
Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Verifying Probabilistic Correctness
in Isabelle with pGCL

David Cock

30 November 2012

NICTA Funding and Supporting Members and Partners

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 1/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Outline

• Stochastic Behaviour in Systems

• Functional vs. Probabilistic Verification

• pGCL in Isabelle/HOL

• Example: Lattice-Lottery Scheduler

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 2/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Sources of Uncertainty

We like certainty.

The L4.verified proof tells us that if its assumptions are
satisfied, seL4 will definitely not crash.

Sometimes however, we’re forced to live with uncertainty.

Some things are inherently unpredictable:
Device failure.

Some things are simply too complex to model:
A modern processor.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 3/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Sources of Uncertainty

We like certainty.

The L4.verified proof tells us that if its assumptions are
satisfied, seL4 will definitely not crash.

Sometimes however, we’re forced to live with uncertainty.

Some things are inherently unpredictable:
Device failure.

Some things are simply too complex to model:
A modern processor.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 3/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Sources of Uncertainty

We like certainty.

The L4.verified proof tells us that if its assumptions are
satisfied, seL4 will definitely not crash.

Sometimes however, we’re forced to live with uncertainty.

Some things are inherently unpredictable:
Device failure.

Some things are simply too complex to model:
A modern processor.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 3/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Sources of Uncertainty

We like certainty.

The L4.verified proof tells us that if its assumptions are
satisfied, seL4 will definitely not crash.

Sometimes however, we’re forced to live with uncertainty.

Some things are inherently unpredictable:

Device failure.

Some things are simply too complex to model:
A modern processor.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 3/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Sources of Uncertainty

We like certainty.

The L4.verified proof tells us that if its assumptions are
satisfied, seL4 will definitely not crash.

Sometimes however, we’re forced to live with uncertainty.

Some things are inherently unpredictable:
Device failure.

Some things are simply too complex to model:
A modern processor.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 3/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Sources of Uncertainty

We like certainty.

The L4.verified proof tells us that if its assumptions are
satisfied, seL4 will definitely not crash.

Sometimes however, we’re forced to live with uncertainty.

Some things are inherently unpredictable:
Device failure.

Some things are simply too complex to model:

A modern processor.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 3/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Sources of Uncertainty

We like certainty.

The L4.verified proof tells us that if its assumptions are
satisfied, seL4 will definitely not crash.

Sometimes however, we’re forced to live with uncertainty.

Some things are inherently unpredictable:
Device failure.

Some things are simply too complex to model:
A modern processor.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 3/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Probability Refines Nondeterminism

Classical nondeterminism is the ultimate in pessimism:
Anything that can happen will happen.

If we know how events are distributed, we can do better.

Probabilistic models are a halfway-house between full
nondeterminism and full predictability.

Probabilistic guarantees are relevant both for security, and
for reliability.

Our current work is on probabilistic security guarantees.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 4/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Why is this relevant in systems?

Feed a secret string and a guess to strcmp:

0

0.01

0.02

0.03

0.04

24 24.5 25

p
ro

b
ab

il
it

y
 d

en
si

ty

response time (µs)

correct prefix length
0
1
2

This is a side-channel, which exposes the secret.

How bad is it? How can we mitigate it?
How will it behave in a larger system?

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 5/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Why is this relevant in systems?

Feed a secret string and a guess to strcmp:

0

0.01

0.02

0.03

0.04

24 24.5 25

p
ro

b
ab

il
it

y
 d

en
si

ty

response time (µs)

correct prefix length
0
1
2

This is a side-channel, which exposes the secret.

How bad is it? How can we mitigate it?
How will it behave in a larger system?

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 5/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Why is this relevant in systems?

Feed a secret string and a guess to strcmp:

0

0.01

0.02

0.03

0.04

24 24.5 25

p
ro

b
ab

il
it

y
 d

en
si

ty

response time (µs)

correct prefix length
0
1
2

This is a side-channel, which exposes the secret.

How bad is it? How can we mitigate it?
How will it behave in a larger system?

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 5/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Proving Security

Probabilistic verification can help us answer these questions.

We want to show something like:

℘ ((r , τ) := strcmp(g, s);

g := cleverness(r , τ, g)) (g = s) ≤ 2−100

Formulating this rigorously is the subject of our existing work.

Mechanising this work in Isabelle/HOL ensures our
reasoning is sound, and scalable to large problems.

We use pGCL, an extension of Dijkstra’s GCL with
probability.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 6/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Proving Security

Probabilistic verification can help us answer these questions.

We want to show something like:

℘ ((r , τ) := strcmp(g, s);

g := cleverness(r , τ, g)) (g = s) ≤ 2−100

Formulating this rigorously is the subject of our existing work.

Mechanising this work in Isabelle/HOL ensures our
reasoning is sound, and scalable to large problems.

We use pGCL, an extension of Dijkstra’s GCL with
probability.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 6/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Proving Security

Probabilistic verification can help us answer these questions.

We want to show something like:

℘ ((r , τ) := strcmp(g, s);

g := cleverness(r , τ, g)) (g = s) ≤ 2−100

Formulating this rigorously is the subject of our existing work.

Mechanising this work in Isabelle/HOL ensures our
reasoning is sound, and scalable to large problems.

We use pGCL, an extension of Dijkstra’s GCL with
probability.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 6/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Outline

• Stochastic Behaviour in Systems

• Functional vs. Probabilistic Verification

• pGCL in Isabelle/HOL

• Example: Lattice-Lottery Scheduler

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 7/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Judgements on Programs

How do we interpret this?

{x = 0} y := x2{y = x}

This relates a program to an annotation.
If x = 0 holds before, then y = x holds afterwards.

Is x = 0 maximal? No, x = 1 works too.

{x = 0 ∨ x = 1} is maximal,
it is the weakest precondition of {y = x}.

℘ a Q ≡ sup {P|P a Q}

{R} ≤ {S} ≡ R ` S ≡ ∀s. R s → S s

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 8/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Judgements on Programs

How do we interpret this?

{x = 0} y := x2{y = x}

This relates a program to an annotation.
If x = 0 holds before, then y = x holds afterwards.

Is x = 0 maximal?

No, x = 1 works too.

{x = 0 ∨ x = 1} is maximal,
it is the weakest precondition of {y = x}.

℘ a Q ≡ sup {P|P a Q}

{R} ≤ {S} ≡ R ` S ≡ ∀s. R s → S s

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 8/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Judgements on Programs

How do we interpret this?

{x = 0} y := x2{y = x}

This relates a program to an annotation.
If x = 0 holds before, then y = x holds afterwards.

Is x = 0 maximal? No, x = 1 works too.

{x = 0 ∨ x = 1} is maximal,
it is the weakest precondition of {y = x}.

℘ a Q ≡ sup {P|P a Q}

{R} ≤ {S} ≡ R ` S ≡ ∀s. R s → S s

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 8/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Judgements on Programs

How do we interpret this?

{x = 0} y := x2{y = x}

This relates a program to an annotation.
If x = 0 holds before, then y = x holds afterwards.

Is x = 0 maximal? No, x = 1 works too.

{x = 0 ∨ x = 1} is maximal,
it is the weakest precondition of {y = x}.

℘ a Q ≡ sup {P|P a Q}

{R} ≤ {S} ≡ R ` S ≡ ∀s. R s → S s

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 8/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Judgements on Programs

How do we interpret this?

{x = 0} y := x2{y = x}

This relates a program to an annotation.
If x = 0 holds before, then y = x holds afterwards.

Is x = 0 maximal? No, x = 1 works too.

{x = 0 ∨ x = 1} is maximal,
it is the weakest precondition of {y = x}.

℘ a Q ≡ sup {P|P a Q}

{R} ≤ {S} ≡ R ` S ≡ ∀s. R s → S s

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 8/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Nondeterminism

Nondeterminism allows us to underspecify a program.

We write a u b for ‘Do either a or b’.

We let a demon make the choice, who tries to trip us up.

What is ℘ (y := x2 u y := 2x) (y = x)?

Algebraically: ℘ (a u b) Q = ℘ a Q ∩ ℘ b Q

Thus P = {x = 0 ∨ x = 1} ∩ {x = 0} = {x = 0}.
We are treating annotations as sets.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 9/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Nondeterminism

Nondeterminism allows us to underspecify a program.

We write a u b for ‘Do either a or b’.

We let a demon make the choice, who tries to trip us up.

What is ℘ (y := x2 u y := 2x) (y = x)?

Algebraically: ℘ (a u b) Q = ℘ a Q ∩ ℘ b Q

Thus P = {x = 0 ∨ x = 1} ∩ {x = 0} = {x = 0}.
We are treating annotations as sets.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 9/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Nondeterminism

Nondeterminism allows us to underspecify a program.

We write a u b for ‘Do either a or b’.

We let a demon make the choice, who tries to trip us up.

What is ℘ (y := x2 u y := 2x) (y = x)?

Algebraically: ℘ (a u b) Q = ℘ a Q ∩ ℘ b Q

Thus P = {x = 0 ∨ x = 1} ∩ {x = 0} = {x = 0}.
We are treating annotations as sets.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 9/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Nondeterminism

Nondeterminism allows us to underspecify a program.

We write a u b for ‘Do either a or b’.

We let a demon make the choice, who tries to trip us up.

What is ℘ (y := x2 u y := 2x) (y = x)?

Algebraically: ℘ (a u b) Q = ℘ a Q ∩ ℘ b Q

Thus P = {x = 0 ∨ x = 1} ∩ {x = 0} = {x = 0}.
We are treating annotations as sets.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 9/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Nondeterminism

Nondeterminism allows us to underspecify a program.

We write a u b for ‘Do either a or b’.

We let a demon make the choice, who tries to trip us up.

What is ℘ (y := x2 u y := 2x) (y = x)?

Algebraically: ℘ (a u b) Q = ℘ a Q ∩ ℘ b Q

Thus P = {x = 0 ∨ x = 1} ∩ {x = 0} = {x = 0}.
We are treating annotations as sets.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 9/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Quantitative Predicates

So far, ℘ defines a set; What about ℘ as a probability?

Identify a set with its selector: «P» s ≡ 1 if s ∈ P else 0.

We can still order these: «P» ≤ «Q» ≡ ∀s.«P» s ≤ «Q» s

Note: ℘ (a u b) «Q» = min (℘ a «Q») (℘ b «Q»).

The ‘weakest precondition’ is the least value that the
postcondition may take, from a given initial state.

It is the pessimistic expected value of the postcondition.

These quantitative predicates are called expectations.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 10/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Quantitative Predicates

So far, ℘ defines a set; What about ℘ as a probability?

Identify a set with its selector:

«P» s ≡ 1 if s ∈ P else 0.

We can still order these: «P» ≤ «Q» ≡ ∀s.«P» s ≤ «Q» s

Note: ℘ (a u b) «Q» = min (℘ a «Q») (℘ b «Q»).

The ‘weakest precondition’ is the least value that the
postcondition may take, from a given initial state.

It is the pessimistic expected value of the postcondition.

These quantitative predicates are called expectations.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 10/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Quantitative Predicates

So far, ℘ defines a set; What about ℘ as a probability?

Identify a set with its selector: «P» s ≡ 1 if s ∈ P else 0.

We can still order these: «P» ≤ «Q» ≡ ∀s.«P» s ≤ «Q» s

Note: ℘ (a u b) «Q» = min (℘ a «Q») (℘ b «Q»).

The ‘weakest precondition’ is the least value that the
postcondition may take, from a given initial state.

It is the pessimistic expected value of the postcondition.

These quantitative predicates are called expectations.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 10/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Quantitative Predicates

So far, ℘ defines a set; What about ℘ as a probability?

Identify a set with its selector: «P» s ≡ 1 if s ∈ P else 0.

We can still order these: «P» ≤ «Q» ≡ ∀s.«P» s ≤ «Q» s

Note: ℘ (a u b) «Q» = min (℘ a «Q») (℘ b «Q»).

The ‘weakest precondition’ is the least value that the
postcondition may take, from a given initial state.

It is the pessimistic expected value of the postcondition.

These quantitative predicates are called expectations.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 10/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Quantitative Predicates

So far, ℘ defines a set; What about ℘ as a probability?

Identify a set with its selector: «P» s ≡ 1 if s ∈ P else 0.

We can still order these: «P» ≤ «Q» ≡ ∀s.«P» s ≤ «Q» s

Note: ℘ (a u b) «Q» = min (℘ a «Q») (℘ b «Q»).

The ‘weakest precondition’ is the least value that the
postcondition may take, from a given initial state.

It is the pessimistic expected value of the postcondition.

These quantitative predicates are called expectations.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 10/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Quantitative Predicates

So far, ℘ defines a set; What about ℘ as a probability?

Identify a set with its selector: «P» s ≡ 1 if s ∈ P else 0.

We can still order these: «P» ≤ «Q» ≡ ∀s.«P» s ≤ «Q» s

Note: ℘ (a u b) «Q» = min (℘ a «Q») (℘ b «Q»).

The ‘weakest precondition’ is the least value that the
postcondition may take, from a given initial state.

It is the pessimistic expected value of the postcondition.

These quantitative predicates are called expectations.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 10/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Quantitative Predicates

So far, ℘ defines a set; What about ℘ as a probability?

Identify a set with its selector: «P» s ≡ 1 if s ∈ P else 0.

We can still order these: «P» ≤ «Q» ≡ ∀s.«P» s ≤ «Q» s

Note: ℘ (a u b) «Q» = min (℘ a «Q») (℘ b «Q»).

The ‘weakest precondition’ is the least value that the
postcondition may take, from a given initial state.

It is the pessimistic expected value of the postcondition.

These quantitative predicates are called expectations.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 10/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Probabilistic Choice

What if the demon were a gambler?

a 1/2⊕ b means ‘flip a coin — if heads a otherwise b’.

What should ℘ (y := x2
1/2⊕ y := 2x) (y = x) be?

For an expectation, we’d take the weighted average:

℘ (a p⊕ b) F = p × ℘ a F + (1− p)× ℘ b F

℘ (a p⊕ b) (y = x) s is the probability that, if we start in
state s, y = x holds in the final state.

℘ (a p⊕ b) (y = x) 0 = 1 and ℘ (a p⊕ b) (y = x) 1 = 1/2.

All other values are zero.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 11/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Probabilistic Choice

What if the demon were a gambler?

a 1/2⊕ b means ‘flip a coin — if heads a otherwise b’.

What should ℘ (y := x2
1/2⊕ y := 2x) (y = x) be?

For an expectation, we’d take the weighted average:

℘ (a p⊕ b) F = p × ℘ a F + (1− p)× ℘ b F

℘ (a p⊕ b) (y = x) s is the probability that, if we start in
state s, y = x holds in the final state.

℘ (a p⊕ b) (y = x) 0 = 1 and ℘ (a p⊕ b) (y = x) 1 = 1/2.

All other values are zero.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 11/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Probabilistic Choice

What if the demon were a gambler?

a 1/2⊕ b means ‘flip a coin — if heads a otherwise b’.

What should ℘ (y := x2
1/2⊕ y := 2x) (y = x) be?

For an expectation, we’d take the weighted average:

℘ (a p⊕ b) F = p × ℘ a F + (1− p)× ℘ b F

℘ (a p⊕ b) (y = x) s is the probability that, if we start in
state s, y = x holds in the final state.

℘ (a p⊕ b) (y = x) 0 = 1 and ℘ (a p⊕ b) (y = x) 1 = 1/2.

All other values are zero.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 11/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Probabilistic Choice

What if the demon were a gambler?

a 1/2⊕ b means ‘flip a coin — if heads a otherwise b’.

What should ℘ (y := x2
1/2⊕ y := 2x) (y = x) be?

For an expectation, we’d take the weighted average:

℘ (a p⊕ b) F = p × ℘ a F + (1− p)× ℘ b F

℘ (a p⊕ b) (y = x) s is the probability that, if we start in
state s, y = x holds in the final state.

℘ (a p⊕ b) (y = x) 0 = 1 and ℘ (a p⊕ b) (y = x) 1 = 1/2.

All other values are zero.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 11/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Probabilistic Choice

What if the demon were a gambler?

a 1/2⊕ b means ‘flip a coin — if heads a otherwise b’.

What should ℘ (y := x2
1/2⊕ y := 2x) (y = x) be?

For an expectation, we’d take the weighted average:

℘ (a p⊕ b) F = p × ℘ a F + (1− p)× ℘ b F

℘ (a p⊕ b) (y = x) s is the probability that, if we start in
state s, y = x holds in the final state.

℘ (a p⊕ b) (y = x) 0 = 1 and ℘ (a p⊕ b) (y = x) 1 = 1/2.

All other values are zero.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 11/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Combining Probability and Nondeterminism

How about this?

E = ℘
(
(y := x2

1/2⊕ y := 2x) u

(y := x2
1/3⊕ y := 2x)

)
(y = x)

Simply apply both rules:

E x = min (1/2× «x = 0 ∨ x = 1» + 1/2× «x = 0»)

(1/3× «x = 0 ∨ x = 1» + 2/3× «x = 0»)

This time, E 0 = 1 and E 1 = 1/3.

E x is the minimum probability that y = x will hold.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 12/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Combining Probability and Nondeterminism

How about this?

E = ℘
(
(y := x2

1/2⊕ y := 2x) u

(y := x2
1/3⊕ y := 2x)

)
(y = x)

Simply apply both rules:

E x = min (1/2× «x = 0 ∨ x = 1» + 1/2× «x = 0»)

(1/3× «x = 0 ∨ x = 1» + 2/3× «x = 0»)

This time, E 0 = 1 and E 1 = 1/3.

E x is the minimum probability that y = x will hold.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 12/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Combining Probability and Nondeterminism

How about this?

E = ℘
(
(y := x2

1/2⊕ y := 2x) u

(y := x2
1/3⊕ y := 2x)

)
(y = x)

Simply apply both rules:

E x = min (1/2× «x = 0 ∨ x = 1» + 1/2× «x = 0»)

(1/3× «x = 0 ∨ x = 1» + 2/3× «x = 0»)

This time, E 0 = 1 and E 1 = 1/3.

E x is the minimum probability that y = x will hold.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 12/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

pGCL

These are basics of pGCL (Morgan & McIver, 2004).

It’s a formal model of computation incorporating probability
and nondeterminism.

In the remainder of the talk I will introduce our
mechanisation in Isabelle/HOL, and our work on the
probabilistic verification of systems software.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 13/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Outline

• Stochastic Behaviour in Systems

• Functional vs. Probabilistic Verification

• pGCL in Isabelle/HOL

• Example: Lattice-Lottery Scheduler

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 14/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Expectations

The pGCL package provides a shallow embedding into HOL.

Expectations use the standard real number type:

E :: σ ⇒ R

This allows us to use existing results directly.

Expectations are nonnegative and bounded:

nneg E ≡ ∀s. 0 ≤ E s bounded E ≡ ∃b. ∀s. E s ≤ b

The state space need not, in general, be finite.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 15/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Expectations

The pGCL package provides a shallow embedding into HOL.

Expectations use the standard real number type:

E :: σ ⇒ R

This allows us to use existing results directly.

Expectations are nonnegative and bounded:

nneg E ≡ ∀s. 0 ≤ E s bounded E ≡ ∃b. ∀s. E s ≤ b

The state space need not, in general, be finite.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 15/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Expectations

The pGCL package provides a shallow embedding into HOL.

Expectations use the standard real number type:

E :: σ ⇒ R

This allows us to use existing results directly.

Expectations are nonnegative and bounded:

nneg E ≡ ∀s. 0 ≤ E s bounded E ≡ ∃b. ∀s. E s ≤ b

The state space need not, in general, be finite.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 15/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Expectations

The pGCL package provides a shallow embedding into HOL.

Expectations use the standard real number type:

E :: σ ⇒ R

This allows us to use existing results directly.

Expectations are nonnegative and bounded:

nneg E ≡ ∀s. 0 ≤ E s bounded E ≡ ∃b. ∀s. E s ≤ b

The state space need not, in general, be finite.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 15/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Expectation Transformers

Programs are expectation transformers:

℘ a :: (σ ⇒ R)⇒ σ ⇒ R

We usually restrict our attention to healthy transformers:

∀P b. bounded_by b P ∧ nneg P →
bounded_by b (t P) ∧ nneg (t P)

∀P Q. (sound P ∧ sound Q ∧ P ` Q) −→ (t P) ` (t Q)

∀P c s. (sound P ∧ 0 < c) −→ c × t P s = t (λs. c × P s) s

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 16/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Expectation Transformers

Programs are expectation transformers:

℘ a :: (σ ⇒ R)⇒ σ ⇒ R

We usually restrict our attention to healthy transformers:

∀P b. bounded_by b P ∧ nneg P →
bounded_by b (t P) ∧ nneg (t P)

∀P Q. (sound P ∧ sound Q ∧ P ` Q) −→ (t P) ` (t Q)

∀P c s. (sound P ∧ 0 < c) −→ c × t P s = t (λs. c × P s) s

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 16/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Expectation Transformers

Programs are expectation transformers:

℘ a :: (σ ⇒ R)⇒ σ ⇒ R

We usually restrict our attention to healthy transformers:

∀P b. bounded_by b P ∧ nneg P →
bounded_by b (t P) ∧ nneg (t P)

∀P Q. (sound P ∧ sound Q ∧ P ` Q) −→ (t P) ` (t Q)

∀P c s. (sound P ∧ 0 < c) −→ c × t P s = t (λs. c × P s) s

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 16/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Expectation Transformers

Programs are expectation transformers:

℘ a :: (σ ⇒ R)⇒ σ ⇒ R

We usually restrict our attention to healthy transformers:

∀P b. bounded_by b P ∧ nneg P →
bounded_by b (t P) ∧ nneg (t P)

∀P Q. (sound P ∧ sound Q ∧ P ` Q) −→ (t P) ` (t Q)

∀P c s. (sound P ∧ 0 < c) −→ c × t P s = t (λs. c × P s) s

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 16/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Expectation Transformers

Programs are expectation transformers:

℘ a :: (σ ⇒ R)⇒ σ ⇒ R

We usually restrict our attention to healthy transformers:

∀P b. bounded_by b P ∧ nneg P →
bounded_by b (t P) ∧ nneg (t P)

∀P Q. (sound P ∧ sound Q ∧ P ` Q) −→ (t P) ` (t Q)

∀P c s. (sound P ∧ 0 < c) −→ c × t P s = t (λs. c × P s) s

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 16/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

A few primitives

Abort ≡ λab P. if ab then λs. 0 else λs. bound_of P

a u b ≡ λab P s. min (a ab P s) (b ab P s)

a p⊕ b ≡ λab P s. p × (a ab P s) + (1− p)× (b ab P s)

℘ a ≡ a True

We model both strict (WP) and liberal (WLP) semantics.

All these primitives are healthy.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 17/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

A few primitives

Abort ≡ λab P. if ab then λs. 0 else λs. bound_of P

a u b ≡ λab P s. min (a ab P s) (b ab P s)

a p⊕ b ≡ λab P s. p × (a ab P s) + (1− p)× (b ab P s)

℘ a ≡ a True

We model both strict (WP) and liberal (WLP) semantics.

All these primitives are healthy.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 17/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

A few primitives

Abort ≡ λab P. if ab then λs. 0 else λs. bound_of P

a u b ≡ λab P s. min (a ab P s) (b ab P s)

a p⊕ b ≡ λab P s. p × (a ab P s) + (1− p)× (b ab P s)

℘ a ≡ a True

We model both strict (WP) and liberal (WLP) semantics.

All these primitives are healthy.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 17/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

A few primitives

Abort ≡ λab P. if ab then λs. 0 else λs. bound_of P

a u b ≡ λab P s. min (a ab P s) (b ab P s)

a p⊕ b ≡ λab P s. p × (a ab P s) + (1− p)× (b ab P s)

℘ a ≡ a True

We model both strict (WP) and liberal (WLP) semantics.

All these primitives are healthy.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 17/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Embedding a Monad

The shallow embedding makes it easy to embed the
L4.verified nondeterministic monad:

Exec :: (σ ⇒ (α× σ) set)⇒ bool⇒ (σ ⇒ R)⇒ σ ⇒ R
Exec M ≡ λab R s. glb {R (snd sa). sa ∈ M s}

We lift Hoare triples to probabilistic entailments:

WP_EXEC

{P} prog {λr s. Q s} ∀s. prog s 6= {} ∃s. P s

«P» ` ℘ prog «Q»

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 18/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Embedding a Monad

The shallow embedding makes it easy to embed the
L4.verified nondeterministic monad:

Exec :: (σ ⇒ (α× σ) set)⇒ bool⇒ (σ ⇒ R)⇒ σ ⇒ R
Exec M ≡ λab R s. glb {R (snd sa). sa ∈ M s}

We lift Hoare triples to probabilistic entailments:

WP_EXEC

{P} prog {λr s. Q s} ∀s. prog s 6= {} ∃s. P s

«P» ` ℘ prog «Q»

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 18/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Outline

• Stochastic Behaviour in Systems

• Functional vs. Probabilistic Verification

• pGCL in Isabelle/HOL

• Example: Lattice-Lottery Scheduler

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 19/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Refinement

One of the principle tools in verification is refinement.

A refinement relation allows us to transfer properties from
specification to implementation:

a v b E ` ℘.a.F
E ` ℘.b.F

Given E , if a establishes F , then so does b or:

℘.a.F ≤ ℘.b.F

In pGCL, an implementation establishes any property
with at least as great a probability as its specification.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 20/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Refinement

One of the principle tools in verification is refinement.

A refinement relation allows us to transfer properties from
specification to implementation:

a v b E ` ℘.a.F
E ` ℘.b.F

Given E , if a establishes F , then so does b or:

℘.a.F ≤ ℘.b.F

In pGCL, an implementation establishes any property
with at least as great a probability as its specification.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 20/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Refinement

One of the principle tools in verification is refinement.

A refinement relation allows us to transfer properties from
specification to implementation:

a v b E ` ℘.a.F
E ` ℘.b.F

Given E , if a establishes F , then so does b or:

℘.a.F ≤ ℘.b.F

In pGCL, an implementation establishes any property
with at least as great a probability as its specification.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 20/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Refinement

One of the principle tools in verification is refinement.

A refinement relation allows us to transfer properties from
specification to implementation:

a v b E ` ℘.a.F
E ` ℘.b.F

Given E , if a establishes F , then so does b or:

℘.a.F ≤ ℘.b.F

In pGCL, an implementation establishes any property
with at least as great a probability as its specification.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 20/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Lattice Scheduling

An approach to efficiently eliminating leaks through shared
state e.g. caches.

Only switch to a domain with higher clearance, or to the
downgrader, which clears the cache:

scheduleL ≡ cd :∈ λs. {n|(cd , n) ∈ S}

The security property:

∀c, n. (c, n) ∈ S → sec_class.c ≤ sec_class.n ∨
n = downgrader

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 21/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Lattice Scheduling

An approach to efficiently eliminating leaks through shared
state e.g. caches.

Only switch to a domain with higher clearance, or to the
downgrader, which clears the cache:

scheduleL ≡ cd :∈ λs. {n|(cd , n) ∈ S}

The security property:

∀c, n. (c, n) ∈ S → sec_class.c ≤ sec_class.n ∨
n = downgrader

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 21/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Lattice Scheduling

An approach to efficiently eliminating leaks through shared
state e.g. caches.

Only switch to a domain with higher clearance, or to the
downgrader, which clears the cache:

scheduleL ≡ cd :∈ λs. {n|(cd , n) ∈ S}

The security property:

∀c, n. (c, n) ∈ S → sec_class.c ≤ sec_class.n ∨
n = downgrader

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 21/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Unfairness

H

La

99

Lb

ee

downgrader

ee 99

A single-period schedule cannot include both La and Lb.

A nondeterministic scheduler might simply always pick Lb.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 22/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Unfairness

H

La

5=

Lb

ee

downgrader

ai 99

A single-period schedule cannot include both La and Lb.

A nondeterministic scheduler might simply always pick Lb.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 22/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Unfairness

H

La

99

Lb

ai

downgrader

ee 5=

A single-period schedule cannot include both La and Lb.

A nondeterministic scheduler might simply always pick Lb.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 22/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Unfairness

H

La

99

Lb

ai

downgrader

ee 5=

A single-period schedule cannot include both La and Lb.

A nondeterministic scheduler might simply always pick Lb.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 22/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Unfairness

H

La

99

Lb

ai

downgrader

ee 5=

A single-period schedule cannot include both La and Lb.

A nondeterministic scheduler might simply always pick Lb.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 22/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Randomised Lattice Scheduling

We’d still like to have asymptotic fairness between domains.

Start by randomising:

scheduleR ≡ cd :∈ UNIV at (λs n. T (cd , n))

If the matrix T satisfies:

∀c n. 0 < T (c, n)→ (c, n) ∈ S

we have refinement, scheduleL v scheduleR.

This scheduler is a Markov process, and if T is irreducible
and positive recurrent, there exists a stationary distribution.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 23/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Randomised Lattice Scheduling

We’d still like to have asymptotic fairness between domains.

Start by randomising:

scheduleR ≡ cd :∈ UNIV at (λs n. T (cd , n))

If the matrix T satisfies:

∀c n. 0 < T (c, n)→ (c, n) ∈ S

we have refinement, scheduleL v scheduleR.

This scheduler is a Markov process, and if T is irreducible
and positive recurrent, there exists a stationary distribution.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 23/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Randomised Lattice Scheduling

We’d still like to have asymptotic fairness between domains.

Start by randomising:

scheduleR ≡ cd :∈ UNIV at (λs n. T (cd , n))

If the matrix T satisfies:

∀c n. 0 < T (c, n)→ (c, n) ∈ S

we have refinement, scheduleL v scheduleR.

This scheduler is a Markov process, and if T is irreducible
and positive recurrent, there exists a stationary distribution.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 23/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Randomised Lattice Scheduling

We’d still like to have asymptotic fairness between domains.

Start by randomising:

scheduleR ≡ cd :∈ UNIV at (λs n. T (cd , n))

If the matrix T satisfies:

∀c n. 0 < T (c, n)→ (c, n) ∈ S

we have refinement, scheduleL v scheduleR.

This scheduler is a Markov process, and if T is irreducible
and positive recurrent, there exists a stationary distribution.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 23/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Lottery Scheduling

An efficient implementation might use a lottery:

scheduleM t ≡ do

c ← gets cd; l ← gets lottery;

let n = l c t in modify(λs. s(cd := n))

od

The lottery has type: domain⇒ word32⇒ domain.

We chain in probability from above:

scheduleC ≡ t from UNIV at 2−32 in Exec (scheduleM t)

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 24/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Lottery Scheduling

An efficient implementation might use a lottery:

scheduleM t ≡ do

c ← gets cd; l ← gets lottery;

let n = l c t in modify(λs. s(cd := n))

od

The lottery has type: domain⇒ word32⇒ domain.

We chain in probability from above:

scheduleC ≡ t from UNIV at 2−32 in Exec (scheduleM t)

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 24/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Data Refinement

We cannot show that scheduleR v scheduleC, as they
operate on different state spaces:

record stateA = cd :: domain

record stateC = cd :: domain,

lottery :: domain⇒ word32⇒ domain

The lottery is an implementation detail, only cd matters.

Take the natural projection: φ :: stateC⇒ stateA.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 25/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Data Refinement

We cannot show that scheduleR v scheduleC, as they
operate on different state spaces:

record stateA = cd :: domain

record stateC = cd :: domain,

lottery :: domain⇒ word32⇒ domain

The lottery is an implementation detail, only cd matters.

Take the natural projection: φ :: stateC⇒ stateA.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 25/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Data Refinement

We cannot show that scheduleR v scheduleC, as they
operate on different state spaces:

record stateA = cd :: domain

record stateC = cd :: domain,

lottery :: domain⇒ word32⇒ domain

The lottery is an implementation detail, only cd matters.

Take the natural projection: φ :: stateC⇒ stateA.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 25/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Data Refinement

We define data refinement, vφ,Pre:

a vφ,Pre b E ` ℘ a F Pre s

(E ◦ φ) s ` ℘ b (F ◦ φ) s

If the ticket distribution represents the transition matrix:

LR s ≡ ∀c, n. T (c, n) =
∑

t. lottery s c t=n

2−32

we have another refinement step:

scheduleL v scheduleR

vφ,LR scheduleC

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 26/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Data Refinement

We define data refinement, vφ,Pre:

a vφ,Pre b E ` ℘ a F Pre s

(E ◦ φ) s ` ℘ b (F ◦ φ) s

If the ticket distribution represents the transition matrix:

LR s ≡ ∀c, n. T (c, n) =
∑

t. lottery s c t=n

2−32

we have another refinement step:

scheduleL v scheduleR

vφ,LR scheduleC

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 26/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Data Refinement

We define data refinement, vφ,Pre:

a vφ,Pre b E ` ℘ a F Pre s

(E ◦ φ) s ` ℘ b (F ◦ φ) s

If the ticket distribution represents the transition matrix:

LR s ≡ ∀c, n. T (c, n) =
∑

t. lottery s c t=n

2−32

we have another refinement step:

scheduleL v scheduleR

vφ,LR scheduleC

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 26/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Data Refinement

We define data refinement, vφ,Pre:

a vφ,Pre b E ` ℘ a F Pre s

(E ◦ φ) s ` ℘ b (F ◦ φ) s

If the ticket distribution represents the transition matrix:

LR s ≡ ∀c, n. T (c, n) =
∑

t. lottery s c t=n

2−32

we have another refinement step:

scheduleL v scheduleR vφ,LR scheduleC

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 26/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Attaching the Kernel

Finally, we attach a kernel model:

stepKernel ≡ callKernel; scheduleC

We need only a few high-level properties, including:

{cd = d} callKernel {cd = d}

which is a specification in the L4.verified Hoare logic, from
which we establish:

Skip vφ,LR callKernel

The kernel may modify the lottery!

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 27/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Attaching the Kernel

Finally, we attach a kernel model:

stepKernel ≡ callKernel; scheduleC

We need only a few high-level properties, including:

{cd = d} callKernel {cd = d}

which is a specification in the L4.verified Hoare logic, from
which we establish:

Skip vφ,LR callKernel

The kernel may modify the lottery!

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 27/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Attaching the Kernel

Finally, we attach a kernel model:

stepKernel ≡ callKernel; scheduleC

We need only a few high-level properties, including:

{cd = d} callKernel {cd = d}

which is a specification in the L4.verified Hoare logic, from
which we establish:

Skip vφ,LR callKernel

The kernel may modify the lottery!

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 27/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Attaching the Kernel

Finally, we attach a kernel model:

stepKernel ≡ callKernel; scheduleC

We need only a few high-level properties, including:

{cd = d} callKernel {cd = d}

which is a specification in the L4.verified Hoare logic, from
which we establish:

Skip vφ,LR callKernel

The kernel may modify the lottery!

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 27/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Attaching the Kernel

If the kernel additionally preserves the lottery relation:

{LR} callKernel {LR}

then we have the full refinement chain:

scheduleL v scheduleR

vφ,LR stepKernel

The kernel implements a fair, secure scheduler.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 28/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Attaching the Kernel

If the kernel additionally preserves the lottery relation:

{LR} callKernel {LR}

then we have the full refinement chain:

scheduleL v scheduleR

vφ,LR stepKernel

The kernel implements a fair, secure scheduler.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 28/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Attaching the Kernel

If the kernel additionally preserves the lottery relation:

{LR} callKernel {LR}

then we have the full refinement chain:

scheduleL v scheduleR vφ,LR stepKernel

The kernel implements a fair, secure scheduler.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 28/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Attaching the Kernel

If the kernel additionally preserves the lottery relation:

{LR} callKernel {LR}

then we have the full refinement chain:

scheduleL v scheduleR vφ,LR stepKernel

The kernel implements a fair, secure scheduler.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 28/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Summary

We have:

• Motivated probabilistic verification for systems.

• Mechanised pGCL in Isabelle/HOL.

• Verified a randomised scheduler.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 29/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Summary

We have:

• Motivated probabilistic verification for systems.

• Mechanised pGCL in Isabelle/HOL.

• Verified a randomised scheduler.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 29/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Summary

We have:

• Motivated probabilistic verification for systems.

• Mechanised pGCL in Isabelle/HOL.

• Verified a randomised scheduler.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 29/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Summary

We have:

• Motivated probabilistic verification for systems.

• Mechanised pGCL in Isabelle/HOL.

• Verified a randomised scheduler.

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 29/30



Stochastic
Behaviour in
Systems

Functional vs.
Probabilistic
Verification

pGCL in
Isabelle/HOL

Example:
Lattice-Lottery
Scheduler

Questions?

Verifying Probabilistic Correctness in Isabelle with pGCL Copyright NICTA 2012
David Cock 30/30


	Stochastic Behaviour in Systems
	Functional vs. Probabilistic Verification
	pGCL in Isabelle/HOL
	Example: Lattice-Lottery Scheduler

