
Scheduling in the Random-Order Model
Susanne Albers, Maximilian Janke
Technical University of Munich
Department of Computer Science
Chair of Algorithms and Complexity



Makespan Minimization
Task: Assign jobs to machines.

Goal: Minimize the makespan.
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Makespan Minimization
Task: Assign jobs to machines.
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Makespan Minimization
Task: Assign jobs to machines.

Goal: Minimize the makespan.
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Online Algorithm
Jobs are revealed one by one and assigned immediately.

The worst ratio an adversary can cause.
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Online Algorithm
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Competitive ratio

Jobs are revealed one by one and assigned immediately.

The worst ratio an adversary can cause.

1.5 2
1
1 2.5

3

1.5 2
1

1

2.53versus

Maximilian Janke (TUM) | OLAWA 2020 | Scheduling in the Random-Order Model 3



Literature
Adversarial deterministic algorithms.
[Günther, Maurer, Megow and Wiese, 2013] and [Chen, Ye, Zhang, 2015] approximate the optimum
online algorithm.

Deterministic algorithms which know OPT. (Bin Stretching)
Deterministic algorithms which know the total processing volume.
Deterministic algorithms which advice.
Buffer Reordering.

Job processing times ordered decreasingly.

4/3 1.5 1.8 1.9 2

1.9201 [Fleischer, Wahl, 2000]
1.923 [Albers, 1999]

1.945 [Karger, Philipps, Torng, 1996]
1.986 [Bartal, Fiat, Karloff, Vohra, 1995]
2− 1

m−εm [Galambos, Woeginger, 1993]
2−1/m [Graham, 1966]

[Rudin III, 2001] 1.885
[Gormley et. al., 2000] 1.853

[Albers, 1999] 1.852
[Bartal, Karloff, Rabani, 1994] 1.837

[Faigle, Kern, Turan, 1989] 1.707
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Literature
Adversarial deterministic algorithms.
Adversarial randomized algorithms.

Deterministic algorithms which know OPT. (Bin Stretching)
Deterministic algorithms which know the total processing volume.
Deterministic algorithms which advice.
Buffer Reordering.
Job processing times ordered decreasingly.

4/3 1.5 1.8 1.9 2

1.9201 [Fleischer, Wahl, 2000][Rudin III, 2001] 1.885

1.916 [Albers, 2002]

[Chen, Vliet, Woeginger, 1994] 1.5819
[Sgall, 1997] 1.5819
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Literature
Adversarial deterministic algorithms.
Adversarial randomized algorithms.
Deterministic algorithms which know OPT. (Bin Stretching)

Deterministic algorithms which know the total processing volume.
Deterministic algorithms which advice.
Buffer Reordering.
Job processing times ordered decreasingly.

1 4/3 1.5 1.8 1.9 2

1.5 [Böhm, Sgall, van Stee, Veselý, 2016]
1.53 [Gabay, Kotov, Brauner, 2013]

1.57 [Kellerer, Kotov, 2013]
1.625 [Azar, Regev, 1998]

[Azar, Regev, 1998] 4/3
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Literature
Adversarial deterministic algorithms.
Adversarial randomized algorithms.
Deterministic algorithms which know OPT. (Bin Stretching)
Deterministic algorithms which know the total processing volume.

Deterministic algorithms which advice.
Buffer Reordering.
Job processing times ordered decreasingly.

1 4/3 1.5 1.8 1.9 2

1.585 [Kellerer, Kotov, Gabay, 2015]
1.6 [Cheng, Kellerer, Kotov, 2005]

1.725 [Angelli, Nagy, Speranza, 2004]
1.75 [Albers, Hellwig, 2012]

[Albers, Hellwig, 2012] 1.585
[Angelli, Nagy, Speranza, 2004] 1.565

[Cheng, Kellerer, Kotov, 2005] 1.5
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Literature
Adversarial deterministic algorithms.
Adversarial randomized algorithms.
Deterministic algorithms which know OPT. (Bin Stretching)
Deterministic algorithms which know the total processing volume.
Deterministic algorithms which advice.

Buffer Reordering.
Job processing times ordered decreasingly.

constant in input length constant in m

1 4/3 1.5 1.8 1.9 2

[Albers, Hellwig, 2013]
[Dohrau, 2015]

I made some corrections here.
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Literature
Adversarial deterministic algorithms.
Adversarial randomized algorithms.
Deterministic algorithms which know OPT. (Bin Stretching)
Deterministic algorithms which know the total processing volume.
Deterministic algorithms which advice.
Buffer Reordering.

Job processing times ordered decreasingly.

1.4659 [Englert, Özmen, Westermann, 2008]

1 4/3 1.5 1.8 1.9 2
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Literature
Adversarial deterministic algorithms.
Adversarial randomized algorithms.
Deterministic algorithms which know OPT. (Bin Stretching)
Deterministic algorithms which know the total processing volume.
Deterministic algorithms which advice.
Buffer Reordering.
Job processing times ordered decreasingly.

1 4/3 1.5 1.8 1.9 2

1.25 [Cheng, Kellerer, Kotov, 2012]
4/3 [Graham, 1969][Seiden et. al., 2000] 1.1805
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Deterministic algorithms which know OPT. (Bin Stretching)
Deterministic algorithms which know the total processing volume.
Deterministic algorithms which advice.
Buffer Reordering.

Job processing times ordered decreasingly.
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1.9201 [Fleischer, Wahl, 2000]
1.923 [Albers, 1999]
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[Rudin III, 2001] 1.885
[Gormley et. al., 2000] 1.853

[Albers, 1999] 1.852
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Is worst-case analysis too pessimistic?

(Lower bound of [Albers, 1999] for m = 40 machines.)

The argument of Albers does not hold anymore if we

• Delete any job.
• Swap (non-identical) jobs.
• Change a job size significantly.
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Is worst-case analysis too pessimistic?

(Lower bound of [Albers, 1999] for m = 40 machines.)

The argument of Albers does not hold anymore if we

• Delete any job. (The lower bound would be 1.714)

• Swap (non-identical) jobs.
• Change a job size significantly.
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Is worst-case analysis too pessimistic?

(Lower bound of [Albers, 1999] for m = 40 machines.)

The argument of Albers does not hold anymore if we

• Delete any job.

• Swap (non-identical) jobs. How important is job order?

• Change a job size significantly.
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Random-Order Analysis

(Random permutation of [Albers, 1999] for m = 40 machines.)

Adversary chooses job set, order is uniformly random.
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Random-Order Analysis

(Random permutation of [Albers, 1999] for m = 40 machines.)

Adversary chooses job set, order is uniformly random.

Expected makespan of A versus optimum makespan.
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Random-Order Analysis

(Random permutation of [Albers, 1999] for m = 40 machines.)

Adversary chooses job set, order is uniformly random.

Expected makespan of A versus optimum makespan.

Competitive ratio: Worst ratio the adversary may cause.
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Is Random-Order Analysis too optimistic?
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Is Random-Order Analysis too optimistic?

We are nearly c-competitive iff we are (c+om(1))-competitive with
probability 1−om(1) after random permutation and have a constant
competitive ratio on worst-case sequences.
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Is Random-Order Analysis too optimistic?

We are nearly c-competitive iff we are (c+om(1))-competitive with
probability 1−om(1) after random permutation and have a constant
competitive ratio on worst-case sequences.

A nearly c-competitive online algorithm is c-competitive in the
random-order model for m→ ∞.
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The Random-Order model
Scheduling for the random-order model is not well researched yet:

• [Osborn and Torng, 2008] show Greedy remains 2-competitive.

• [Göbel, Kesselheim and Tönnis, 2015] and [Molinaro, 2017] analyze
different scheduling problems.
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Our results
Our new algorithm is nearly 1.8478-competitive.

We also provide lower bounds.
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Our results
Our new algorithm is nearly 1.8478-competitive.

decreasing order random-order adversarial

1 4/3 1.5 1.8 1.9 2
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Profit from random-order arrival.
• The Load Lemma. Identifying time measures.

• Large Job Magic. Large jobs for free.
• Oracle-like properties. A taste of semi-online scheduling.
• ???
• Profit. A nearly 1.8478-competitive algorithm.
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Different time measures.
When have we seen half the sequence?

The naive measure
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Different time measures.
How does random-order arrival impact the measures?
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Different time measures.

Load measure and naive measure agree
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Different time measures.

Load measure and naive measure agree

for m large

high probability

non-simple inputs

margin of error
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How to foil reordering arguments.
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Large Job Magic: Large jobs for free
How to complete the sequence correctly?
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Large Job Magic: Large jobs for free
No high concentration of large jobs.
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Large Job Magic: Large jobs for free

We call it Large Job Magic.
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Oracle-like properties
A difficult sequence has large jobs close to the end.

versus

Highly probable if there are many large jobs.

Many large jobs work as an oracle for OPT.

The difficult part is obtaining such improvement with high probability

Maximilian Janke (TUM) | OLAWA 2020 | Scheduling in the Random-Order Model 21



Oracle-like properties
A difficult sequence has large jobs close to the end.

versus

[Osborn and Torng, 2008] Highly probable if there are many large
jobs.

Many large jobs work as an oracle for OPT.

The difficult part is obtaining such improvement with high probability

Maximilian Janke (TUM) | OLAWA 2020 | Scheduling in the Random-Order Model 21



Oracle-like properties
A difficult sequence has large jobs close to the end.

pn

Highly probable if there are many large jobs.

Many large jobs work as an oracle for OPT.

The difficult part is obtaining such improvement with high probability

Maximilian Janke (TUM) | OLAWA 2020 | Scheduling in the Random-Order Model 21



Oracle-like properties
A difficult sequence has large jobs close to the end.

pn

Highly probable if there are many large jobs.

Many large jobs work as an oracle for OPT.

A competitive ratio of about 1.89 in expectation.

The difficult part is obtaining such improvement with high probability
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Oracle-like properties
Idea: Make the algorithm robust towards few large jobs.
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Oracle-like properties
Idea: Make the algorithm robust towards few large jobs.

Problem: This already requires the ’oracle’ .

Till
’oracle’
is huge.

’oracle’

Omid

Pend
m+1

Oend
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Take-away
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Load Lemma:
Relate algorithmic and probabilistic properties.

Maximilian Janke (TUM) | OLAWA 2020 | Scheduling in the Random-Order Model 24



Load Lemma:
Relate algorithmic and probabilistic properties.

Large Job Magic: Get large jobs for free.
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Load Lemma:
Relate algorithmic and probabilistic properties.

Large Job Magic: Get large jobs for free.

Oracle-like properties: Predict the future.

Till Ph
is huge.

Ph

Omid

Pend
m+1

Oend
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Thank you!
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