Priority algorithms — part 1.
exact algorithms

Joan Boyarl, Kim S. Larsen?, and Denis Pankratov?

1 University of Southern Denmark

2 Concordia University

OLAWA 2020

What is a Greedy Algorithm?

* CLRS: “A greedy algorithm always makes the choice that looks best at
the moment. That is, it makes a locally optimal choice in the hope
that this choice will lead to a globally optimal solution.”

* Pros: conceptually simple, easy to design, describe and implement,
fast running times.

* Cons: don’t always work well.

* To study power and limitations of greedy algorithms we need a formal
model.

* Surprise: there is no universally agreed upon model!

Models of Greedy Algorithms

* Matroid — Whitney (1935), Edmonds (1971)
* Greedoid — Korte and Lovasz (1981)

* Online Algorithms/Competitive Analysis — Sleator and Tarjan (1985),
Graham (1966), ...

* “In a somewhat vacuous sense, all online algorithms are greedy, since an
online algorithm is defined by a function f of the current request, the current
state, and the history.” — Karlin and Irani

* Priority Algorithms — Borodin, Nielsen, Rackoff (2002)

* Online algorithms on steroids

Priority Algorithms

* Many greedy algorithms have the structure:
* Sort input items in some way
* Run some online algorithm on the sorted input
* E.g.: Kruskal’s algorithm for MST
* Sometimes the algorithm resorts remaining input items in between online
decisions, e.g., Prim’s algorithm for MST
* Modelling obstacle:

* Many problems admit an input order for which trivial online algorithm is
optimal (e.g., matching)

* How do we restrict sorting functions?

Priority Algorithms

* Input is a collection I = (x4, ..., x,,) of items from the universe U

* Overcoming modelling obstacle:
* Sorting function is not allowed to depend on |
* Sorting function has to order the entire universe U
e Often specified by a priority function P : U - R

Priority Algorithms

Fixed Priority Algorithm: Adaptive Priority Algorithm:
Specify P : U » R Specify initial P : U =» R
While I is not empty
X < argmaxye {P(x)}
make an irrevocable decision on x

[<1\ {x}
LT\ A Update P : U =- R

While I is not empty
x « argmax,e {P(x)}
make an irrevocable decision on x

MST Example

e U=NXNX(RU{—00,400})
* Item (u, v,w): u, v — endpoints of an edge; w — weight of the edge

e Kruskal’s algorithm:

* fixed priority P(u, v,w) = —w, i.e., negative projection on the third
coordinate

 decision: accept the item if and only if it does not create a cycle
* Prim’s algorithm:

* Adaptive priority: let S be the set of encountered vertices so far

* P(u,v,w) = —wifuorvisinS and —oo otherwise

Properties of the model

* Information-theoretic
 Similar to online algorithms
* Makes lower bounds very strong
* Upper bounds typically translate to polynomial time algorithms

* Does not capture all greedy algorithms

* In particular, greedy algorithms could precompute some functions
providing useful side-information for the online phase

* This could be modeled with advice

Adding Advice to Fixed Priority

Binary advice tape ¢

Y
o
[Ery

Oracle by| b3\ ba|bs|---

Y

Input | = (xq, y

Output O = (yil, ---7yin>

Priority function P does not depend on advice

Borodin, Boyar, Larsen, Pankratov. Advice Complexity of Priority
Algorithms. WAOA 2018

Adversary

Adding Advice to Adaptive Priority

I is the input

Py: U — Ris the initial priority function

[<1

While I # @
X; < argmaxye{Pi—1(x)}
read zero or more bits of advice from the tape
s; < known contents of the advice tape
d; < decision of ALG on x; " Model 1: P, = Py(xy, ..., X;, 5;)
P; < updated priority function —
I <1\ {x;} ~ Model 2: P; :== P;(xq, ..., Xj,dq, ..., d;)
[—1+1

Rest of the Talk

G = (V,E) - simple undirected graph;

e |V|=n|E|=m

« S € Visavertex coverif {u, v} € E implies eitheru € Sorv € S
* Input items (v, N(v)) € N x UkEN(I]i])

Theorem. There is an adaptive priority algorithm, RejectFirst, that solves the

Minimum Vertex Cover (VC) problem with at most (2—72) n = 0.3182 n bits of
advice in Model 2 on triangle free graphs with maximum degree at most 3.

Theorem. There is an adaptive priority algorithm, RejectFirst, that solves the

Minimum Vertex Cover (VC) problem with at most (2—72) n = 0.3182 n bits of
advice in Model 2 on triangle free graphs with maximum degree at most 3.

* Exact algorithm, so also solves MIS (Maximum Independent Set)

* Graph class might seem restrictive, but MIS/VC for this class or
related classes has rich history:

* Brooks (1941), Staton (1979), Jones (1990), Heckman and Thomas (2001),
Harant et al (2008), Kanj and Zhang (2010), ...

* No adaptive priority algorithm without advice can achieve
approximation ratio better than 4/3. (Borodin et al. 2010).

* No online algorithm with fewer than % — ¢ bits of advice can achieve
optimality. (this work, not presented).

RejectFirst Intuition

e Suppose vertices are revealed in order
V1, Vs, ur, Up.
* Current neighborhood of v; is
N\ {vy, ., vi_1}.

* The size of the current neighborhood of v; is its current degree,
cdeg(v;).

* An advice bit: accept v; into a VC or not.

* Key idea: often we can infer whether to accept or reject v; without
advice.

 Specify priority functions so that we maximize the number of vertices
that do not require advice.

RejectFirst |deas

* If cdeg(v;) = 0 then v; can be rejected.

* If cdeg(v;) = 1 then v; can be rejected and its unique neighbor
accepted.

cdeg(v,) =1
Has highest priority

RejectFirst |deas

* If cdeg(v;) = 0 then v; can be rejected.

* If cdeg(v;) = 1 then v; can be rejected and its unique neighbor
accepted.

Adaptively give its unique neighbor highest priority

Reject without advice

RejectFirst |deas

* If cdeg(v;) = 0 then v; can be rejected.

* If cdeg(v;) = 1 then v; can be rejected and its unique neighbor
accepted.

When it arrives, accept it

RejectFirst |deas

* Suppose that cdeg(v;) = 2 for all remaining vertices.
* This implies that the remaining graph is a set of vertex disjoint cycles.
* Can be processed without advice:

A L)

* Giving cdeg = 2 lowest priority allows us to detect this case.

* Therefore, we can handle cdeg = 0, 1, and 2 vertices without advice.

* Need more tricks to avoid giving advice to many cdeg = 3 vertices.

* IDEA: cooperation between the oracle and the algorithm.
INTUITION (actual details more involved)

* Suppose cdeg(v;) = 3 and v; requires advice

* Moreover, suppose there is a minimum VC which includes v; and
there is another minimum VC which excludes v;

* ORACLE prefers to give advice to REJECT v;
Implies that at most one neighbor of v; with accept advice is accepted

Received advice to be accepted

* Therefore, we can handle cdeg = 0, 1, and 2 vertices without advice.

* Need more tricks to avoid giving advice to many cdeg = 3 vertices.

* IDEA: cooperation between the oracle and the algorithm.
INTUITION (actual details more involved)

* Suppose cdeg(v;) = 3 and v; requires advice

* Moreover, suppose there is a minimum VC which includes v; and
there is another minimum VC which excludes v;

* ORACLE prefers to give advice to REJECT v;
Implies that at most one neighbor of v; with accept advice is accepted

Received advice to be accepted

Q If > 2 accepted neighbors

* Therefore, we can handle cdeg = 0, 1, and 2 vertices without advice.
* Need more tricks to avoid giving advice to many cdeg = 3 vertices.
* IDEA: cooperation between the oracle and the algorithm.
INTUITION (actual details more involved)
* Suppose cdeg(v;) = 3 and v; requires advice

* Moreover, suppose there is a minimum VC which includes v; and
there is another minimum VC which excludes v;

* ORACLE prefers to give advice to REJECT v;
Implies that at most one neighbor of v; with accept advice is accepted

Received advice to be accepted

Could have been rejected

If > 2 accepted neighbors
Then there is another VC of

same size where v; is rejected

RejectFirst |deas

Received advice to be accepted,

(*) At most 1 of u¢, u,, u3 can be accepted in the future

Use this to avoid giving advice to other degree 3 vertices

If there exists v such that cdeg(v) = 3 and [IN(v) N
{uy,up,u3}| = 2 then accept v

: ‘ | Why?

Property (*) guarantees v has a rejected neighbor

Dashed edges are not yet revealed

RejectFirst |deas

Received advice to be accepted,

(*) At most 1 of u¢, u,, u3 can be accepted in the future

Use this to avoid giving advice to other degree 3 vertices
If there exists v such that cdeg(v) = 3 and |[N(v) N
{uy,uy, u3}| = 2 then accept v

Why?

Property (*) guarantees v has a rejected neighbor

RejectFirst Priority Function

Define the priority function P as follows (listed in order from highest to lowest priorities):

P1:

P2:

P3:

P4

P5:
Pe6:

P7:
P8:
P9:

nodes with a rejected neighbor;

highest priority is given to those nodes whose neighbor was most recently rejected.

nodes with current degree 0.

nodes with current degree 1;

highest priority is given to those nodes with a most recently processed neighbor; among those,
highest priority is given to those nodes that had two neighbors that became aa-vertices.
nodes with current degree 2 that had a third neighbor in common with a previously
rejected bad-vertex.

a-siblings.

nodes with current degree 3 with 2 or 3 neighbors in common with a single aa-vertex that
was not a bad-vertex when it received advice.

nodes with current degree 3 that share neighbors with a-vertices.

other nodes with current degree 3.

nodes with current degree 2

RejectFirst Main Loop

procedure REJECTFIRST
while there exist unprocessed vertices do
Receive the next vertex v according to P
switch priority of v
case P1 or P6:
Accept v
case P2, P3, P4, P5, or P9:
Reject v
case P7 or P8:
Obtain advice to accept or reject and apply it to v

Key Notion in the Analysis

* Interactions of cdeg = 3 through common neighbors have effect on
advice complexity.

* Component: captures related sequences of cdeg = 3 vertices with
shared neighbors during runtime.

Exa m p | e Current degree 3

Receives advice to be accepted

S

Example

New component gets started
Include advice-vertex and its neighbors

Example

New component gets started

: : . Current degree 3
Include advice-vertex and its neighbors &

Receives advice to be accepted

Example

New component gets started
Include advice-vertex and its neighbo

Component gets closed

Example

Current degree 3
Shares 1 neighbor
with previous
advice-vertex
Receives advice

Example

The vertex and its
neighbors get added
to the current
component

More notation

* For component i € [c]
* s; - total number of vertices in component i

* a; - number of vertices that received advice in component i

— \'C — \'C
n=)»;—1S;anda =),;_,q;

*lemmal
Si23ai+1
° Llemma 2
10a —4c<3n

Proofs: elaborate charging arguments: vertex-based for Lemma 1 and
edge-based for Lemma 2.

Proof of the Main Result Follows

e Total number of advice bits is a
3a+c<n(lemmal)
10a — 4 ¢ < 3n(Lemma 2)

4 X first inequality + 1 X second inequality implies

22a<7n,i.e,

<7
a_zzn

QED.

Exact Algorithms

* Adaptive priority algorithm = exact offline algorithm

* Enumerate all possible advice strings and run the algorithm
7

* Runtime is bounded by 2(22)npoly(n) = 0(1.2468™")

* Potentially could be improved by a more careful measure and
conguer analysis technique
* Generate advice recursively one bit at a time
* Not all branches have equal depth
* Keep track of its branch depths carefully

Tl ARl \/~a::]

