

Threshold Behaviors in Advice Complexity

Knapsack with Removability

Hans-Joachim Böckenhauer, Jan Dreier, **Fabian Frei**, Peter Rossmanith August 28, 2020 – Virtual satellite workshop of MFCS 2020

Online Problems and Advice Brief Recapitulation

Online Problems

- Instance revealed piecewise
- Solution required piecewise
- Algorithm outputs solution parts without full information

Online Problems: Very Hard

- Online-ness is a severe restriction
- In exchange: Unbounded time and space resources
- Thus no time/space complexity analysis

Online Problems: Very Hard

- Online-ness is a severe restriction
- In exchange: Unbounded time and space resources
- Thus no time/space complexity analysis

Assessing Online Algorithms

- Compare online solution to an optimal solution
- That is: Can online algorithm compete with offline one?
- Next slide: Formal definition of competitivity

Defining Competitivity (Strict and for Maximization Problems)

• Competitivity of an online algorithm A on an instance I:

Gain of an optimal solution to *I* Gain of *A*'s online solution to *I*

Defining Competitivity (Strict and for Maximization Problems)

• Competitivity of an online algorithm A on an instance I:

Gain of an optimal solution to *I* Gain of *A*'s online solution to *I*

Competitivity of an online algorithm: Worst case, i.e.,

 $\max_{I \in \mathcal{I}} \frac{\text{Gain of an optimal solution to } I}{\text{Gain of } A$'s online solution to I

Defining Competitivity (Strict and for Maximization Problems)

• Competitivity of an online algorithm A on an instance I:

Gain of an optimal solution to *I* Gain of *A*'s online solution to *I*

Competitivity of an online algorithm: Worst case, i.e.,

 $\max_{I \in \mathcal{I}} \frac{\text{Gain of an optimal solution to } I}{\text{Gain of } A$'s online solution to I

Competitivity of a problem: Best online algorithms, i.e.,

 $\min_{A \in \mathcal{A}} \max_{I \in \mathcal{I}} \frac{\text{Gain of an optimal solution to } I}{\text{Gain of } A\text{'s online solution to } I}$

This Much for Online Problems Now Advice

Motivation

- Online algorithm lacks information about future
- This makes online problems very hard
- But how much information is lacking exactly?

Motivation

- Online algorithm lacks information about future
- This makes online problems very hard
- But how much information is lacking exactly?

Measuring the lack of information

- Size of instance?
- Size of solution?
- Need for better, general measure
- Established measuring tool: Advice

Advice model

- Omniscient oracle provides online algorithm with advice
- Advice has the form of an infinite bit string
- One tailor-made advice string for each instance
- Online algorithm reads as many bits as it wants
- Number of bits read: Advice complexity

Online Computation

Online Algorithm

Online Computation

Trade-Off

- Improve competitivity, but minimize advice
- Remarkable behavior differences between problems

Common: ContinuousKnapsack: ThresholdsEvery single additional bit
improves the competitivityJumps at some thresholds,
stagnating elsewhere

Online Knapsack Classical Version

Classical Online Knapsack

Problem Definition

- Knapsack of capacity 1
- Online Instance: Sequence of *n* items with *s*₁,...,*s*_n
- Online Output:
 - Pack or discard each item immediately
 - The decisions are permanent
 - Never exceed the capacity
- Goal: Maximize packed volume

Classical Online Knapsack

Problem Definition

- Knapsack of capacity 1
- Online Instance: Sequence of *n* items with *s*₁,...,*s*_n
- Online Output:
 - Pack or discard each item immediately
 - The decisions are permanent
 - Never exceed the capacity
- Goal: Maximize packed volume

Remark

- This is the *proportional/simple/unweighted* problem
- That is: No size-value distinction for items

Knapsack with Removability Model by Iwama and Taketomi, ICALP 2002

Definition of Classical Online Knapsack

- Knapsack of capacity 1
- Online Instance: Sequence of *n* items with s₁,..., s_n
- Online Output:
 - Pack or discard each item immediately
 - The decisions are permanent
 - Never exceed the capacity
- Goal: Maximize packed volume

Definition of Classical Online Knapsack

- Knapsack of capacity 1
- Online Instance: Sequence of *n* items with s₁,..., s_n
- Online Output:
 - Pack or discard each item immediately
 - The decisions are permanent
 - Never exceed the capacity
- Goal: Maximize packed volume

Definition of Classical Online Knapsack

- Knapsack of capacity 1
- Online Instance: Sequence of *n* items with s₁,..., s_n
- Online Output:
 - Pack or discard each item immediately
 - The decisions are permanent
 - Never exceed the capacity
- Goal: Maximize packed volume

Definition of Knapsack with Removability

- Knapsack of capacity 1
- Online Instance: Sequence of *n* items with s₁,..., s_n
- Online Output:
 - Pack or discard each item immediately
 - Packed items can be removed
 - Never exceed the capacity
- Goal: Maximize packed volume

Clarification on Removability

- Any packed item can be removed from the knapsack
- No restrictions. Algorithm may remove ...
 - ... arbitrarily many items ...
 - ... at arbitrary points in time
- However, once an item is removed, it is gone for good

Natural Model

- Example: Storage room
- · Keep useful things as they come along
- Space will run out
- Need to start disposing
- Goal: Most useful collection
- · How much information about future needed?

Two Results Known So Far

- Without advice, the competitivity is exactly the golden ratio $\Phi \approx 1.618$ [Iwama and Taketomi, ICALP 2002]
- There is 10/7-approximative algorithm using a single random bit [Han et al., TCS 2015]

Two Results Known So Far

- Without advice, the competitivity is exactly the golden ratio $\Phi \approx 1.618$ [Iwama and Taketomi, ICALP 2002]
- There is 10/7-approximative algorithm using a single random bit [Han et al., TCS 2015]
- Thus there is 10/7-competitive algorithm using a single advice bit

- Optimality requires 1 advice bit per item asymptotically
- Near optimality with constant advice
- Improved bounds for one advice bit

- Optimality requires 1 advice bit per item asymptotically
- Near optimality with constant advice
- Improved bounds for one advice bit

- Optimality requires 1 advice bit per item asymptotically
- Near optimality with constant advice
- Improved bounds for one advice bit

- Optimality requires 1 advice bit per item asymptotically
- Near optimality with constant advice
- Improved bounds for one advice bit

A Single Advice Bit Upper and Lower Bound

1 Advice Bit: Lower Bound

Hard Instance Family

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	y 2	<i>y</i> 3
<i>I</i> ₁ :	ψ	ψ^2	1 – ψ^2 + ε		
I ₂ :	ψ	ψ^2	1 – ψ^2 + ε	$1-\psi^2$	
I ₃ :	ψ	ψ^2	1 – ψ^2 + ε		$\psi^2 - \varepsilon$

1 Advice Bit: Lower Bound

Hard Instance Family

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>y</i> ₂	<i>y</i> 3
<i>I</i> ₁ :	ψ	ψ^2	1 – ψ^2 + ε		
I ₂ :	ψ	ψ^2	1 – ψ^2 + $arepsilon$	$1-\psi^2$	
I ₃ :	ψ	ψ^2	1 – ψ^2 + $arepsilon$		$\psi^2 - \varepsilon$

where $\psi \approx 0.78$ is the positive root of $2(1 - x^2) = x$

1 Advice Bit: Lower Bound

####
Hard Instance Family

	$\begin{bmatrix} x_1 \end{bmatrix}$	<i>x</i> ₂	<i>x</i> ₃	<i>y</i> ₂	<i>y</i> 3	
<i>I</i> ₁ :	ψ	ψ^2	1 – ψ^2 + $arepsilon$			ψ
<i>I</i> ₂ :	ψ	ψ^2	$1 - \psi^2 + \varepsilon$	$1-\psi^2$		ψ^2
I ₃ :	ι <u>ψ</u>	ψ^{2}	$1-\psi^2+\varepsilon$		$\psi^2 - \varepsilon$	$1-\psi^2$

where $\psi \approx 0.78$ is the positive root of $2(1 - x^2) = x$

Hard Instance Family

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>y</i> 2	<i>y</i> ₃	-	
<i>I</i> ₁ :	ψ	ψ^2	$1-\psi^2$ + $arepsilon$				ψ
<i>I</i> ₂ :	ψ	ψ^2	$1 - \psi^2 + \varepsilon$	$1-\psi^2$		[ψ^2
I ₃ :	ψ	ψ^2	1 – ψ^2 + $arepsilon$		$\psi^2 - \varepsilon$		$1 - \psi^2$

where $\psi \approx$ 0.78 is the positive root of 2(1 – x^2) = x

	Unique Optimum	Second Best	Competitivity
<i>I</i> ₁ :	ψ	ψ^2	ψ/ψ^2
I ₂ :	1	$2(1-\psi^2)$ + $arepsilon$	$1/(2(1-\psi^2)+arepsilon)$
I ₃ :	1	ψ	$1/\psi$

where $\psi \approx 0.78$ is the positive root of $2(1 - x^2) = x$

	Unique Optimum	Second Best	Competitivity
<i>I</i> ₁ :	ψ	ψ^2	ψ/ψ^2
I ₂ :	1	2(1 $-\psi^2$) + $arepsilon$	$1/(2(1-\psi^2)+arepsilon)$
I ₃ :	1	ψ	$1/\psi$

Hard Instance Family

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>y</i> ₂	<i>y</i> ₃		
<i>I</i> ₁ :	ψ	ψ^2	$1-\psi^2$ + $arepsilon$			ψ	
<i>I</i> ₂ :	ψ	ψ^2	$1-\psi^2+arepsilon$	$1-\psi^2$		ψ^2	
I ₃ :	ψ	ψ^2	1 – ψ^2 + ε		$\psi^2 - \varepsilon$]	$1 - \psi^2$

where $\psi \approx 0.78$ is the positive root of $2(1 - x^2) = x$

	Unique Optimum	Second Best	Competitivity
<i>I</i> ₁ :	ψ	ψ^2	ψ/ψ^2
I ₂ :	1	$2(1-\psi^2)$ + $arepsilon$	$1/(2(1-\psi^2)+arepsilon)$
I ₃ :	1	ψ	$1/\psi$

Hard Instance Family

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>y</i> ₂	<i>y</i> 3	
<i>I</i> ₁ :	ψ	ψ^2	$1 - \psi^2 + \varepsilon$			ψ
I ₂ :	ψ	ψ^2	$1-\psi^2+arepsilon$	$1-\psi^2$		ψ^2
I ₃ :	ψ	ψ^2	1 – ψ^2 + $arepsilon$		$\psi^2 - \varepsilon$	$1 - \psi^2$

where $\psi \approx 0.78$ is the positive root of $2(1-x^2)$ = x

	Unique Optimum	Second Best	Competitivity
<i>I</i> ₁ :	ψ	ψ^2	ψ/ψ^2
I ₂ :	1	$2(1-\psi^2)$ + $arepsilon$	$1/(2(1-\psi^2)+arepsilon)$
I ₃ :	1	ψ	$1/\psi$

Hard Instance Family

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>y</i> ₂	<i>y</i> 3	
<i>I</i> ₁ :	ψ	ψ^2	$1 - \psi^2 + \varepsilon$			ψ
I ₂ :	ψ	ψ^2	$1-\psi^2+arepsilon$	$1-\psi^2$		ψ^2
I ₃ :	ψ	ψ^2	1 – ψ^2 + $arepsilon$		$\psi^2 - \varepsilon$	$1 - \psi^2$

where $\psi \approx$ 0.78 is the positive root of 2(1 – x^2) = x

	Unique Optimum	Second Best	Competitivity
<i>I</i> ₁ :	ψ	ψ^2	$1/\psi$
I ₂ :	1	2(1 $-\psi^2$) + $arepsilon$	$1/\psi$ + $arepsilon$
I ₃ :	1	ψ	$1/\psi$

Hard Instance Family

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>y</i> ₂	<i>y</i> 3	-	
<i>I</i> ₁ :	ψ	ψ^2	$1 - \psi^2 + \varepsilon$				ψ
I ₂ :	ψ	ψ^2	$1-\psi^2+arepsilon$	$1-\psi^2$			ψ^2
<i>I</i> 3:	ψ	ψ^2	1 – ψ^2 + $arepsilon$		$\psi^2 - \varepsilon$		$1 - \psi^2$

where $\psi \approx 0.78$ is the positive root of $2(1-x^2)$ = x

	Unique Optimum	Second Best	Competitivity
<i>I</i> ₁ :	ψ	ψ^2	$1/\psi$
<i>I</i> ₂ :	1	2(1 $-\psi^2$) + $arepsilon$	$1/\psi + \varepsilon$
I ₃ :	1	ψ	$1/\psi$

Hard Instance Family

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>y</i> 2	<i>y</i> ₃	-	
<i>I</i> ₁ :	ψ	ψ^2	$1-\psi^2$ + $arepsilon$				ψ
<i>I</i> ₂ :	ψ	ψ^2	$1 - \psi^2 + \varepsilon$	$1-\psi^2$			ψ^2
I ₃ :	ψ	ψ^2	1 – ψ^2 + $arepsilon$		$\psi^2 - \varepsilon$		$1 - \psi^2$

where $\psi \approx 0.78$ is the positive root of $2(1-x^2)$ = x

	Unique Optimum	Second Best	Competitivity	
<i>I</i> ₁ :	ψ	ψ^2		$1/\psi pprox$ 1.28
<i>I</i> ₂ :	1	2(1 $-\psi^2$) + $arepsilon$		VS.
I ₃ :	1	ψ	$1/\psi$	10/7 pprox 1.43

1 Advice Bit Upper Bound

1 Advice Bit: Improved Upper Bound

High-Level Outline Only

- Divide items into 5 size classes
- Two different packing strategies
- Use advice bit to indicate which one is better
- Yields a $\sqrt{2}$ -competitive algorithm

Near-Optimality Using Constant Advice

Algorithm Requirements

- Takes parameter $\varepsilon > 0$
- Is $(1 + \varepsilon)$ -competitive
- Uses only constant advice

- Given ε > 0
- Let $E = \log_{1-\varepsilon} \varepsilon$
- Divide items into E + 1 size classes as shown below

- Given ε > 0
- Let $E = \log_{1-\varepsilon} \varepsilon$
- Divide items into E + 1 size classes as shown below

- Given ε > 0
- Let $E = \log_{1-\varepsilon} \varepsilon$
- Divide items into E + 1 size classes as shown below

- Given ε > 0
- Let $E = \log_{1-\varepsilon} \varepsilon$
- Divide items into E + 1 size classes as shown below

- Given ε > 0
- Let $E = \log_{1-\varepsilon} \varepsilon$
- Divide items into E + 1 size classes as shown below

- Given ε > 0
- Let $E = \log_{1-\varepsilon} \varepsilon$
- Divide items into E + 1 size classes as shown below

- Given ε > 0
- Let $E = \log_{1-\varepsilon} \varepsilon$
- Divide items into E + 1 size classes as shown below

- Given ε > 0
- Let $E = \log_{1-\varepsilon} \varepsilon$
- Divide items into E + 1 size classes as shown below

- Given ε > 0
- Let $E = \log_{1-\varepsilon} \varepsilon$
- Divide items into E + 1 size classes as shown below

- Given ε > 0
- Let $E = \log_{1-\varepsilon} \varepsilon$
- Divide items into E + 1 size classes as shown below

- Given ε > 0
- Let $E = \log_{1-\varepsilon} \varepsilon$
- Divide items into E + 1 size classes as shown below

- Given ε > 0
- Let $E = \log_{1-\varepsilon} \varepsilon$
- Divide items into E + 1 size classes as shown below

What does the advice encode?

- Oracle fixes arbitrary optimal solution S
- Let u_1, \ldots, u_k denote big items of *S* in appearance order
- Let *c_i* denote size class of *u_i*
- The advice encodes (c_1, \ldots, c_k)

Only constant advice

- $2k \lceil \log_2(E + 1) \rceil$ bits suffice to encode (c_1, \ldots, c_k)
 - There are E classes for big items
 - Thus one class indicated by $\lceil \log_2(E + 1) \rceil$ bits
 - A self-delimiting encoding: $2\lceil \log_2(E+1) \rceil$ bits

Only constant advice

- $2k \lceil \log_2(E + 1) \rceil$ bits suffice to encode (c_1, \ldots, c_k)
 - There are E classes for big items
 - Thus one class indicated by $\lceil \log_2(E + 1) \rceil$ bits
 - A self-delimiting encoding: $2\lceil \log_2(E+1) \rceil$ bits
- This is constant advice:
 - The number k of big elements in S is bounded by $1/\varepsilon$
 - Recall that $E = \log_{1-\varepsilon}(\varepsilon)$

Algorithm Procedure

- Big items: Packed into k virtual slots
 - Slot *i* accommodates items from class *c_i* exclusively
 - In the beginning, the slots are empty
 - Each slot is filled with exactly one big item
 - The slots are filled strictly in their order
 - Items in filled slots replaced by smaller ones if possible

Algorithm Procedure

- Big items: Packed into k virtual slots
 - Slot *i* accommodates items from class *c_i* exclusively
 - In the beginning, the slots are empty
 - Each slot is filled with exactly one big item
 - The slots are filled strictly in their order
 - Items in filled slots replaced by smaller ones if possible
- Small items: Packed greedily
 - Removed one by one whenever needed to pack a big one

Example Execution of the Algorithm

Optimal Solution:

Optimal Solution:

Advice: $(c_1, c_2, c_3, c_4) = (2, 1, 3, 2)$

Near-Optimality with Constant Advice

Bounding the Competitivity

- Big items: Losing at most a factor ε
 - All slots are filled in the end (Proof by Induction)
 - As many big items from every class as optimal solution
 - Every class for big item spans factor 1 ε
- Small items: Losing at most a factor ε (Greedy)
- Thus $(1 + 2\varepsilon)$ -competitive

Conclusion

Advice Complexity Behavior

Classical Knapsack: Two thresholds

- No advice: Unbounded competitivity
- Constant advice (a single bit): Drop to 2-competitivity
- Logarithmic advice necessary for any improvement
- Logarithmic advice sufficient for near-optimality
- Linear advice (one bit per item) necessary for optimality

Conclusion: Advice Complexity Behavior

With removability: Collapse to a single threshold

- No advice: Φ -competitive (Golden ratio $\Phi \approx 1.618$)
- Constant advice: Jump down to near-optimality
- Logarithmic advice: Still being near-optimal
- Linear advice (one bit per item) necessary for optimality

Outlook: Non-Proportional Variant

Non-Proportional Online Knapsack

 Without removability: A single threshold at logarithmic advice, jump from unbounded to near-optimal competitivity

Outlook: Non-Proportional Variant

Non-Proportional Online Knapsack

- Without removability: A single threshold at logarithmic advice, jump from unbounded to near-optimal competitivity
- · With removability: Threshold moves to constant advice

Outlook: Non-Proportional Variant

Non-Proportional Online Knapsack

- Without removability: A single threshold at logarithmic advice, jump from unbounded to near-optimal competitivity
- · With removability: Threshold moves to constant advice
- · Proof starts similarly, but many new tricks required
Questions?