
Priority algorithms — part 1: 
exact algorithms

Joan Boyar1, Kim S. Larsen1, and Denis Pankratov2

1 University of Southern Denmark 
2 Concordia University 

OLAWA 2020



What is a Greedy Algorithm?

• CLRS: “A greedy algorithm always makes the choice that looks best at 
the moment. That is, it makes a locally optimal choice in the hope 
that this choice will lead to a globally optimal solution.”
• Pros: conceptually simple, easy to design, describe and implement, 

fast running times.
• Cons: don’t always work well.
• To study power and limitations of greedy algorithms we need a formal 

model.
• Surprise: there is no universally agreed upon model!



Models of Greedy Algorithms

• Matroid – Whitney (1935), Edmonds (1971)
• Greedoid – Korte and Lovasz (1981)
• Online Algorithms/Competitive Analysis – Sleator and Tarjan (1985), 

Graham (1966), …
• “In a somewhat vacuous sense, all online algorithms are greedy, since an 

online algorithm is defined by a function f of the current request, the current 
state, and the history.” – Karlin and Irani

• Priority Algorithms – Borodin, Nielsen, Rackoff (2002)
• Online algorithms on steroids



Priority Algorithms

• Many greedy algorithms have the structure:
• Sort input items in some way
• Run some online algorithm on the sorted input 
• E.g.: Kruskal’s algorithm for MST
• Sometimes the algorithm resorts remaining input items in between online 

decisions, e.g., Prim’s algorithm for MST

• Modelling obstacle:
• Many problems admit an input order for which trivial online algorithm is 

optimal (e.g., matching)
• How do we restrict sorting functions?



Priority Algorithms

• Input is a collection 𝐼 = ⟨𝑥!, … , 𝑥"⟩ of items from the universe 𝑈
• Overcoming modelling obstacle: 
• Sorting function is not allowed to depend on 𝐼
• Sorting function has to order the entire universe 𝑈
• Often specified by a priority function 𝑃 ∶ 𝑈 → ℝ



Priority Algorithms

Fixed Priority Algorithm:
Specify 𝑃 ∶ 𝑈 → ℝ
While 𝐼 is not empty

𝑥 ← 𝑎𝑟𝑔𝑚𝑎𝑥#∈%{𝑃 𝑥 }
make an irrevocable decision on 𝑥
𝐼 ← 𝐼 ∖ {𝑥}

Adaptive Priority Algorithm:
Specify initial 𝑃 ∶ 𝑈 → ℝ
While 𝐼 is not empty

𝑥 ← 𝑎𝑟𝑔𝑚𝑎𝑥#∈%{𝑃 𝑥 }
make an irrevocable decision on 𝑥
𝐼 ← 𝐼 ∖ {𝑥}
Update 𝑃 ∶ 𝑈 → ℝ



MST Example

• 𝑈 = ℕ × ℕ × (ℝ ∪ {−∞,+∞})
• Item 𝑢, 𝑣, 𝑤 : 𝑢, 𝑣 – endpoints of an edge; 𝑤 – weight of the edge
• Kruskal’s algorithm: 
• fixed priority 𝑃 𝑢, 𝑣, 𝑤 = −𝑤, i.e., negative projection on the third 

coordinate 
• decision: accept the item if and only if it does not create a cycle

• Prim’s algorithm:
• Adaptive priority: let 𝑆 be the set of encountered vertices so far
• 𝑃 𝑢, 𝑣, 𝑤 = −𝑤 if 𝑢 or 𝑣 is in 𝑆 and −∞ otherwise



Properties of the model

• Information-theoretic
• Similar to online algorithms
• Makes lower bounds very strong
• Upper bounds typically translate to polynomial time algorithms

• Does not capture all greedy algorithms
• In particular, greedy algorithms could precompute some functions 

providing useful side-information for the online phase
• This could be modeled with advice



Adding Advice to Fixed Priority

Borodin, Boyar, Larsen, Pankratov. Advice Complexity of Priority 
Algorithms. WAOA 2018

Priority function 𝑃 does not depend on advice



Adding Advice to Adaptive Priority

𝐼 is the input
𝑃!: 𝑈 → ℝ is the initial priority function
𝑖 ← 1
While 𝐼 ≠ ∅

𝑥" ← 𝑎𝑟𝑔𝑚𝑎𝑥#∈%{𝑃"&' 𝑥 }
read zero or more bits of advice from the tape
𝑠" ← known contents of the advice tape
𝑑" ← decision of 𝐴𝐿𝐺 on 𝑥"
𝑃" ← updated priority function
𝐼 ← 𝐼 ∖ {𝑥"}
𝑖 ← 𝑖 + 1

Model 1: 𝑃! ≔ 𝑃!(𝑥", … , 𝑥!, 𝑠!)

Model 2: 𝑃! ≔ 𝑃!(𝑥", … , 𝑥!, 𝑑", … , 𝑑!)



Rest of the Talk

• 𝐺 = 𝑉, 𝐸 - simple undirected graph; 
• 𝑉 = 𝑛, 𝐸 = 𝑚
• 𝑆 ⊆ 𝑉 is a vertex cover if 𝑢, 𝑣 ∈ 𝐸 implies either 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆
• Input items 𝑣, 𝑁 𝑣 ∈ ℕ × ⋃&∈ℕ

ℕ
&

Theorem. There is an adaptive priority algorithm, 𝑅𝑒𝑗𝑒𝑐𝑡𝐹𝑖𝑟𝑠𝑡, that solves the 
Minimum Vertex Cover (VC) problem with at most #

$$ 𝑛 ≈ 0.3182 𝑛 bits of 
advice in Model 2 on triangle free graphs with maximum degree at most 3.



• Exact algorithm, so also solves MIS (Maximum Independent Set)
• Graph class might seem restrictive, but MIS/VC for this class or 

related classes has rich history:
• Brooks (1941), Staton (1979), Jones (1990), Heckman and Thomas (2001), 

Harant et al (2008), Kanj and Zhang (2010), …

• No adaptive priority algorithm without advice can achieve 
approximation ratio better than 4/3. (Borodin et al. 2010).
• No online algorithm with fewer than "

(
− 𝑐 bits of advice can achieve 

optimality. (this work, not presented).

Theorem. There is an adaptive priority algorithm, 𝑅𝑒𝑗𝑒𝑐𝑡𝐹𝑖𝑟𝑠𝑡, that solves the 
Minimum Vertex Cover (VC) problem with at most #

$$
𝑛 ≈ 0.3182 𝑛 bits of 

advice in Model 2 on triangle free graphs with maximum degree at most 3.



𝑅𝑒𝑗𝑒𝑐𝑡𝐹𝑖𝑟𝑠𝑡 Intuition

• Suppose vertices are revealed in order
𝑣!, 𝑣), … , 𝑣".

• Current neighborhood of 𝑣* is
𝑁 𝑣* ∖ {𝑣!, … , 𝑣*+!}.

• The size of the current neighborhood of 𝑣* is its current degree, 
𝒄𝒅𝒆𝒈(𝒗𝒊).
• An advice bit: accept 𝑣* into a VC or not.
• Key idea: often we can infer whether to accept or reject 𝑣* without 

advice.
• Specify priority functions so that we maximize the number of vertices 

that do not require advice.



𝑅𝑒𝑗𝑒𝑐𝑡𝐹𝑖𝑟𝑠𝑡 Ideas
• If 𝑐𝑑𝑒𝑔 𝑣* = 0 then 𝑣* can be rejected.

• If 𝑐𝑑𝑒𝑔 𝑣* = 1 then 𝑣* can be rejected and its unique neighbor 
accepted.

𝑣!

𝑣"

𝑐𝑑𝑒𝑔 𝑣! = 1
Has highest priority



𝑅𝑒𝑗𝑒𝑐𝑡𝐹𝑖𝑟𝑠𝑡 Ideas
• If 𝑐𝑑𝑒𝑔 𝑣* = 0 then 𝑣* can be rejected.

• If 𝑐𝑑𝑒𝑔 𝑣* = 1 then 𝑣* can be rejected and its unique neighbor 
accepted.

𝑣!

𝑣"

𝑣!

𝑣"

Reject without advice

Adaptively give its unique neighbor highest priority



𝑅𝑒𝑗𝑒𝑐𝑡𝐹𝑖𝑟𝑠𝑡 Ideas
• If 𝑐𝑑𝑒𝑔 𝑣* = 0 then 𝑣* can be rejected.

• If 𝑐𝑑𝑒𝑔 𝑣* = 1 then 𝑣* can be rejected and its unique neighbor 
accepted.

𝑣!

𝑣"

𝑣!

𝑣"

𝑣!

𝑣"

𝑣#

𝑣$

When it arrives, accept it



𝑅𝑒𝑗𝑒𝑐𝑡𝐹𝑖𝑟𝑠𝑡 Ideas

• Suppose that 𝑐𝑑𝑒𝑔 𝑣* = 2 for all remaining vertices.
• This implies that the remaining graph is a set of vertex disjoint cycles.
• Can be processed without advice:

• Giving 𝑐𝑑𝑒𝑔 = 2 lowest priority allows us to detect this case.



• Therefore, we can handle 𝑐𝑑𝑒𝑔 = 0, 1, and 2 vertices without advice.
• Need more tricks to avoid giving advice to many 𝑐𝑑𝑒𝑔 = 3 vertices.
• IDEA: cooperation between the oracle and the algorithm.

INTUITION (actual details more involved)
• Suppose 𝑐𝑑𝑒𝑔 𝑣* = 3 and 𝑣* requires advice
• Moreover, suppose there is a minimum VC which includes 𝑣* and 

there is another minimum VC which excludes 𝑣*
• ORACLE prefers to give advice to REJECT 𝑣*
Implies that at most one neighbor of 𝑣* with accept advice is accepted

Received advice to be accepted

𝑢!

𝑣%

𝑢#

𝑢"



• Therefore, we can handle 𝑐𝑑𝑒𝑔 = 0, 1, and 2 vertices without advice.
• Need more tricks to avoid giving advice to many 𝑐𝑑𝑒𝑔 = 3 vertices.
• IDEA: cooperation between the oracle and the algorithm.

INTUITION (actual details more involved)
• Suppose 𝑐𝑑𝑒𝑔 𝑣* = 3 and 𝑣* requires advice
• Moreover, suppose there is a minimum VC which includes 𝑣* and 

there is another minimum VC which excludes 𝑣*
• ORACLE prefers to give advice to REJECT 𝑣*
Implies that at most one neighbor of 𝑣* with accept advice is accepted

Received advice to be accepted

𝑢!

𝑣%

𝑢#

𝑢"
If ≥ 2 accepted neighbors



• Therefore, we can handle 𝑐𝑑𝑒𝑔 = 0, 1, and 2 vertices without advice.
• Need more tricks to avoid giving advice to many 𝑐𝑑𝑒𝑔 = 3 vertices.
• IDEA: cooperation between the oracle and the algorithm.

INTUITION (actual details more involved)
• Suppose 𝑐𝑑𝑒𝑔 𝑣* = 3 and 𝑣* requires advice
• Moreover, suppose there is a minimum VC which includes 𝑣* and 

there is another minimum VC which excludes 𝑣*
• ORACLE prefers to give advice to REJECT 𝑣*
Implies that at most one neighbor of 𝑣* with accept advice is accepted

Received advice to be accepted

𝑢!

𝑣%

𝑢#

𝑢"
If ≥ 2 accepted neighbors

Could have been rejected

𝑢!

𝑣%

𝑢#

𝑢"Then there is another VC of 
same size where 𝑣% is rejected



𝑅𝑒𝑗𝑒𝑐𝑡𝐹𝑖𝑟𝑠𝑡 Ideas

𝑢!

𝑣′

𝑢#

𝑢"

Received advice to be accepted,

(*) At most 1 of 𝒖𝟏, 𝒖𝟐, 𝒖𝟑 can be accepted in the future

Dashed edges are not yet revealed

Use this to avoid giving advice to other degree 3 vertices
If there exists 𝑣 such that 𝑐𝑑𝑒𝑔 𝑣 = 3 and |

|
𝑁 𝑣 ∩

𝑢!, 𝑢", 𝑢# ≥ 2 then accept 𝑣
Why? 
Property (*) guarantees 𝑣 has a rejected neighbor



𝑅𝑒𝑗𝑒𝑐𝑡𝐹𝑖𝑟𝑠𝑡 Ideas

𝑢!

𝑣′

𝑢#

𝑢"

Received advice to be accepted,

(*) At most 1 of 𝒖𝟏, 𝒖𝟐, 𝒖𝟑 can be accepted in the future

𝑣

Use this to avoid giving advice to other degree 3 vertices
If there exists 𝑣 such that 𝑐𝑑𝑒𝑔 𝑣 = 3 and |

|
𝑁 𝑣 ∩

𝑢!, 𝑢", 𝑢# ≥ 2 then accept 𝑣
Why? 
Property (*) guarantees 𝑣 has a rejected neighbor



𝑅𝑒𝑗𝑒𝑐𝑡𝐹𝑖𝑟𝑠𝑡 Priority Function



𝑅𝑒𝑗𝑒𝑐𝑡𝐹𝑖𝑟𝑠𝑡 Main Loop



Key Notion in the Analysis

• Interactions of 𝑐𝑑𝑒𝑔 = 3 through common neighbors have effect on 
advice complexity.
• Component: captures related sequences of 𝑐𝑑𝑒𝑔 = 3 vertices with 

shared neighbors during runtime.



Example Current degree 3
Receives advice to be accepted



Example

New component gets started
Include advice-vertex and its neighbors



Example

New component gets started
Include advice-vertex and its neighbors Current degree 3

Receives advice to be accepted



Example

Component gets closed

New component gets started
Include advice-vertex and its neighbors



Example

Current degree 3
Shares 1 neighbor 
with previous 
advice-vertex
Receives advice



Example

The vertex and its 
neighbors get added 
to the current 
component



More notation

• For component 𝑖 ∈ [𝑐]
• 𝑠! - total number of vertices in component 𝑖
• 𝑎! - number of vertices that received advice in component 𝑖

𝑛 = ∑*-!. 𝑠* and 𝑎 ≔ ∑*-!. 𝑎*
• Lemma 1

𝑠* ≥ 3 𝑎* + 1
• Lemma 2

10 𝑎 − 4 𝑐 ≤ 3 𝑛
Proofs: elaborate charging arguments: vertex-based for Lemma 1 and 
edge-based for Lemma 2.



Proof of the Main Result Follows

• Total number of advice bits is 𝑎
3 𝑎 + 𝑐 ≤ 𝑛 (Lemma 1)

10𝑎 − 4 𝑐 ≤ 3𝑛 (Lemma 2)
4 × first inequality + 1 × second inequality implies

22 𝑎 ≤ 7 𝑛, i.e.,

𝑎 ≤
7
22
𝑛

QED.



Exact Algorithms

• Adaptive priority algorithm ⇒ exact offline algorithm
• Enumerate all possible advice strings and run the algorithm

• Runtime is bounded by 2
!
"" "𝑝𝑜𝑙𝑦 𝑛 = 𝑂(1.2468")

• Potentially could be improved by a more careful measure and 
conquer analysis technique
• Generate advice recursively one bit at a time
• Not all branches have equal depth
• Keep track of its branch depths carefully


