

# Learning-Augmented Online Selection Algorithms

#### **Themis Gouleakis**

Joint work with: Antonios Antoniadis, Pieter Kleer and Pavel Kolev

September 2, 2020

## Online selection problem

- Elements E = {e<sub>1</sub>,..., e<sub>n</sub>} arrive online.
  Uniformly random arrival order σ of elements in E
- Element  $e_i$  has value  $v_i \ge 0$  (revealed upon arrival).
- Upon arrival of element e<sub>i</sub>: Select or reject it (irrevocably).
- Goal: Select feasible set S of elements that maximizes

$$f(S) = \sum_{j \in S} v_j.$$

Focus is on (constant-factor) approximation algorithms.

### Examples:

- Online (bipartite) matching,
- Matroid secretary problem.



# Learning augmentation

- Machine learning oracle predicts aspect of
  - Input that has not yet arrived.
  - (Offline) optimal solution.
- We do not know quality of prediction.
  - Measured in terms of prediction error  $\eta$ .

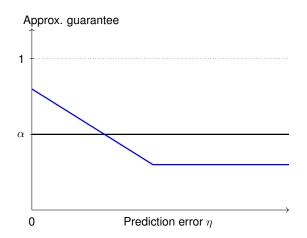
**Goal:** Include predictions in existing  $\alpha$ -approximation such that:

- Improved approximation guarantee if  $\eta$  is small.
- Minor loss in approximate guarantee if  $\eta$  is large.

"Best of both worlds"-scenario:

- Improved guarantees if ML oracle is accurate.
- Still guarantee in worst-case when oracle is inaccurate.







# (Some) related work

- Machine learned advice:
- Ski rental
  - [Purohit-Svitkina-Kumar, NIPS 2018], [Wang-Wang, 2020].
- Scheduling
  - [Purohit-Svitkina-Kumar, NIPS 2018], [Mitzenmacher, 2019], [Lattanzi-Lavastida-Moseley-Vassilvitskii, SODA 2020].
- Caching
  - [Lykouris-Vassilvitskii, ICML 2018], [Rothagi, SODA 2020].
- Metric Algorithms
  - [Antoniadis-Coester-Eliás-Polak-Simon, ICML 2020].

Online selection problems with distributional information:  $v_i \sim \mathcal{F}_i$ .

- Prophet inequalities (adversarial arrival order)
  - Single item: [Krengel-Sucheston, 1978].

max planck institut

- Matroid prophet inequality: [Kleinberg-Weinberg, 2012].
- Unknown distribution: e.g., [Correa-Dütting-Fischer-Schewior, '19].

# Secretary problem

- Elements (secretaries)  $\{e_1, \ldots, e_n\}$  arrive over time.
  - Uniform random arrival order  $\sigma = (e_1, \ldots, e_n)$ .
- Value v<sub>i</sub> revealed upon arrival of e<sub>i</sub>.

**Goal:** Select secretary with maximum value  $v^* = \max_i v_i$ .

### Secretary algorithm [Lindley, 1961]/[Dynkin, 1963]

Phase I:

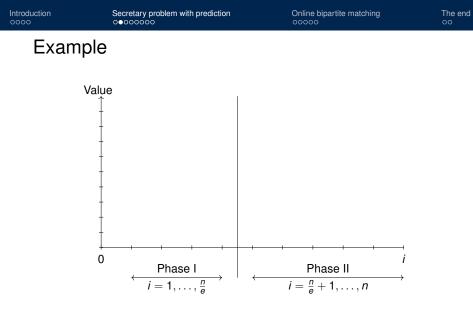
• For 
$$i = 1, \ldots, \frac{n}{e}$$
: Select nothing.

Phase II:

- Set threshold  $t = \max_{j=1,...,\frac{n}{2}} v_j$ .
- For  $i = \frac{n}{e} + 1, \dots, n$ : If  $v_i > t$ , select  $e_i$  and STOP.

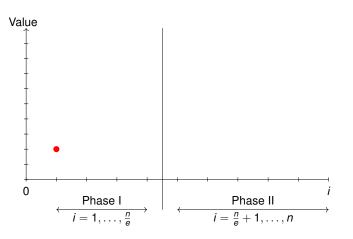
Gives  $\frac{1}{e}$ -approximation for maximum value  $v^*$ , i.e.,  $\mathbb{E}_{\sigma}[\bar{v}] \geq \frac{1}{e} \cdot v^*$ .







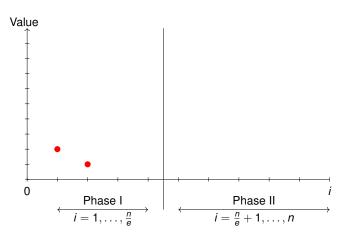
| ntroduction | Secretary problem with prediction | Online<br>00000 |
|-------------|-----------------------------------|-----------------|
|             |                                   |                 |



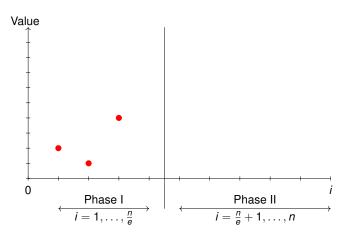


| troduction<br>000 | Secretary problem with prediction |
|-------------------|-----------------------------------|
| 000               | 0000000                           |

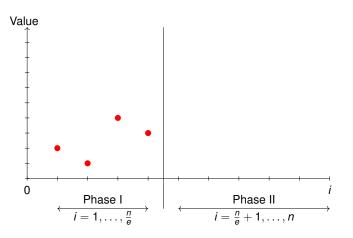
Int



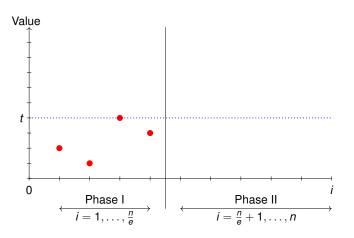




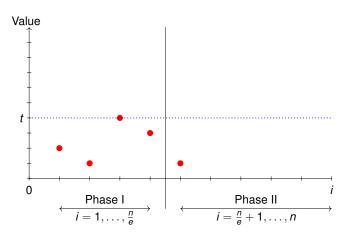




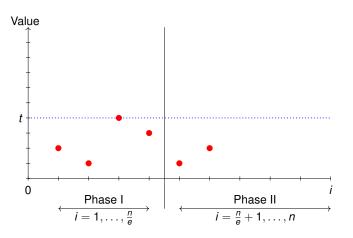




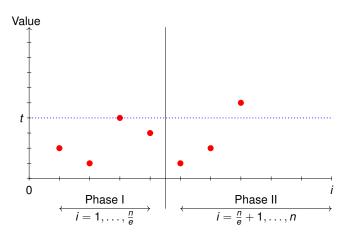














# Prediction

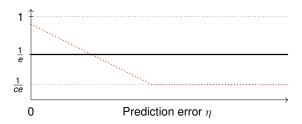
We include prediction  $p^*$  for optimal value  $v^*$ .

• Prediction error  $\eta = |\boldsymbol{p}^* - \boldsymbol{v}^*|$ .

Goal (informal): Design (deterministic) algorithm such that:

- Approximation guarantee  $> \frac{1}{e}$  when  $\eta$  is small.
- Approximation guarantee  $\approx \frac{1}{ce}$  when  $\eta$  is large.

- For some constant c > 1.





The end

## What to do when prediction is good?



The end

### What to do when prediction is good?



The end

## What to do when prediction is good?

#### Choose element with value 'close' to prediction:

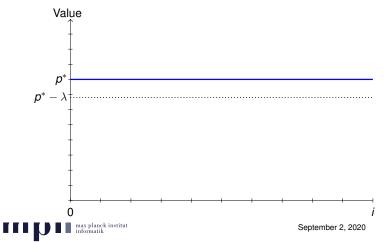
• Fix  $\lambda > 0$ , and select first element with  $v_i > p^* - \lambda$ .



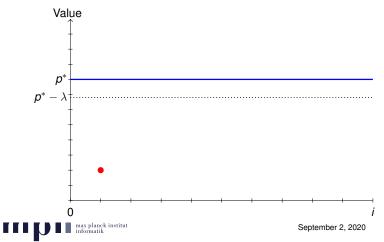
- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



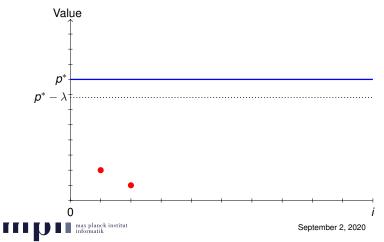
- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



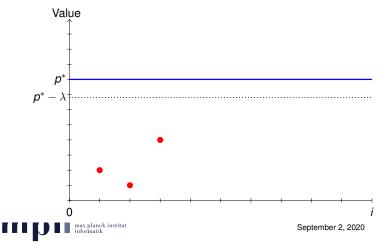
- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



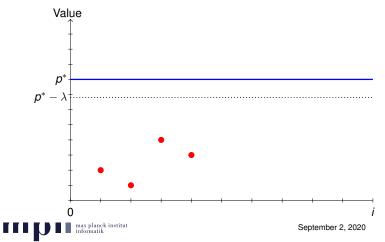
- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



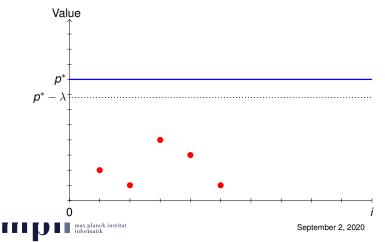
- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



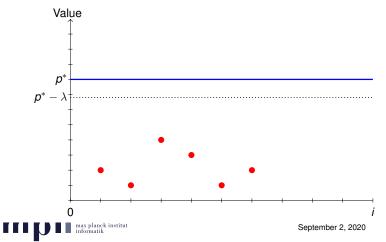
The end

## What to do when prediction is good?

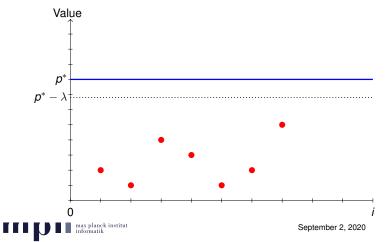
- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



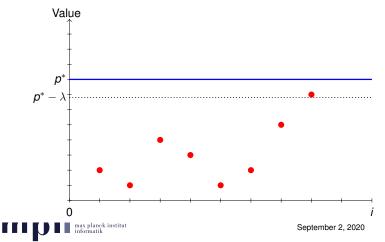
- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



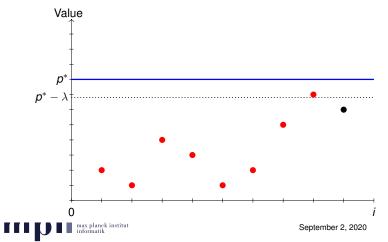
- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



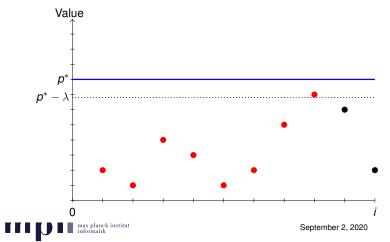
- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



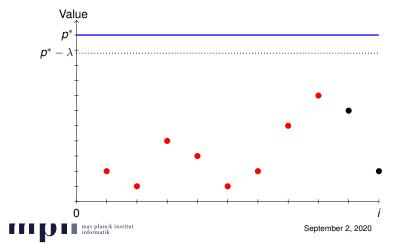
- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



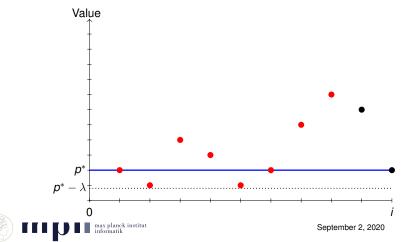
- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



- Fix  $\lambda > 0$ , and select first element with  $v_i > p^* \lambda$ .
- Parameter  $\lambda$  can be seen as estimator for  $\eta$ .



# Algorithm with prediction

**Input:** Parameters  $0 < \gamma \le \delta \le 1$  and  $\lambda > 0$ ; prediction  $p^*$ .

### Our algorithm

### Phase I (Observation):

• For  $i = 1, ..., \gamma n$ : Select nothing.

### Phase II (Exploiting prediction):

- Set threshold  $t = \max \{ p^* \lambda, \max_{j=1,...,\gamma n} v_j \}$ .
- For  $i = \gamma n + 1, \dots, \delta n$ : If  $v_i > t$ , select  $e_i$  and STOP.

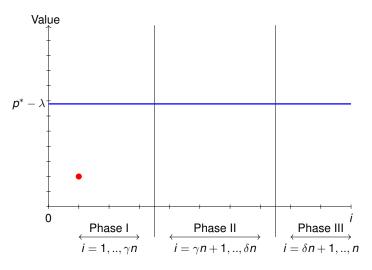
#### Phase III (Classical algorithm):

- (Re)set threshold  $t = \max_{j=1,...,\delta n} v_j$ .
- For  $i = \delta n + 1, \dots, n$ : If  $v_i > t$ , select  $e_i$  and STOP.



| Introduction<br>0000 | Secretary problem with prediction | Online bipartite matching | The e |
|----------------------|-----------------------------------|---------------------------|-------|
| <b>E</b>             |                                   |                           |       |

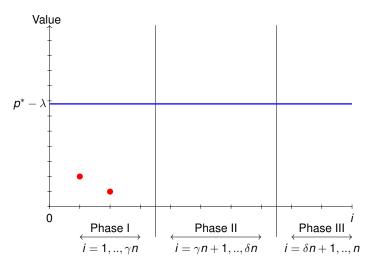






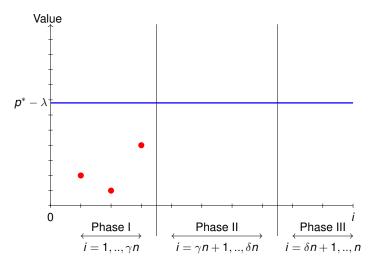
end

| ntroduction | Secretary problem with prediction | Online bipartite matching | The end |
|-------------|-----------------------------------|---------------------------|---------|
| _           |                                   |                           |         |



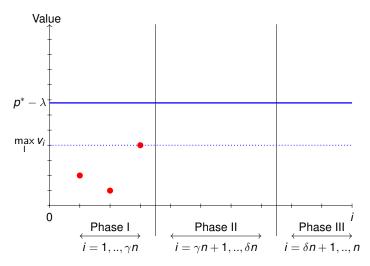


| troduction | Secretary problem with prediction | Online bipartite matching |  |
|------------|-----------------------------------|---------------------------|--|
|            |                                   |                           |  |



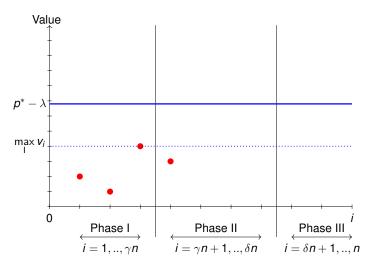


The end



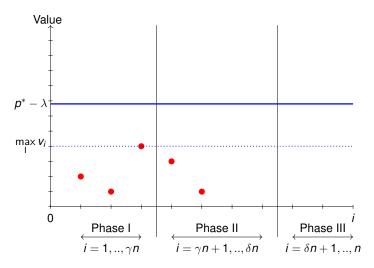


The end

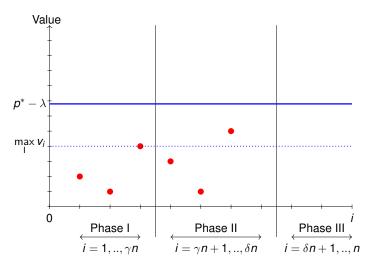




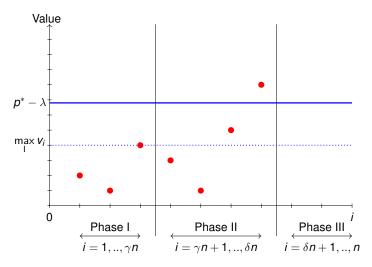
The end



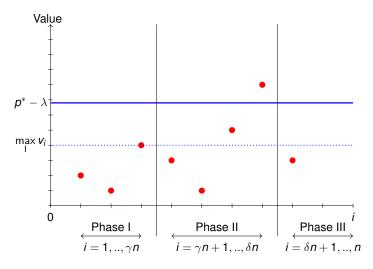




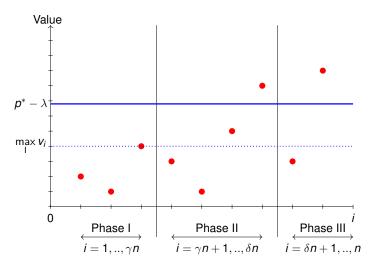




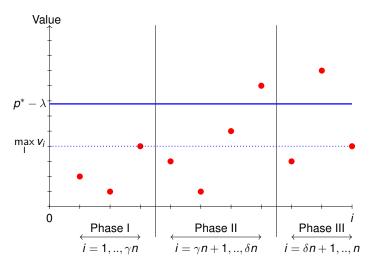






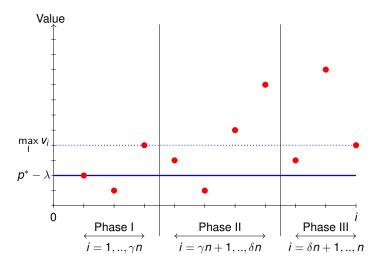




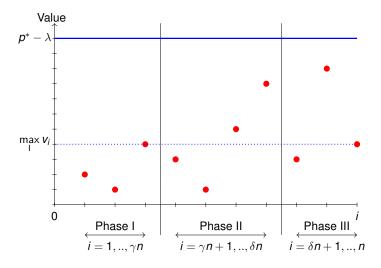




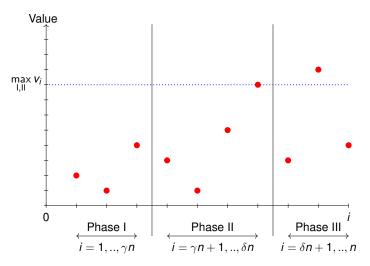
| Introduction<br>0000 | Secretary problem with prediction | Online bipartite matching | The end |
|----------------------|-----------------------------------|---------------------------|---------|
|                      |                                   |                           |         |















#### **Tunable parameters:**

• Confidence parameter  $\lambda > 0$ ;



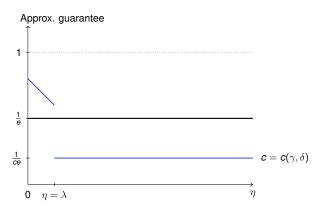
- Confidence parameter  $\lambda > 0$ ;
- Phase lengths determined by  $0 < \gamma \le \delta \le 1$ .



- Confidence parameter  $\lambda > 0$ ;
- Phase lengths determined by  $0 < \gamma \le \delta \le 1$ .

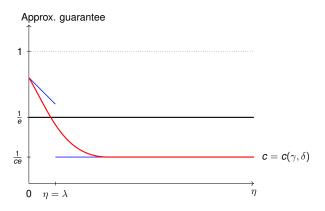


- Confidence parameter  $\lambda > 0$ ;
- Phase lengths determined by  $0 < \gamma \le \delta \le 1$ .





- Confidence parameter  $\lambda > 0$ ;
- Phase lengths determined by  $0 < \gamma \le \delta \le 1$ .





# High-level challenge:

- Different algorithms for different parts of the element stream.
  - One for exploiting predictions.
  - One for worst-case theoretical guarantee.
- Make sure they do not conflict (too much) with each other.
  - "Bad choices" in one part should not affect other part too much.

Often (seems) non-trivial to achieve deterministically.





### Online bipartite matching

Given is bipartite graph  $G = (L \cup R, E)$ .



## Online bipartite matching

Given is bipartite graph  $G = (L \cup R, E)$ .

Nodes in L arrive online.



## Online bipartite matching

Given is bipartite graph  $G = (L \cup R, E)$ .

- Nodes in L arrive online.
  - Uniform random arrival order.

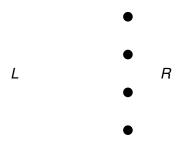


Given is bipartite graph  $G = (L \cup R, E)$ .

- Nodes in *L* arrive online.
  - Uniform random arrival order.
- Upon arrival,  $\ell \in L$  reveals edge-weights  $w_e$  to neighbors in R.
- Match up  $\ell$  with currently unmatched node in *R* (or do nothing).

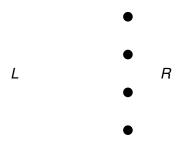


- Given is bipartite graph  $G = (L \cup R, E)$ .
- Nodes in L arrive online.
  - Uniform random arrival order.
- Upon arrival,  $\ell \in L$  reveals edge-weights  $w_e$  to neighbors in R.
- Match up  $\ell$  with currently unmatched node in *R* (or do nothing).



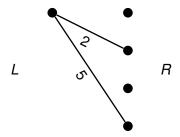


- Given is bipartite graph  $G = (L \cup R, E)$ .
- Nodes in L arrive online.
  - Uniform random arrival order.
- Upon arrival,  $\ell \in L$  reveals edge-weights  $w_e$  to neighbors in R.
- Match up  $\ell$  with currently unmatched node in *R* (or do nothing).



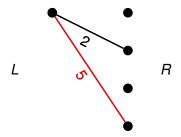


- Given is bipartite graph  $G = (L \cup R, E)$ .
- Nodes in L arrive online.
  - Uniform random arrival order.
- Upon arrival,  $\ell \in L$  reveals edge-weights  $w_e$  to neighbors in R.
- Match up  $\ell$  with currently unmatched node in *R* (or do nothing).



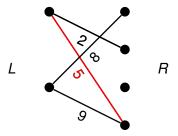


- Given is bipartite graph  $G = (L \cup R, E)$ .
- Nodes in L arrive online.
  - Uniform random arrival order.
- Upon arrival,  $\ell \in L$  reveals edge-weights  $w_e$  to neighbors in R.
- Match up  $\ell$  with currently unmatched node in *R* (or do nothing).





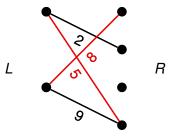
- Given is bipartite graph  $G = (L \cup R, E)$ .
- Nodes in L arrive online.
  - Uniform random arrival order.
- Upon arrival,  $\ell \in L$  reveals edge-weights  $w_e$  to neighbors in R.
- Match up  $\ell$  with currently unmatched node in *R* (or do nothing).





Given is bipartite graph  $G = (L \cup R, E)$ .

- Nodes in L arrive online.
  - Uniform random arrival order.
- Upon arrival,  $\ell \in L$  reveals edge-weights  $w_e$  to neighbors in R.
- Match up  $\ell$  with currently unmatched node in *R* (or do nothing).



**Goal:** Select matching *M* with maximum weight  $\sum_{e \in M} w_e$ .



## Related work

#### "Secretary" (online) bipartite matching:

- [Babaioff-Immorlica-Kempe-Kleinberg, 2007]
  - $-\frac{1}{16}$ -approximation for transversal matroids.
- [Dimitrov-Plaxton, 2008]
  - $-\frac{1}{8}$ -approximation for transversal matroids.
- [Korula-Pál, 2009]
  - $-\frac{1}{8}$ -approximation
- [Kesselheim-Radke-Tönnis-Vöcking, 2013].
  - $-\frac{1}{e}$ -approximation.

#### Last result best possible.



Introduction

Online bipartite matching

### Predictions



#### Predictions

Vector  $\boldsymbol{p} = (\boldsymbol{p}_1^*, \dots, \boldsymbol{p}_{|\boldsymbol{R}|}^*).$ 



The end

#### Predictions

Vector  $p = (p_1^*, ..., p_{|R|}^*)$ .

There is an offline optimal solution OPT with:



#### Predictions

Vector  $p = (p_1^*, ..., p_{|R|}^*)$ .

- There is an offline optimal solution OPT with:
  - Node  $r \in R$  adjacent to edge with weight  $p_r^*$  in OPT.



### Predictions

Vector  $p = (p_1^*, ..., p_{|R|}^*)$ .

- There is an offline optimal solution OPT with:
  - Node  $r \in R$  adjacent to edge with weight  $p_r^*$  in OPT.
  - Prediction error  $\eta = \max_r |p_r^* OPT_r|$ .

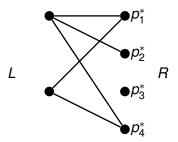


#### Predictions

Vector  $p = (p_1^*, ..., p_{|R|}^*)$ .

#### There is an offline optimal solution OPT with:

- Node  $r \in R$  adjacent to edge with weight  $p_r^*$  in OPT.
- Prediction error  $\eta = \max_r |\mathbf{p}_r^* OPT_r|$ .



*Perfect predictions:* Online vertex-weighted bipartite matching.[Aggarwal-Goel-Karande-Mehta, 2011]

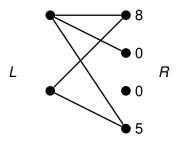


#### Predictions

Vector  $p = (p_1^*, ..., p_{|R|}^*)$ .

#### • There is an offline optimal solution OPT with:

- Node  $r \in R$  adjacent to edge with weight  $p_r^*$  in OPT.
- Prediction error  $\eta = \max_r |\boldsymbol{p}_r^* \boldsymbol{OPT}_r|$ .



Perfect predictions: Online vertex-weighted bipartite matching.

[Aggarwal-Goel-Karande-Mehta, 2011]



# Algorithm with predictions

#### Our algorithm

Construct (online) matching *M*. **Phase I** (*Observation*):

• For  $i = 1, ..., \gamma n$ : Select nothing.

#### Phase II ([KRTV'13]):

• For 
$$i = \gamma n + 1, \dots, \delta n$$
:

- Compute offline optimal solution OPT on  $G[\{1, \ldots, i\} \cup R]$ .
- If  $\{i, r\} \in \text{OPT}$  for some  $r \in R$ , and r unmatched in M:  $M \leftarrow M \cup \{i, r\}$ .

#### Phase III (Exploiting predictions):

- For  $i = \delta n + 1, ..., n$ :
- Run greedy algorithm for vertex-weighted bipartite online matching problem with node weights p<sup>\*</sup><sub>r</sub> − λ for each r ∈ R.



#### **Tunable parameters:**

- Confidence parameter  $\lambda > 0$ ;
- Phase lengths determined by  $0 < \gamma \le \delta \le 1$ .



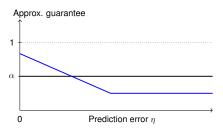
In our prediction model, guarantee of  $\frac{1}{2}$  is best we can hope for.



## Summary

Include ML predictions in existing  $\alpha$ -approximation such that:

- Improved approximation guarantee if  $\eta$  is small.
- Minor loss in approximate guarantee if  $\eta$  is large.



- We study the following problems.
  - Classical secretary problem.
  - Online bipartite matching.
  - Graphic matroid secretary problem.



#### Thank you.

