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Online selection problem

Elements E = {e1, . . . ,en} arrive online.
– Uniformly random arrival order σ of elements in E

Element ei has value vi ≥ 0 (revealed upon arrival).
Upon arrival of element ei : Select or reject it (irrevocably).

Goal: Select feasible set S of elements that maximizes

f (S) =
∑
j∈S

vj .

Focus is on (constant-factor) approximation algorithms.

Examples:
Online (bipartite) matching,
Matroid secretary problem.
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Learning augmentation

Machine learning oracle predicts aspect of
– Input that has not yet arrived.
– (Offline) optimal solution.

We do not know quality of prediction.
– Measured in terms of prediction error η.

Goal: Include predictions in existing α-approximation such that:
Improved approximation guarantee if η is small.
Minor loss in approximate guarantee if η is large.

“Best of both worlds”-scenario:
Improved guarantees if ML oracle is accurate.
Still guarantee in worst-case when oracle is inaccurate.
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Prediction error η0

1

α

Approx. guarantee
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(Some) related work

Machine learned advice:
Ski rental

– [Purohit-Svitkina-Kumar, NIPS 2018], [Wang-Wang, 2020].
Scheduling

– [Purohit-Svitkina-Kumar, NIPS 2018], [Mitzenmacher, 2019],
[Lattanzi-Lavastida-Moseley-Vassilvitskii, SODA 2020].

Caching
– [Lykouris-Vassilvitskii, ICML 2018], [Rothagi, SODA 2020].

Metric Algorithms
– [Antoniadis-Coester-Eliás-Polak-Simon, ICML 2020].

Online selection problems with distributional information: vi ∼ Fi .
Prophet inequalities (adversarial arrival order)

– Single item: [Krengel-Sucheston, 1978].
– Matroid prophet inequality: [Kleinberg-Weinberg, 2012].
– Unknown distribution: e.g., [Correa-Dütting-Fischer-Schewior,

’19].
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Secretary problem

Elements (secretaries) {e1, . . . ,en} arrive over time.
– Uniform random arrival order σ = (e1, . . . ,en).

Value vi revealed upon arrival of ei .

Goal: Select secretary with maximum value v∗ = maxi vi .

Secretary algorithm [Lindley, 1961]/[Dynkin, 1963]
Phase I:

For i = 1, . . . , n
e : Select nothing.

Phase II:
Set threshold t = maxj=1,..., n

e
vj .

For i = n
e + 1, . . . ,n: If vi > t , select ei and STOP.

Gives 1
e -approximation for maximum value v∗, i.e., Eσ[v̄ ] ≥ 1

e · v
∗.
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Example

0

Value

i
Phase I

i = 1, . . . , n
e

Phase II
i = n

e + 1, . . . ,n
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Prediction
We include prediction p∗ for optimal value v∗.

Prediction error η = |p∗ − v∗|.

Goal (informal): Design (deterministic) algorithm such that:
Approximation guarantee > 1

e when η is small.
Approximation guarantee ≈ 1

ce when η is large.
– For some constant c > 1.

Prediction error η0

1

1
e

1
ce
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What to do when prediction is good?

Choose element with value ‘close’ to prediction:
Fix λ > 0, and select first element with vi > p∗ − λ.
Parameter λ can be seen as estimator for η.

0

Value

i

p∗

p∗ − λ
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Algorithm with prediction

Input: Parameters 0 < γ ≤ δ ≤ 1 and λ > 0; prediction p∗.

Our algorithm
Phase I (Observation):

For i = 1, . . . , γn: Select nothing.
Phase II (Exploiting prediction):

Set threshold t = max
{

p∗ − λ,maxj=1,...,γn vj
}
.

For i = γn + 1, . . . , δn: If vi > t , select ei and STOP.
Phase III (Classical algorithm):

(Re)set threshold t = maxj=1,...,δn vj .

For i = δn + 1, . . . ,n: If vi > t , select ei and STOP.
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Example
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Tunable parameters:

Confidence parameter λ > 0;
Phase lengths determined by 0 < γ ≤ δ ≤ 1.

ηη = λ0

1

1
e

1
ce c = c(γ, δ)

Approx. guarantee
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High-level challenge:

Different algorithms for different parts of the element stream.
– One for exploiting predictions.
– One for worst-case theoretical guarantee.

Make sure they do not conflict (too much) with each other.
– “Bad choices” in one part should not affect other part too much.

Often (seems) non-trivial to achieve deterministically.
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Online bipartite matching

Given is bipartite graph G = (L ∪ R,E).
Nodes in L arrive online.

– Uniform random arrival order.
Upon arrival, ` ∈ L reveals edge-weights we to neighbors in R.
Match up ` with currently unmatched node in R (or do nothing).

L R

Goal: Select matching M with maximum weight
∑

e∈M we.
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Related work

“Secretary” (online) bipartite matching:
[Babaioff-Immorlica-Kempe-Kleinberg, 2007]

– 1
16 -approximation for transversal matroids.

[Dimitrov-Plaxton, 2008]
– 1

8 -approximation for transversal matroids.
[Korula-Pál, 2009]

– 1
8 -approximation

[Kesselheim-Radke-Tönnis-Vöcking, 2013].
– 1

e -approximation.

Last result best possible.
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Predictions

Vector p = (p∗1, . . . ,p
∗
|R|).

There is an offline optimal solution OPT with:
– Node r ∈ R adjacent to edge with weight p∗

r in OPT.
– Prediction error η = maxr |p∗

r −OPTr |.

L R

p∗1

p∗3

p∗2

p∗4

Perfect predictions: Online vertex-weighted bipartite matching.
[Aggarwal-Goel-Karande-Mehta, 2011]
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Algorithm with predictions

Our algorithm
Construct (online) matching M.
Phase I (Observation):

For i = 1, . . . , γn: Select nothing.
Phase II ([KRTV’13]):

For i = γn + 1, . . . , δn:
– Compute offline optimal solution OPT on G[{1, . . . , i} ∪ R].
– If {i , r} ∈ OPT for some r ∈ R, and r unmatched in M:

M ← M ∪ {i , r}.
Phase III (Exploiting predictions):

For i = δn + 1, . . . ,n:
Run greedy algorithm for vertex-weighted bipartite online
matching problem with node weights p∗r − λ for each r ∈ R.
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Tunable parameters:
Confidence parameter λ > 0;
Phase lengths determined by 0 < γ ≤ δ ≤ 1.

ηη = λ0

1
2

1
e

α α = α(γ, δ)

Approx. guarantee

In our prediction model, guarantee of 1
2 is best we can hope for.
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Summary
Include ML predictions in existing α-approximation such that:

Improved approximation guarantee if η is small.
Minor loss in approximate guarantee if η is large.

Prediction error η0

1

α

Approx. guarantee

We study the following problems.
– Classical secretary problem.
– Online bipartite matching.
– Graphic matroid secretary problem.
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Thank you.
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