
Threshold Behaviors in Advice Complexity

Knapsack with Removability

Hans-Joachim Böckenhauer, Jan Dreier, Fabian Frei, Peter Rossmanith
August 28, 2020 – Virtual satellite workshop of MFCS 2020



Online Problems and Advice
Brief Recapitulation



Recapitulation

Online Problems
• Instance revealed piecewise
• Solution required piecewise
• Algorithm outputs solution parts without full information



Recapitulation

Online Problems: Very Hard

• Online-ness is a severe restriction
• In exchange: Unbounded time and space resources
• Thus no time/space complexity analysis

Assessing Online Algorithms

• Compare online solution to an optimal solution
• That is: Can online algorithm compete with offline one?
• Next slide: Formal definition of competitivity



Recapitulation

Online Problems: Very Hard

• Online-ness is a severe restriction
• In exchange: Unbounded time and space resources
• Thus no time/space complexity analysis

Assessing Online Algorithms

• Compare online solution to an optimal solution
• That is: Can online algorithm compete with offline one?
• Next slide: Formal definition of competitivity



Recapitulation

Defining Competitivity (Strict and for Maximization Problems)
• Competitivity of an online algorithm A on an instance I:

Gain of an optimal solution to I
Gain of A’s online solution to I

• Competitivity of an online algorithm: Worst case, i.e.,

max
I∈I

Gain of an optimal solution to I
Gain of A’s online solution to I

• Competitivity of a problem: Best online algorithms, i.e.,

min
A∈A

max
I∈I

Gain of an optimal solution to I
Gain of A’s online solution to I



Recapitulation

Defining Competitivity (Strict and for Maximization Problems)
• Competitivity of an online algorithm A on an instance I:

Gain of an optimal solution to I
Gain of A’s online solution to I

• Competitivity of an online algorithm: Worst case, i.e.,

max
I∈I

Gain of an optimal solution to I
Gain of A’s online solution to I

• Competitivity of a problem: Best online algorithms, i.e.,

min
A∈A

max
I∈I

Gain of an optimal solution to I
Gain of A’s online solution to I



Recapitulation

Defining Competitivity (Strict and for Maximization Problems)
• Competitivity of an online algorithm A on an instance I:

Gain of an optimal solution to I
Gain of A’s online solution to I

• Competitivity of an online algorithm: Worst case, i.e.,

max
I∈I

Gain of an optimal solution to I
Gain of A’s online solution to I

• Competitivity of a problem: Best online algorithms, i.e.,

min
A∈A

max
I∈I

Gain of an optimal solution to I
Gain of A’s online solution to I



This Much for Online Problems
Now Advice



Advice Complexity

Motivation
• Online algorithm lacks information about future
• This makes online problems very hard
• But how much information is lacking exactly?

Measuring the lack of information

• Size of instance?
• Size of solution?
• Need for better, general measure
• Established measuring tool: Advice



Advice Complexity

Motivation
• Online algorithm lacks information about future
• This makes online problems very hard
• But how much information is lacking exactly?

Measuring the lack of information

• Size of instance?
• Size of solution?
• Need for better, general measure
• Established measuring tool: Advice



Advice Complexity

Advice model
• Omniscient oracle provides online algorithm with advice
• Advice has the form of an infinite bit string
• One tailor-made advice string for each instance
• Online algorithm reads as many bits as it wants
• Number of bits read: Advice complexity



Online Computation

Online Algorithm



Online Computation

Online Algorithm

Malicious request sequence
x1, x2, x3, x4, x5, x6, x7, . . .

Adversary



Advice Complexity

Online Algorithm

Malicious request sequence
x1, x2, x3, x4, x5, x6, x7, . . .

Adversary

0 0 1 0 1 1 0 1 0 1 1 1 0 0 1

Oracle



Advice Complexity

Trade-Off
• Improve competitivity, but minimize advice
• Remarkable behavior differences between problems

Common: Continuous
Every single additional bit
improves the competitivity

0 n
Optimal: 1

Information Content [in Bits]

Competit
ive

Ratio

Knapsack: Thresholds

Jumps at some thresholds,
stagnating elsewhere

0 n

2

1
1 ≈ log n

Information Content [in Bits]

Competit
ive

Ratio



Online Knapsack
Classical Version



Classical Online Knapsack

Problem Definition
• Knapsack of capacity 1
• Online Instance: Sequence of n items with s1, . . . , sn
• Online Output:

– Pack or discard each item immediately
– The decisions are permanent
– Never exceed the capacity

• Goal: Maximize packed volume

Remark
• This is the proportional/simple/unweighted problem
• That is: No size-value distinction for items



Classical Online Knapsack

Problem Definition
• Knapsack of capacity 1
• Online Instance: Sequence of n items with s1, . . . , sn
• Online Output:

– Pack or discard each item immediately
– The decisions are permanent
– Never exceed the capacity

• Goal: Maximize packed volume

Remark
• This is the proportional/simple/unweighted problem
• That is: No size-value distinction for items



Knapsack with Removability
Model by Iwama and Taketomi, ICALP 2002



Knapsack with Removability

Definition of Classical Online Knapsack

• Knapsack of capacity 1
• Online Instance: Sequence of n items with s1, . . . , sn
• Online Output:

– Pack or discard each item immediately
– The decisions are permanent
– Never exceed the capacity

• Goal: Maximize packed volume



Knapsack with Removability

Definition of Classical Online Knapsack

• Knapsack of capacity 1
• Online Instance: Sequence of n items with s1, . . . , sn
• Online Output:

– Pack or discard each item immediately
– The decisions are permanent
– Never exceed the capacity

• Goal: Maximize packed volume



Knapsack with Removability

Definition of Classical Online Knapsack

• Knapsack of capacity 1
• Online Instance: Sequence of n items with s1, . . . , sn
• Online Output:

– Pack or discard each item immediately
– The decisions are permanent
– Never exceed the capacity

• Goal: Maximize packed volume



Knapsack with Removability

Definition of Knapsack with Removability

• Knapsack of capacity 1
• Online Instance: Sequence of n items with s1, . . . , sn
• Online Output:

– Pack or discard each item immediately
– Packed items can be removed
– Never exceed the capacity

• Goal: Maximize packed volume



Knapsack with Removability

Clarification on Removability

• Any packed item can be removed from the knapsack
• No restrictions. Algorithm may remove ...

– ... arbitrarily many items ...
– ... at arbitrary points in time

• However, once an item is removed, it is gone for good



Knapsack with Removability

Natural Model
• Example: Storage room
• Keep useful things as they come along
• Space will run out
• Need to start disposing
• Goal: Most useful collection
• How much information about future needed?



Knapsack with Removability

Two Results Known So Far
• Without advice, the competitivity is exactly the golden

ratio Φ ≈ 1.618
[Iwama and Taketomi, ICALP 2002]

• There is 10/7-approximative algorithm using a single ran-
dom bit
[Han et al., TCS 2015]

• Thus there is 10/7-competitive algorithm using a single
advice bit



Knapsack with Removability

Two Results Known So Far
• Without advice, the competitivity is exactly the golden

ratio Φ ≈ 1.618
[Iwama and Taketomi, ICALP 2002]

• There is 10/7-approximative algorithm using a single ran-
dom bit
[Han et al., TCS 2015]

• Thus there is 10/7-competitive algorithm using a single
advice bit



Knapsack with Removability

Competitivity vs. Advice: Our Contribution

• Optimality requires 1 advice bit per item asymptotically
• Near optimality with constant advice
• Improved bounds for one advice bit



Knapsack with Removability

Competitivity vs. Advice: Our Contribution

• Optimality requires 1 advice bit per item asymptotically
• Near optimality with constant advice
• Improved bounds for one advice bit



Knapsack with Removability

Competitivity vs. Advice: Our Contribution

• Optimality requires 1 advice bit per item asymptotically
• Near optimality with constant advice
• Improved bounds for one advice bit



Knapsack with Removability

Competitivity vs. Advice: Our Contribution

• Optimality requires 1 advice bit per item asymptotically
• Near optimality with constant advice
• Improved bounds for one advice bit



A Single Advice Bit
Upper and Lower Bound



1 Advice Bit: Lower Bound

Hard Instance Family

x1 x2 x3 y2 y3

I1: ψ ψ2 1− ψ2 + ε
I2: ψ ψ2 1− ψ2 + ε 1− ψ2

I3: ψ ψ2 1− ψ2 + ε ψ2 − ε

ψ

ψ2

1− ψ2

where ψ ≈ 0.78 is the positive root of 2(1− x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

I1: ψ ψ2 ψ/ψ2

1/ψ ≈ 1.28

I2: 1 2(1− ψ2) + ε 1/(2(1− ψ2) + ε)

vs.

I3: 1 ψ 1/ψ

10/7 ≈ 1.43



1 Advice Bit: Lower Bound

Hard Instance Family

x1 x2 x3 y2 y3

I1: ψ ψ2 1− ψ2 + ε
I2: ψ ψ2 1− ψ2 + ε 1− ψ2

I3: ψ ψ2 1− ψ2 + ε ψ2 − ε

ψ

ψ2

1− ψ2

where ψ ≈ 0.78 is the positive root of 2(1− x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

I1: ψ ψ2 ψ/ψ2

1/ψ ≈ 1.28

I2: 1 2(1− ψ2) + ε 1/(2(1− ψ2) + ε)

vs.

I3: 1 ψ 1/ψ

10/7 ≈ 1.43



1 Advice Bit: Lower Bound

Hard Instance Family

x1 x2 x3 y2 y3

I1: ψ ψ2 1− ψ2 + ε
I2: ψ ψ2 1− ψ2 + ε 1− ψ2

I3: ψ ψ2 1− ψ2 + ε ψ2 − ε

ψ

ψ2

1− ψ2

where ψ ≈ 0.78 is the positive root of 2(1− x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

I1: ψ ψ2 ψ/ψ2

1/ψ ≈ 1.28

I2: 1 2(1− ψ2) + ε 1/(2(1− ψ2) + ε)

vs.

I3: 1 ψ 1/ψ

10/7 ≈ 1.43



1 Advice Bit: Lower Bound

Hard Instance Family

x1 x2 x3 y2 y3

I1: ψ ψ2 1− ψ2 + ε
I2: ψ ψ2 1− ψ2 + ε 1− ψ2

I3: ψ ψ2 1− ψ2 + ε ψ2 − ε

ψ

ψ2

1− ψ2

where ψ ≈ 0.78 is the positive root of 2(1− x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

I1: ψ ψ2 ψ/ψ2

1/ψ ≈ 1.28

I2: 1 2(1− ψ2) + ε 1/(2(1− ψ2) + ε)

vs.

I3: 1 ψ 1/ψ

10/7 ≈ 1.43



1 Advice Bit: Lower Bound

Hard Instance Family

x1 x2 x3 y2 y3

I1: ψ ψ2 1− ψ2 + ε
I2: ψ ψ2 1− ψ2 + ε 1− ψ2

I3: ψ ψ2 1− ψ2 + ε ψ2 − ε

ψ

ψ2

1− ψ2

where ψ ≈ 0.78 is the positive root of 2(1− x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

I1: ψ ψ2 ψ/ψ2

1/ψ ≈ 1.28

I2: 1 2(1− ψ2) + ε 1/(2(1− ψ2) + ε)

vs.

I3: 1 ψ 1/ψ

10/7 ≈ 1.43



1 Advice Bit: Lower Bound

Hard Instance Family

x1 x2 x3 y2 y3

I1: ψ ψ2 1− ψ2 + ε
I2: ψ ψ2 1− ψ2 + ε 1− ψ2

I3: ψ ψ2 1− ψ2 + ε ψ2 − ε

ψ

ψ2

1− ψ2

where ψ ≈ 0.78 is the positive root of 2(1− x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

I1: ψ ψ2 ψ/ψ2

1/ψ ≈ 1.28

I2: 1 2(1− ψ2) + ε 1/(2(1− ψ2) + ε)

vs.

I3: 1 ψ 1/ψ

10/7 ≈ 1.43



1 Advice Bit: Lower Bound

Hard Instance Family

x1 x2 x3 y2 y3

I1: ψ ψ2 1− ψ2 + ε
I2: ψ ψ2 1− ψ2 + ε 1− ψ2

I3: ψ ψ2 1− ψ2 + ε ψ2 − ε

ψ

ψ2

1− ψ2

where ψ ≈ 0.78 is the positive root of 2(1− x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

I1: ψ ψ2 ψ/ψ2

1/ψ ≈ 1.28

I2: 1 2(1− ψ2) + ε 1/(2(1− ψ2) + ε)

vs.

I3: 1 ψ 1/ψ

10/7 ≈ 1.43



1 Advice Bit: Lower Bound

Hard Instance Family

x1 x2 x3 y2 y3

I1: ψ ψ2 1− ψ2 + ε
I2: ψ ψ2 1− ψ2 + ε 1− ψ2

I3: ψ ψ2 1− ψ2 + ε ψ2 − ε

ψ

ψ2

1− ψ2

where ψ ≈ 0.78 is the positive root of 2(1− x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

I1: ψ ψ2 ψ/ψ2

1/ψ ≈ 1.28

I2: 1 2(1− ψ2) + ε 1/(2(1− ψ2) + ε)

vs.

I3: 1 ψ 1/ψ

10/7 ≈ 1.43



1 Advice Bit: Lower Bound

Hard Instance Family

x1 x2 x3 y2 y3

I1: ψ ψ2 1− ψ2 + ε
I2: ψ ψ2 1− ψ2 + ε 1− ψ2

I3: ψ ψ2 1− ψ2 + ε ψ2 − ε

ψ

ψ2

1− ψ2

where ψ ≈ 0.78 is the positive root of 2(1− x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

I1: ψ ψ2 ψ/ψ2

1/ψ ≈ 1.28

I2: 1 2(1− ψ2) + ε 1/(2(1− ψ2) + ε)

vs.

I3: 1 ψ 1/ψ

10/7 ≈ 1.43



1 Advice Bit: Lower Bound

Hard Instance Family

x1 x2 x3 y2 y3

I1: ψ ψ2 1− ψ2 + ε
I2: ψ ψ2 1− ψ2 + ε 1− ψ2

I3: ψ ψ2 1− ψ2 + ε ψ2 − ε

ψ

ψ2

1− ψ2

where ψ ≈ 0.78 is the positive root of 2(1− x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

I1: ψ ψ2 1/ψ

1/ψ ≈ 1.28

I2: 1 2(1− ψ2) + ε 1/ψ + ε

vs.

I3: 1 ψ 1/ψ

10/7 ≈ 1.43



1 Advice Bit: Lower Bound

Hard Instance Family

x1 x2 x3 y2 y3

I1: ψ ψ2 1− ψ2 + ε
I2: ψ ψ2 1− ψ2 + ε 1− ψ2

I3: ψ ψ2 1− ψ2 + ε ψ2 − ε

ψ

ψ2

1− ψ2

where ψ ≈ 0.78 is the positive root of 2(1− x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

I1: ψ ψ2 1/ψ

1/ψ ≈ 1.28

I2: 1 2(1− ψ2) + ε 1/ψ + ε

vs.

I3: 1 ψ 1/ψ

10/7 ≈ 1.43



1 Advice Bit: Lower Bound

Hard Instance Family

x1 x2 x3 y2 y3

I1: ψ ψ2 1− ψ2 + ε
I2: ψ ψ2 1− ψ2 + ε 1− ψ2

I3: ψ ψ2 1− ψ2 + ε ψ2 − ε

ψ

ψ2

1− ψ2

where ψ ≈ 0.78 is the positive root of 2(1− x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

I1: ψ ψ2 1/ψ ≈ 1.28
I2: 1 2(1− ψ2) + ε vs.
I3: 1 ψ 1/ψ 10/7 ≈ 1.43



1 Advice Bit
Upper Bound



1 Advice Bit: Improved Upper Bound

High-Level Outline Only

• Divide items into 5 size classes
• Two different packing strategies
• Use advice bit to indicate which one is better
• Yields a

√
2-competitive algorithm

tiny small medium big huge

little large

0 1



Near-Optimality
Using Constant Advice



Near-Optimality with Constant Advice

Algorithm Requirements

• Takes parameter ε > 0
• Is (1 + ε)-competitive
• Uses only constant advice



Near-Optimality with Constant Advice

Algorithm Outline

• Given ε > 0
• Let E = log1−ε ε

• Divide items into E + 1 size classes as shown below

· · ·
0 (1− ε)E

(1− ε)E−1

(1− ε)E−2

(1− ε)3

(1− ε)2

1− ε

1

Small items Big items



Near-Optimality with Constant Advice

Algorithm Outline

• Given ε > 0
• Let E = log1−ε ε

• Divide items into E + 1 size classes as shown below

· · ·
0 (1− ε)E

(1− ε)E−1

(1− ε)E−2

(1− ε)3

(1− ε)2

1− ε

1

Small items Big items



Near-Optimality with Constant Advice

Algorithm Outline

• Given ε > 0
• Let E = log1−ε ε

• Divide items into E + 1 size classes as shown below

· · ·
0 (1− ε)E

(1− ε)E−1

(1− ε)E−2

(1− ε)3

(1− ε)2

1− ε

1

Small items Big items



Near-Optimality with Constant Advice

Algorithm Outline

• Given ε > 0
• Let E = log1−ε ε

• Divide items into E + 1 size classes as shown below

· · ·
0 (1− ε)E

(1− ε)E−1

(1− ε)E−2

(1− ε)3

(1− ε)2

1− ε

1

Small items Big items



Near-Optimality with Constant Advice

Algorithm Outline

• Given ε > 0
• Let E = log1−ε ε

• Divide items into E + 1 size classes as shown below

· · ·
0 (1− ε)E

(1− ε)E−1

(1− ε)E−2

(1− ε)3

(1− ε)2

1− ε

1

Small items Big items



Near-Optimality with Constant Advice

Algorithm Outline

• Given ε > 0
• Let E = log1−ε ε

• Divide items into E + 1 size classes as shown below

· · ·
0 (1− ε)E

(1− ε)E−1

(1− ε)E−2

(1− ε)3

(1− ε)2

1− ε

1

Small items Big items



Near-Optimality with Constant Advice

Algorithm Outline

• Given ε > 0
• Let E = log1−ε ε

• Divide items into E + 1 size classes as shown below

· · ·
0 (1− ε)E

(1− ε)E−1

(1− ε)E−2

(1− ε)3

(1− ε)2

1− ε

1

Small items Big items



Near-Optimality with Constant Advice

Algorithm Outline

• Given ε > 0
• Let E = log1−ε ε

• Divide items into E + 1 size classes as shown below

· · ·
0 (1− ε)E

(1− ε)E−1

(1− ε)E−2

(1− ε)3

(1− ε)2

1− ε

1

Small items Big items



Near-Optimality with Constant Advice

Algorithm Outline

• Given ε > 0
• Let E = log1−ε ε

• Divide items into E + 1 size classes as shown below

· · ·
0 (1− ε)E

(1− ε)E−1

(1− ε)E−2

(1− ε)3

(1− ε)2

1− ε

1

Small items Big items



Near-Optimality with Constant Advice

Algorithm Outline

• Given ε > 0
• Let E = log1−ε ε

• Divide items into E + 1 size classes as shown below

· · ·
0 (1− ε)E

(1− ε)E−1

(1− ε)E−2

(1− ε)3

(1− ε)2

1− ε

1

Small items Big items



Near-Optimality with Constant Advice

Algorithm Outline

• Given ε > 0
• Let E = log1−ε ε

• Divide items into E + 1 size classes as shown below

· · ·
0 ε

(1− ε)E−1

(1− ε)E−2

(1− ε)3

(1− ε)2

1− ε

1

Small items Big items



Near-Optimality with Constant Advice

Algorithm Outline

• Given ε > 0
• Let E = log1−ε ε

• Divide items into E + 1 size classes as shown below

· · ·
0 ε

(1− ε)E−1

(1− ε)E−2

(1− ε)3

(1− ε)2

1− ε

1

Small items Big items



Near-Optimality with Constant Advice

What does the advice encode?
• Oracle fixes arbitrary optimal solution S
• Let u1, . . . , uk denote big items of S in appearance order
• Let ci denote size class of ui

• The advice encodes (c1, . . . , ck)



Near-Optimality with Constant Advice

Only constant advice

• 2kdlog2(E + 1)e bits suffice to encode (c1, . . . , ck)
– There are E classes for big items
– Thus one class indicated by dlog2(E + 1)e bits
– A self-delimiting encoding: 2dlog2(E + 1)e bits

• This is constant advice:
– The number k of big elements in S is bounded by 1/ε

– Recall that E = log1−ε(ε)



Near-Optimality with Constant Advice

Only constant advice

• 2kdlog2(E + 1)e bits suffice to encode (c1, . . . , ck)
– There are E classes for big items
– Thus one class indicated by dlog2(E + 1)e bits
– A self-delimiting encoding: 2dlog2(E + 1)e bits

• This is constant advice:
– The number k of big elements in S is bounded by 1/ε

– Recall that E = log1−ε(ε)



Near-Optimality with Constant Advice

Algorithm Procedure

• Big items: Packed into k virtual slots
– Slot i accommodates items from class ci exclusively
– In the beginning, the slots are empty
– Each slot is filled with exactly one big item
– The slots are filled strictly in their order
– Items in filled slots replaced by smaller ones if possible

• Small items: Packed greedily
– Removed one by one whenever needed to pack a big one



Near-Optimality with Constant Advice

Algorithm Procedure

• Big items: Packed into k virtual slots
– Slot i accommodates items from class ci exclusively
– In the beginning, the slots are empty
– Each slot is filled with exactly one big item
– The slots are filled strictly in their order
– Items in filled slots replaced by smaller ones if possible

• Small items: Packed greedily
– Removed one by one whenever needed to pack a big one



Example Execution of the Algorithm



Execution Example

0 1

Optimal Solution:

2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution:

2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2

1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2

1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1

32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1

32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 3

2 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 3

2 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 3

2 1 3

2 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 3

2 1 3

2 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 3

2 1 3

2 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 3

2 1 3

2 1 3 22 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 3

2 1 3 2

2 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 3

2 1 3 2

2 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 3

2 1 3 2

2 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 3

2 1 3 2

2 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 2

2 1 3 2

2 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 2

2 1 3 2

2 1 3 22 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 2

2 1 3 2

2 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 2

2 1 3 2

2 1 3 22 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 2

2 1 3 2

2 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 2

2 1 3 2

2 1 3 22 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 2

2 1 3 2

2 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 2

2 1 3 2

2 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2

2 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2

2 1 3 2



Execution Example

0 1

Optimal Solution: 2 1 3 2

Advice: (c1, c2, c3, c4) = (2, 1, 3, 2)

Input: 1
2

1
3

2
3

2
2

1
1

3
2

Input:

Output:

1
2

1
3

2
3

2
2

1
1

3
2

2 1 32 1 32 1 32 1 3 22 1 3 22 1 3 22 1 3 22 1 3 2

2 1 3 2



Near-Optimality with Constant Advice

Bounding the Competitivity

• Big items: Losing at most a factor ε

– All slots are filled in the end (Proof by Induction)
– As many big items from every class as optimal solution
– Every class for big item spans factor 1− ε

• Small items: Losing at most a factor ε (Greedy)
• Thus (1 + 2ε)-competitive



Conclusion



Advice Complexity Behavior

0 O(1) O(log n) n
1

1 + ε

Φ
2

log n n − 1 Advice Bits

Competitivity

Classical Knapsack: Two thresholds
• No advice: Unbounded competitivity
• Constant advice (a single bit): Drop to 2-competitivity
• Logarithmic advice necessary for any improvement
• Logarithmic advice sufficient for near-optimality
• Linear advice (one bit per item) necessary for optimality



Conclusion: Advice Complexity Behavior

0 O(1) O(log n) n
1

1 + ε

Φ
2

log n n − 1 Advice Bits

Competitivity

With removability: Collapse to a single threshold

• No advice: Φ-competitive (Golden ratio Φ ≈ 1.618)
• Constant advice: Jump down to near-optimality
• Logarithmic advice: Still being near-optimal
• Linear advice (one bit per item) necessary for optimality



Outlook: Non-Proportional Variant

0 O(1) O(log n) n
1

1 + ε

2

log n n − 1 Advice Bits

Competitivity

Non-Proportional Online Knapsack

• Without removability: A single threshold at logarithmic ad-
vice, jump from unbounded to near-optimal competitivity

• With removability: Threshold moves to constant advice
• Proof starts similarly, but many new tricks required



Outlook: Non-Proportional Variant

0 O(1) O(log n) n
1

1 + ε

2

log n n − 1 Advice Bits

Competitivity

Non-Proportional Online Knapsack

• Without removability: A single threshold at logarithmic ad-
vice, jump from unbounded to near-optimal competitivity

• With removability: Threshold moves to constant advice

• Proof starts similarly, but many new tricks required



Outlook: Non-Proportional Variant

0 O(1) O(log n) n
1

1 + ε

2

log n n − 1 Advice Bits

Competitivity

Non-Proportional Online Knapsack

• Without removability: A single threshold at logarithmic ad-
vice, jump from unbounded to near-optimal competitivity

• With removability: Threshold moves to constant advice
• Proof starts similarly, but many new tricks required



Questions?


	Introduction

