25

The Core 2 Channel – 4.41kb/s @ 500Hz

NICTA

Measuring and Mitigating Side Channels Copyright NICTA 2014 (미) 《 미) 《 문) 《 문) 《 문) 문 이 오 이 David Cock 17/25

Exploiting a timing channel requires **two** clocks: one that the sender can manipulate, and another for the receiver to measure that manipulation.

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel

Relaxed Determinism

Scheduled Reply

Measuring and Mitigating Side Channels Copyright NICTA 2014 (미) 《 미) 《 문) 《 문) 《 문) 문 이 오 이 David Cock 18/25

Exploiting a timing channel requires **two** clocks: one that the sender can manipulate, and another for the receiver to measure that manipulation.

The program counter is a clock that's always available, therefore:

ntroduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel

Relaxed Determinism

Scheduled Reply

Exploiting a timing channel requires **two** clocks: one that the sender can manipulate, and another for the receiver to measure that manipulation.

The program counter is a clock that's always available, therefore:

Determinism Criterion

All visible clocks must depend only on the program counter.

We mitigate our channel by making preemptions deterministic, generated using performance counters.

ntroduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel

Relaxed Determinism Cache Partitioning

Scheduled Reply

Core 2 Deterministic Ticks — 37.4b/s

Measuring and Mitigating Side Channels Copyright NICTA 2014

David Cock 19/25 3

Cache Colouring

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

- The low bits of the VA are direct mapped.
- Often, the direct-mapped range is >1 page.
- Pages of different colours never collide.
- Isolate processes on different colours.

Measuring and Mitigating Side Channels Copyright NICTA 2014 💦 🔍 🏴 🕨

< □ ▶ < @ ▶ < 注 ▶ < 注 ▶ 注 の へ David Cock 20/25

NICTA

Scheduled Reply

Side Channels

A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

- Exploits the use of endpoints of seL4.
- Schedules message replies using EDF.
- Low-overhead mitigation.

We achieve better security and lower latency than a constant-time version.

Measuring and Mitigating Side Channels Copyright NICTA 2014

David Cock 23/25

Performance under Load

We achieve the same throughput as constant-time, with better overhead.

Measuring and Mitigating Side Channels Copyright NICTA 2014

NICTA

Sold raining Cover Charles are A Molvaling Example Theory Measures of Leakage Noise Formal Models Practice The Unmitigated Cache Channel Relaxed Determinism Cache Farthening Scheduled Repty

David Cock 24/25

Introduction

Side Channels Covert Channels A Motivating Example

Theory

Measures of Leakage Noise Formal Models

Practice

The Unmitigated Cache Channel Relaxed Determinism Cache Partitioning Scheduled Reply

Questions?

Measuring and Mitigating Side Channels Copyright NICTA 2014

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ = 三 · ク < ○ David Cock 25/25