TTLON 1101010011001
%‘ 3 i’c 1001 1m?a1101m1 1
0% 2101760 0100 3

TR 9775290r
AN TS 2000 7 >~

Threshold Behaviors in Advice Complexity

Knapsack with Removability

Hans-Joachim Béckenhauer, Jan Dreier, Fabian Frei, Peter Rossmanith
August 28, 2020 — Virtual satellite workshop of MFCS 2020

Online Problems and Advice
Brief Recapitulation

Recapitulation

Online Problems

® |Instance revealed piecewise
¢ Solution required piecewise
e Algorithm outputs solution parts without full information

Recapitulation
Online Problems: Very Hard

¢ Online-ness is a severe restriction
¢ |n exchange: Unbounded time and space resources
e Thus no time/space complexity analysis

Recapitulation
Online Problems: Very Hard

¢ Online-ness is a severe restriction
¢ |n exchange: Unbounded time and space resources
e Thus no time/space complexity analysis

Assessing Online Algorithms

e Compare online solution to an optimal solution
e Thatis: Can online algorithm compete with offline one?
¢ Next slide: Formal definition of competitivity

Recapitulation

Defining Competitivity (Strict and for Maximization Problems)

e Competitivity of an online algorithm A on an instance /:

Gain of an optimal solution to /
Gain of A’s online solution to /

Recapitulation

Defining Competitivity (Strict and for Maximization Problems)

e Competitivity of an online algorithm A on an instance /:

Gain of an optimal solution to /
Gain of A’s online solution to /

e Competitivity of an online algorithm: Worst case, i.e.,

max Gain of an optimal solution to /
lez Gain of A’s online solution to /

Recapitulation

Defining Competitivity (Strict and for Maximization Problems)

e Competitivity of an online algorithm A on an instance /:

Gain of an optimal solution to /
Gain of A’s online solution to /

e Competitivity of an online algorithm: Worst case, i.e.,

Gain of an optimal solution to /
max - . - -
lez Gain of A’s online solution to /

e Competitivity of a problem: Best online algorithms, i.e.,

Gain of an optimal solution to /
min max
AcA Iez Gain of A’s online solution to /

This Much for Online Problems
Now Advice

Advice Complexity

¢ Online algorithm lacks information about future
¢ This makes online problems very hard

e But how much information is lacking exactly?

Advice Complexity

Motivation

¢ Online algorithm lacks information about future
¢ This makes online problems very hard
e But how much information is lacking exactly?

Measuring the lack of information

e Size of instance?

e Size of solution?

¢ Need for better, general measure

e Established measuring tool: Advice

Advice Complexity

Advice model

e Omniscient oracle provides online algorithm with advice
¢ Advice has the form of an infinite bit string

® One tailor-made advice string for each instance

¢ Online algorithm reads as many bits as it wants

* Number of bits read: Advice complexity

Online Computation

&

Online Algorithm

Online Computation

Malicious request sequence
X1,X2,X3,X4,X5,Xp,X7, . - .

Online Algorithm Adversary

Advice Complexity

DONOBBONONBB0D-) g

Oracle

Malicious request sequence
X1,X2,X3,X4,X5,Xp,X7, . - .

Online Algorithm Adversary

Advice Complexity

* |Improve competitivity, but minimize advice

* Remarkable behavior differences between problems

EVGI’y Single additional bit Jumps at some thresho|d3,
imprOVGS the CompetltIVIty Stagnating elsewhere
90@0 \
o 2
Optimal: 1 1.
0 n 01 =~logn n

Information Content [in Bits]

Online Knapsack
Classical Version

Classical Online Knapsack
Problem Definition

e Knapsack of capacity 1
¢ Online Instance: Sequence of n items with s¢,...,s,
¢ Online Output:

— Pack or discard each item immediately
— The decisions are permanent
— Never exceed the capacity

¢ Goal: Maximize packed volume

Classical Online Knapsack
Problem Definition

e Knapsack of capacity 1

¢ Online Instance: Sequence of n items with s¢,...,s,
¢ Online Output:

— Pack or discard each item immediately
— The decisions are permanent
— Never exceed the capacity

¢ Goal: Maximize packed volume

e This is the proportional/simple/unweighted problem
e That is: No size-value distinction for items

Knapsack with Removability
Model by Iwama and Taketomi, ICALP 2002

Knapsack with Removability

Definition of Classical Online Knapsack

e Knapsack of capacity 1
¢ Online Instance: Sequence of n items with s¢,...,s,
¢ Online Output:

— Pack or discard each item immediately
— The decisions are permanent
— Never exceed the capacity

¢ Goal: Maximize packed volume

Knapsack with Removability

e Knapsack of capacity 1
¢ Online Instance: Sequence of n items with s¢,...,s,
¢ Online Output:

— Pack or discard each item immediately
— The decisions are permanent
— Never exceed the capacity

¢ Goal: Maximize packed volume

Knapsack with Removability

e Knapsack of capacity 1
¢ Online Instance: Sequence of n items with s¢,...,s,
¢ Online Output:

— Pack or discard each item immediately
— The decisions are permanent
— Never exceed the capacity

¢ Goal: Maximize packed volume

Knapsack with Removability

e Knapsack of capacity 1
¢ Online Instance: Sequence of n items with s¢,...,s,
¢ Online Output:

— Pack or discard each item immediately
— Packed items can be removed
— Never exceed the capacity

¢ Goal: Maximize packed volume

Knapsack with Removability

Clarification on Removability

¢ Any packed item can be removed from the knapsack
* No restrictions. Algorithm may remove ...

— ... arbitrarily many items ...

— ... at arbitrary points in time

e However, once an item is removed, it is gone for good

Knapsack with Removability

Natural Model

e Example: Storage room

e Keep useful things as they come along

e Space will run out

® Need to start disposing

e Goal: Most useful collection

¢ How much information about future needed?

Knapsack with Removability

Two Results Known So Far

e Without advice, the competitivity is exactly the golden
ratio ¢ ~ 1.618
[lwama and Taketomi, ICALP 2002]

e There is 10/7-approximative algorithm using a single ran-
dom bit
[Han et al., TCS 2015]

Knapsack with Removability

Two Results Known So Far

e Without advice, the competitivity is exactly the golden
ratio ¢ ~ 1.618
[lwama and Taketomi, ICALP 2002]

e There is 10/7-approximative algorithm using a single ran-
dom bit
[Han et al., TCS 2015]

e Thus there is 10/7-competitive algorithm using a single
advice bit

Knapsack with Removability

Competitivity vs. Advice: Our Contribution

e Optimality requires 1 advice bit per item asymptotically
¢ Near optimality with constant advice
¢ Improved bounds for one advice bit

Knapsack with Removability

Competitivity vs. Advice: Our Contribution

e Optimality requires 1 advice bit per item asymptotically
¢ Near optimality with constant advice
¢ Improved bounds for one advice bit

Knapsack with Removability

Competitivity vs. Advice: Our Contribution

e Optimality requires 1 advice bit per item asymptotically
¢ Near optimality with constant advice
¢ Improved bounds for one advice bit

Knapsack with Removability

Competitivity vs. Advice: Our Contribution

e Optimality requires 1 advice bit per item asymptotically
¢ Near optimality with constant advice
¢ Improved bounds for one advice bit

A Single Advice Bit

Upper and Lower Bound

1 Advice Bit: Lower Bound

Hard Instance Family

Xy X X3 Yo Y3
I ¥ Y2 1—yPa+e
by % A—yP+e 1-—9?
lsi ¢ Y2 1—yP+e Y2 —e

1 Advice Bit: Lower Bound

Hard Instance Family

X1 X2 X3 Y2 Y3
I ¥ Y2 1—yPa+e
b ¢ Y2 1—yf+e 1 —qy?
lsi ¢ Y2 1—yP+e Y2 —e

where v ~ 0.78 is the positive root of 2(1 — x2) = x

1 Advice Bit: Lower Bound

Hard Instance Family

Xq X2 X3 Y2 Y3
h: v ¢?2 1—y2+e L v |
bi ¢ 2 1—yPee 11—y
lsi ¢ Y2 1—yP+e Y2 —e

where v ~ 0.78 is the positive root of 2(1 — x2) = x

1 Advice Bit: Lower Bound

Hard Instance Family

X1 X X3 \w Y2 Y3
I1Z :’l/) w2 1—1/)2+6: I#
i % YR 1—gPee! 1-gR
i (9 97 1-4Pse ¥ oe

where v ~ 0.78 is the positive root of 2(1 — x2) = x

1 Advice Bit: Lower Bound

Hard Instance Family

Xq X2 X3 Y2 Y3
h: v ¢?2 1—y2+e L v |
bi ¢ 2 1—yPee 11—y
lsi ¢ Y2 1—yP+e Y2 —e

where v ~ 0.78 is the positive root of 2(1 — x2) = x

1 Advice Bit: Lower Bound

Hard Instance Family

Xq X2 X3 Y2 Y3
h: v ¢?2 1—y2+e L v |
bi ¢ 2 1—yPee 11—y
lsi ¢ Y2 1—yP+e Y2 —e

where v ~ 0.78 is the positive root of 2(1 — x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity
I1 5 'l,Z) 1/12 'll’/'l/)z
Io: 1 21 —y?)+e 1/@R1 —?) +e)

I3: 1 'lj) 1/11Z)

1 Advice Bit: Lower Bound

Hard Instance Family

X Xp X3 Y2 Vs
h: ¥ ¢?2 1—yP+e L v |
i o W A—gfee 1 -y?
I Y2 A —yP+e Y2 —¢

where v ~ 0.78 is the positive root of 2(1 — x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity
I1 5 'l,z) 1/12 'll’/'l/)z
I: 1 2(1 —) +e 1/(2(1 —¢?) +¢)

I3: 1 111 1/11Z)

1 Advice Bit: Lower Bound

Hard Instance Family

X1 X2 X3 Y2 Y3
h: ¥ 9?2 1—yP+e L v |
R S R B
ls: ¢ Y2 1—yP+e Y2 —e

where v ~ 0.78 is the positive root of 2(1 — x?) = x

Competitive Analysis

Unique Optimum Second Best Competitivity
I1: 'l,Z) wZ 'll’/'l/)z
: 1 21 —y?) +e 1/(2(1 —y?) +e)

I3: 1 P 1/11Z)

1 Advice Bit: Lower Bound

Hard Instance Family

Xq X2 X3 Y2 Y3
h: v ¢?2 1—y2+e L v |
bi ¢ 2 1—yPee 11—y
lsi ¢ Y2 1—yP+e Y2 —e

where v ~ 0.78 is the positive root of 2(1 — x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity
h: P P2 P[9P
Io: 1 201 =2 +e 1/(2(1 —¢?) +¢)

I3: 1 P 1/w

1 Advice Bit: Lower Bound

Hard Instance Family

Xq X2 X3 Y2 Y3
h: v ¢?2 1—y2+e L v |
bi ¢ 2 1—yPee 11—y
lsi ¢ Y2 1—yP+e Y2 —e

where v ~ 0.78 is the positive root of 2(1 — x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity
h: P P2 1/¢
I>: 1 2(1 —?) +¢ 1/ +¢e
I3: 1 111 1/w

1 Advice Bit: Lower Bound

Hard Instance Family

Xq X2 X3 Y2 Y3
h: v ¢?2 1—y2+e L v |
bi ¢ 2 1—yPee 11—y
lsi ¢ Y2 1—yP+e Y2 —e

where v ~ 0.78 is the positive root of 2(1 — x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity
h: P P2 1/¢
I>: 1 2(1 —?) +¢ 1/ +¢e
I3: 1 111 1/w

1 Advice Bit: Lower Bound

Hard Instance Family

Xq X2 X3 Y2 Y3
h: v ¢?2 1—y2+e L v |
bi ¢ 2 1—yPee 11—y
lsi ¢ Y2 1—yP+e Y2 —e

where v ~ 0.78 is the positive root of 2(1 — x2) = x

Competitive Analysis

Unique Optimum Second Best Competitivity

Iy (0] 2 1/¢ ~1.28
Io: 1 2(1 —¢?) +e vs.
Is: 1 ¥ 1/ 10/7 ~ 1.43

1 Advice Bit
Upper Bound

1 Advice Bit: Improved Upper Bound

High-Level Outline Only

¢ Divide items into 5 size classes

e Two different packing strategies

¢ Use advice bit to indicate which one is better
* Yields a v/2-competitive algorithm

little large

(tiny K small Kmedium[big K huge |

Near-Optimality
Using Constant Advice

Near-Optimality with Constant Advice

Algorithm Requirements

e Takes parameter s > 0
® Is (1 +¢)-competitive
e Uses only constant advice

Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)? 1—¢

(G G B G (

0 (1—e)f (1—ef-2 (1 —¢)? 1

Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)? 1—¢

(G G B G (

0 (1—e)f (1—ef-2 (1 —¢)? 1

Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)? 1—¢

(G G B G (

0 (1—e)f (1—ef-2 (1 —¢)? 1

Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)? 1—¢

(G G B G (

0 (1—e)f (1—ef-2 (1 —¢)? 1

Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)? 1—¢

(G G B G (

Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)3 1—¢

(G G B G (

0 (1—e)f (1—ef-2 (1 —¢)? 1

Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)? 1—¢

(1 - X (

0 (1—e)f (1—e)f-2 (1 —¢)? 1

Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1 —e)E-T (1—¢)? 1—¢

(G G B G (

0 (1—e)f (1—ef-2 (1 —¢)? 1

Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)? 1—¢

(G G B G (

0 (1—e)f (1—ef-2 (1 —¢)? 1

Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
® LetE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)? 1—¢

(G G B G (

0 (1—e)f (1—ef-2 (1 —¢)? 1

Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)? 1—¢

(G G B G (

0 € (1-e)f2 (1 — e 1

Near-Optimality with Constant Advice

Algorithm Qutline

e Givene >0
o letE=logy_.¢
e Divide items into E + 1 size classes as shown below

(1—g)f-1 (1—¢)? 1—¢

(G G B G (

0 € (1-e)f2 (1 — e 1

Small items Big ftems

Near-Optimality with Constant Advice

What does the advice encode?

¢ Oracle fixes arbitrary optimal solution S

® Letuy,...,u, denote big items of S in appearance order
® | et ¢; denote size class of u;

* The advice encodes (cy,...,Cx)

Near-Optimality with Constant Advice

Only constant advice

® 2k[log,(E + 1)] bits suffice to encode (cq, ..., Ck)
— There are E classes for big items
— Thus one class indicated by [log,(E + 1)] bits
— A self-delimiting encoding: 2[log,(E + 1)] bits

Near-Optimality with Constant Advice

Only constant advice

® 2k[log,(E + 1)] bits suffice to encode (cq, ..., Ck)
— There are E classes for big items
— Thus one class indicated by [log,(E + 1)] bits
— A self-delimiting encoding: 2[log,(E + 1)] bits

¢ This is constant advice:

— The number k of big elements in S is bounded by 1 /¢
— Recall that E = logy__(e)

Near-Optimality with Constant Advice

Algorithm Procedure

* Big items: Packed into k virtual slots

— Slot i accommodates items from class c; exclusively

— In the beginning, the slots are empty

— Each slot is filled with exactly one big item

— The slots are filled strictly in their order

— Items in filled slots replaced by smaller ones if possible

Near-Optimality with Constant Advice

Algorithm Procedure

* Big items: Packed into k virtual slots
— Slot i accommodates items from class c; exclusively
— In the beginning, the slots are empty
— Each slot is filled with exactly one big item
— The slots are filled strictly in their order
— Items in filled slots replaced by smaller ones if possible
e Small items: Packed greedily
— Removed one by one whenever needed to pack a big one

Example Execution of the Algorithm

Execution Example

Optimal Solution: - [

Execution Example

? |

Optimal Solution: [

Execution Example

Optimal Solution: - [Z

Execution Example

Optimal Solution: - [Z

Advice: (cq,C2,€3,€4) = (2,1,3,2)

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: | 1 |
l 1 |
[2]
2 g

] |

1 |
[

3

Execution Example

Optimal Solution: - [Z

Advice: (cq,C2,€3,€4) = (2,1,3,2)

Input:

Output:

Execution Example

Optimal Solution: - [Z

Advice: (cq,C2,€3,€4) = (2,1,3,2)

Input: [1 |

Output:

Execution Example

Optimal Solution: - [Z

Advice: (cq,C2,€3,€4) = (2,1,3,2)

Input: [1 |

Output:

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C17CZVC3704> = (2719372>

Input: [1 |

I —

Output:

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C17CZVC3704> = (2719372>

Input: [1 |

I —

Output: [TE

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C17CZVC3704> = (2719372>

Input: [1 |

l 1 |

Output: [TE

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C17CZVC3704> = (2719372>

Input: [1 |

l 1 |

Output: | 2] 1]

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1,02,C3,C4) = (2719372>

Input: [1 |

l 1 |

Output: | 2] 1]

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1,02,C3,C4) = (2719372>

Input: [1 |

l 1 |

Output: | 2] 1 13 |

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1,02,C3,C4) = (2719372>

Input: [1 |

l 1 |

Output: | 2] 1 13 |

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1,02,C3,C4) = (2719372>

Input: [1 |

l 1 |

Output: [2] 1 | 3 |

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1,02,C3,C4) = (2719372>

Input: [1 |

I R—

l 1

Output: [2] 1 | 3 |

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1,02,C3,C4) = (2719372>

Input: [1 |

I R—

l 1

Output: [2] 1 |

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input:

I
[

Output: [2] 1 |

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input:

I
[

Output: [2] 1 | 2]

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
[2 1]

Output: [2] 1 | 2]

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
[2 1]

Output: [2] 1 | 2]

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
2
i

Output: [2] 1 | 2]

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
2
i

Output: [2 11 1 | EN 2 |

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
2

Output: [2 11 1 | EN 2 |

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
2

Output: [2 11 1 | 3] 2]

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
2

Output: [2 11 1 | 3] 2]

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
2

Output: [2 11 1] 3] 2]

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
2 g
1]
1 |
I

Output: [2 11 1] 3] 2]

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
2 g
1]
1 |
I

Output: [2 11 1] 3] 2 |

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
2 g
1]
1 |
[
[3]

Output: [2 11 1] 3] 2 |

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
2 g
1]
1 |
[
[3]

Output: [2 11 1] 3] 2 |

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
2 g
1]
1 |
[
3
2 1]

Output: [2 11 1] 3] 2 |

Execution Example

Optimal Solution: | 2 I1 1 I3 1 2 |
Advice: (C1’027037C4) = (2719372>

Input: [1 |
[1 |
[2]
2 g
1]
1 |
[
3
2 1]

Output: [2 11 1] 3] 2 |

Near-Optimality with Constant Advice

Bounding the Competitivity

¢ Big items: Losing at most a factor ¢

— All slots are filled in the end (Proof by Induction)
— As many big items from every class as optimal solution
— Every class for big item spans factor 1 — ¢

e Small items: Losing at most a factor £ (Greedy)
e Thus (1 + 2¢)-competitive

Conclusion

Advice Complexity Behavior

Competitivity

1 T T T T
0 O(1) logn O(logn) n—1 n Advice Bits

Classical Knapsack: Two thresholds

® No advice: Unbounded competitivity

Constant advice (a single bit): Drop to 2-competitivity
® [ogarithmic advice necessary for any improvement

Logarithmic advice sufficient for near-optimality

Linear advice (one bit per item) necessary for optimality

Conclusion: Advice Complexity Behavior

Competitivity

1 T T T T
0 O(1) logn O(logn) n—1 n Advice Bits

With removability: Collapse to a single threshold

¢ No advice: ¢-competitive (Golden ratio ¢ ~ 1.618)

¢ Constant advice: Jump down to near-optimality

e Logarithmic advice: Still being near-optimal

e Linear advice (one bit per item) necessary for optimality

Outlook: Non-Proportional Variant

Competitivity

2,

1+¢e

1 T T T T
0 O(1) logn O(logn) n—1 n Advice Bits

Non-Proportional Online Knapsack

e Without removability: A single threshold at logarithmic ad-
vice, jump from unbounded to near-optimal competitivity

Outlook: Non-Proportional Variant

Competitivity

2,

1+¢e

1 T T T T
0 O(1) logn O(logn) n—1 n Advice Bits

Non-Proportional Online Knapsack

e Without removability: A single threshold at logarithmic ad-
vice, jump from unbounded to near-optimal competitivity

e With removability: Threshold moves to constant advice

Outlook: Non-Proportional Variant

Competitivity

2,

1+¢e
1 T T T T
0 O(1) logn O(logn) n—1 n Advice Bits

Non-Proportional Online Knapsack

e Without removability: A single threshold at logarithmic ad-
vice, jump from unbounded to near-optimal competitivity

With removability: Threshold moves to constant advice
e Proof starts similarly, but many new tricks required

Questions?

	Introduction

