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Online Problems and Advice
Brief Recapitulation



Recapitulation

Online Problems

® |Instance revealed piecewise
¢ Solution required piecewise
e Algorithm outputs solution parts without full information



Recapitulation
Online Problems: Very Hard

¢ Online-ness is a severe restriction
¢ |n exchange: Unbounded time and space resources
e Thus no time/space complexity analysis



Recapitulation
Online Problems: Very Hard

¢ Online-ness is a severe restriction
¢ |n exchange: Unbounded time and space resources
e Thus no time/space complexity analysis

Assessing Online Algorithms

e Compare online solution to an optimal solution
e Thatis: Can online algorithm compete with offline one?
¢ Next slide: Formal definition of competitivity
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e Competitivity of an online algorithm A on an instance /:

Gain of an optimal solution to /
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Recapitulation

Defining Competitivity (Strict and for Maximization Problems)

e Competitivity of an online algorithm A on an instance /:

Gain of an optimal solution to /
Gain of A’s online solution to /

e Competitivity of an online algorithm: Worst case, i.e.,

Gain of an optimal solution to /
max - . - -
lez Gain of A’s online solution to /

e Competitivity of a problem: Best online algorithms, i.e.,

Gain of an optimal solution to /
min max
AcA Iez Gain of A’s online solution to /



This Much for Online Problems
Now Advice



Advice Complexity

¢ Online algorithm lacks information about future
¢ This makes online problems very hard

e But how much information is lacking exactly?



Advice Complexity

Motivation

¢ Online algorithm lacks information about future
¢ This makes online problems very hard
e But how much information is lacking exactly?

Measuring the lack of information

e Size of instance?

e Size of solution?

¢ Need for better, general measure

e Established measuring tool: Advice



Advice Complexity

Advice model

e Omniscient oracle provides online algorithm with advice
¢ Advice has the form of an infinite bit string

® One tailor-made advice string for each instance

¢ Online algorithm reads as many bits as it wants

* Number of bits read: Advice complexity



Online Computation

&

Online Algorithm



Online Computation

Malicious request sequence
X1,X2,X3,X4,X5,Xp,X7, . - .

Online Algorithm Adversary



Advice Complexity
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Oracle

Malicious request sequence
X1,X2,X3,X4,X5,Xp,X7, . - .

Online Algorithm Adversary




Advice Complexity

* |Improve competitivity, but minimize advice

* Remarkable behavior differences between problems

EVGI’y Single additional bit Jumps at some thresho|d3,
imprOVGS the CompetltIVIty Stagnating elsewhere
90@0 \
o 2
Optimal: 1 1.
0 n 01 =~logn n

Information Content [in Bits]



Online Knapsack
Classical Version



Classical Online Knapsack
Problem Definition

e Knapsack of capacity 1
¢ Online Instance: Sequence of n items with s¢,...,s,
¢ Online Output:

— Pack or discard each item immediately
— The decisions are permanent
— Never exceed the capacity

¢ Goal: Maximize packed volume



Classical Online Knapsack
Problem Definition

e Knapsack of capacity 1

¢ Online Instance: Sequence of n items with s¢,...,s,
¢ Online Output:

— Pack or discard each item immediately
— The decisions are permanent
— Never exceed the capacity

¢ Goal: Maximize packed volume

e This is the proportional/simple/unweighted problem
e That is: No size-value distinction for items



Knapsack with Removability
Model by Iwama and Taketomi, ICALP 2002



Knapsack with Removability

Definition of Classical Online Knapsack

e Knapsack of capacity 1
¢ Online Instance: Sequence of n items with s¢,...,s,
¢ Online Output:

— Pack or discard each item immediately
— The decisions are permanent
— Never exceed the capacity

¢ Goal: Maximize packed volume
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Knapsack with Removability

e Knapsack of capacity 1
¢ Online Instance: Sequence of n items with s¢,...,s,
¢ Online Output:

— Pack or discard each item immediately
— Packed items can be removed
— Never exceed the capacity

¢ Goal: Maximize packed volume



Knapsack with Removability

Clarification on Removability

¢ Any packed item can be removed from the knapsack
* No restrictions. Algorithm may remove ...

— ... arbitrarily many items ...

— ... at arbitrary points in time

e However, once an item is removed, it is gone for good



Knapsack with Removability

Natural Model

e Example: Storage room

e Keep useful things as they come along

e Space will run out

® Need to start disposing

e Goal: Most useful collection

¢ How much information about future needed?



Knapsack with Removability

Two Results Known So Far

e Without advice, the competitivity is exactly the golden
ratio ¢ ~ 1.618
[lwama and Taketomi, ICALP 2002]

e There is 10/7-approximative algorithm using a single ran-
dom bit
[Han et al., TCS 2015]



Knapsack with Removability

Two Results Known So Far

e Without advice, the competitivity is exactly the golden
ratio ¢ ~ 1.618
[lwama and Taketomi, ICALP 2002]

e There is 10/7-approximative algorithm using a single ran-
dom bit
[Han et al., TCS 2015]

e Thus there is 10/7-competitive algorithm using a single
advice bit



Knapsack with Removability

Competitivity vs. Advice: Our Contribution

e Optimality requires 1 advice bit per item asymptotically
¢ Near optimality with constant advice
¢ Improved bounds for one advice bit



Knapsack with Removability

Competitivity vs. Advice: Our Contribution

e Optimality requires 1 advice bit per item asymptotically
¢ Near optimality with constant advice
¢ Improved bounds for one advice bit



Knapsack with Removability

Competitivity vs. Advice: Our Contribution

e Optimality requires 1 advice bit per item asymptotically
¢ Near optimality with constant advice
¢ Improved bounds for one advice bit



Knapsack with Removability

Competitivity vs. Advice: Our Contribution

e Optimality requires 1 advice bit per item asymptotically
¢ Near optimality with constant advice
¢ Improved bounds for one advice bit



A Single Advice Bit

Upper and Lower Bound
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1 Advice Bit: Lower Bound

Hard Instance Family

Xq X2 X3 Y2 Y3
h: v ¢?2 1—y2+e L v |
bi ¢ 2 1—yPee 11—y
lsi ¢ Y2 1—yP+e Y2 —e

where v ~ 0.78 is the positive root of 2(1 — x2) = x

Competitive Analysis

Unique Optimum  Second Best Competitivity
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1 Advice Bit
Upper Bound



1 Advice Bit: Improved Upper Bound

High-Level Outline Only

¢ Divide items into 5 size classes

e Two different packing strategies

¢ Use advice bit to indicate which one is better
* Yields a v/2-competitive algorithm

little large

( tiny K small Kmedium[ big K huge |




Near-Optimality
Using Constant Advice



Near-Optimality with Constant Advice

Algorithm Requirements

e Takes parameter s > 0
® Is (1 +¢)-competitive
e Uses only constant advice



Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below
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Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)? 1—¢

( G G B G (

0 € (1-e)f2 (1 — e 1




Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)? 1—¢

( G G B G (

0 € (1-e)f2 (1 — e 1

Small items Big ftems



Near-Optimality with Constant Advice

What does the advice encode?

¢ Oracle fixes arbitrary optimal solution S

® Letuy,...,u, denote big items of S in appearance order
® | et ¢; denote size class of u;

* The advice encodes (cy,...,Cx)



Near-Optimality with Constant Advice

Only constant advice

® 2k[log,(E + 1)] bits suffice to encode (cq, ..., Ck)
— There are E classes for big items
— Thus one class indicated by [log,(E + 1)] bits
— A self-delimiting encoding: 2[log,(E + 1)] bits



Near-Optimality with Constant Advice

Only constant advice

® 2k[log,(E + 1)] bits suffice to encode (cq, ..., Ck)
— There are E classes for big items
— Thus one class indicated by [log,(E + 1)] bits
— A self-delimiting encoding: 2[log,(E + 1)] bits

¢ This is constant advice:

— The number k of big elements in S is bounded by 1 /¢
— Recall that E = logy__(e)



Near-Optimality with Constant Advice

Algorithm Procedure

* Big items: Packed into k virtual slots

— Slot i accommodates items from class c; exclusively

— In the beginning, the slots are empty

— Each slot is filled with exactly one big item

— The slots are filled strictly in their order

— Items in filled slots replaced by smaller ones if possible



Near-Optimality with Constant Advice

Algorithm Procedure

* Big items: Packed into k virtual slots
— Slot i accommodates items from class c; exclusively
— In the beginning, the slots are empty
— Each slot is filled with exactly one big item
— The slots are filled strictly in their order
— Items in filled slots replaced by smaller ones if possible
e Small items: Packed greedily
— Removed one by one whenever needed to pack a big one



Example Execution of the Algorithm
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Near-Optimality with Constant Advice

Bounding the Competitivity

¢ Big items: Losing at most a factor ¢

— All slots are filled in the end (Proof by Induction)
— As many big items from every class as optimal solution
— Every class for big item spans factor 1 — ¢

e Small items: Losing at most a factor £ (Greedy)
e Thus (1 + 2¢)-competitive



Conclusion



Advice Complexity Behavior

Competitivity

1 T T T T
0 O(1) logn  O(logn) n—1 n Advice Bits

Classical Knapsack: Two thresholds

® No advice: Unbounded competitivity

Constant advice (a single bit): Drop to 2-competitivity
® [ ogarithmic advice necessary for any improvement

Logarithmic advice sufficient for near-optimality

Linear advice (one bit per item) necessary for optimality



Conclusion: Advice Complexity Behavior

Competitivity

1 T T T T
0 O(1) logn  O(logn) n—1 n Advice Bits

With removability: Collapse to a single threshold

¢ No advice: ¢-competitive (Golden ratio ¢ ~ 1.618)

¢ Constant advice: Jump down to near-optimality

e Logarithmic advice: Still being near-optimal

e Linear advice (one bit per item) necessary for optimality



Outlook: Non-Proportional Variant

Competitivity
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e Without removability: A single threshold at logarithmic ad-
vice, jump from unbounded to near-optimal competitivity
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Outlook: Non-Proportional Variant

Competitivity

2,

1+¢e
1 T T T T
0 O(1) logn  O(logn) n—1 n Advice Bits

Non-Proportional Online Knapsack

e Without removability: A single threshold at logarithmic ad-
vice, jump from unbounded to near-optimal competitivity

With removability: Threshold moves to constant advice
e Proof starts similarly, but many new tricks required



Questions?
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