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Section 1

Old Lower Bound Result for Priority Algorithms
without Advice
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Adaptive Priority Algorithms for Vertex Cover

Theorem (Borodin,B.,Larsen,Mirmohammadi, 2010)

For Vertex Cover, no adaptive priority algorithm can achieve an
approximation ratio better than 4/3.
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Adaptive Priority Algorithms for Vertex Cover

Theorem (Borodin,B.,Larsen,Mirmohammadi, 2010)

No adaptive priority algorithm can achieve an approximation ratio
better than 4/3 for the Vertex Cover problem.

Pf. cont. (Adversary argument)
Input items are (Vertex name, Names of neighbors).

Input will be an isomorphic copy of G1 or G2.
The input universe contains all possible input items consistent with that.

If Alg’s first priority function selects some vertex v , the adversary, Adv,
can make it be any vertex of the same degree, in either G1 or G2.

If v has degree 2 and Alg accepts, Adv chooses vertex 2 in G1.
If v has degree 2 and Alg rejects, Adv chooses vertex 1 in G1.
If v has degree 3, and Alg accepts, Adv chooses vertex 1 in G2.
If v has degree 3 and Alg rejects, Adv chooses vertex 3 in G1.
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Adaptive Priority Algorithms for Vertex Cover

Theorem ([Borodin,B.,Larsen,Mirmohammadi, 2010)

For Vertex Cover, no adaptive priority algorithm can achieve an
approximation ratio better than 4/3.

Pf. cont.
In all cases, Alg accepts ≥ 4 vertices, but 3 is optimal. �
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Section 2

Gadget Pairs
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Gadget pairs
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G1 and G ′1 are a gadget pair
(degree-2 chosen first – call v – vertex 1).

Properties:
First item condition: Input item for v gives no info as to which of G1/G ′1.
Distinguishing decision condition:
Decisions for v giving optimum for G1 and G ′1 are opposite.
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G1 and G2 are a gadget pair
(degree-3 chosen first – call v – vertex 1).

Properties:
First item condition: Input item for v gives no info as to which of G1/G2.
Distinguishing decision condition:
Decisions for v giving optimum for G1 and G2 are opposite.
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Section 3

Lower Bound for Optimality – Vertex Cover

Boyar, Larsen, Pankratov (1)Priority Algorithms – Lower Bounds OLAWA 2020 12 / 23



Vertex Cover – lower bound for optimality

Theorem

For Vertex Cover, in order to achieve optimality, an adaptive priority
algorithm with advice (Model 2) requires at least b|V |/7c bits of advice.

Pf. Create m disjoint universes for m gadgets, so the resulting input can
be H1,H2, . . . ,Hm, where Hi is an isomorphic copy of either G1 or G2.

Informally, the input items for Hi could require Alg to accept the first
vertex of Hi or to reject it.

One bit of advice is needed for the first vertex of Hi , 1 ≤ i ≤ m.

Each Hi has 7 vertices, so m = |V |/7. �
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General theorem – lower bound for optimality

Theorem

Let B be a problem with some reasonable properties and gadget pairs.
Let s = maxj(|G a

j |, |G r
j |), where the cardinality of a gadget is the

number of input items it consists of.

Any optimal adaptive priority algorithm with advice (Model 2) for B
must use at least bn/sc advice bits on worst case instances with n input
items.
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Section 4

Lower Bounds for Approximation
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Approximation – Binary String Guessing Problem

Binary string guessing problem (with known history): 2-SGKH
[Emek,Fraigniaud,Korman,Rosén, 2011]
[Böckenhauer,Hromkovič,Komm,Krug,Smula,Sprock, 2014]

Guess the next bit in a bit string revealed in an online manner

〈0, 1, 0, ?〉

A linear amount advice is required to make mistakes on fewer than
half of the bits.

Theorem (Böckenhauer,Hromkovič,Komm,Krug,Smula,Sprock, 2014)

On inputs of length n, any deterministic algorithm for 2-SGKH that is
guaranteed to guess more than εn bits correctly, for 0 < ε ≤ 1/2, needs
at least (1 + (1− ε) log(1− ε) + ε log(ε))n = (1− H(ε))n bits of advice.

Note: Often used for lower bounds for online algorithms with advice.
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Lower bounds for approximation

What algorithms do our approximation lower bound results hold for?

Fixed priority algorithms:
We improve the results from [Borodin,B.,Larsen,Pankratov 2020] by a
factor 2.

Oblivious priority algorithms:
Adaptive priority algorithms where (for graphs) the priority function used
to access the first input item in a new component does not depend on the
advice.

This is natural, not using the possibility of using a function of the names
of the vertices.

The lower bound results for optimality also apply to fixed priority and
oblivious priority algorithms.
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Another gadget pair – Independent Set example

All input items are isomorphic.

4 5 6 7 8

1 2 3

1 4 3 2 5

6 7 8

Adversary will make the first vertex selected be 1.
To get an independent set of size 3, need to accept in one gadget and
reject in the other.
Advantage over Vertex Cover gadget pair: Optimal solution is smaller.
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Maximization problems – lower bound

The maximization part of our general corollary:
(Let s be the number of input items per gadget.)

Theorem

For a maximization problem, if OPT(G1) = OPT(G2) = BAD(G1) + 1
= BAD(G2) + 1, then for any ε ∈ (0, 1/2], no oblivious priority
algorithm reading fewer than (1− H(ε))n/s advice bits can achieve an
approximation ratio smaller than 1 + ε

OPT (G1)−ε .

For Independent Set:

Theorem

For Maximum Independent Set and any ε ∈ (0, 12 ], no oblivious priority
algorithm reading fewer than (1− H(ε))n/8 advice bits can achieve an
approximation ratio smaller than 1 + ε

3−ε .
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Minimization problems – lower bound

The minimization part of our general corollary:
(Let s be the number of input items per gadget.)

Theorem

For a minimization problem, if OPT(G1) = OPT(G2) = BAD(G1) - 1
= BAD(G2) - 1, then for any ε ∈ (0, 1/2], no oblivious priority
algorithm reading fewer than (1− H(ε))n/s advice bits can achieve an
approximation ratio smaller than 1 + ε

OPT (G1)
.

Boyar, Larsen, Pankratov (1)Priority Algorithms – Lower Bounds OLAWA 2020 20 / 23



Other results

For PROBLEM and any ε ∈ (0, 12 ], no priority algorithm reading fewer than
BITS advice bits can achieve an approximation ratio smaller than RATIO.

PROBLEM BITS RATIO

Maximum Independent Set* (1− H(ε))n/8 1 + ε
3−ε

Maximum Independent Set** (1− H(ε))n/7 1 + ε
4−ε

Maximum Bipartite Matching (1− H(ε))n/3 1 + ε
3−ε

Maximum Cut (1− H(ε))n/8 1 + ε
15−ε

Minimum Vertex Cover (1− H(ε))n/7 1 + ε
3

Maximum 3-Satisfiability (1− H(ε))n/3 1 + ε
8−ε

Unit Job Scheduling with PC (1− H(ε))n/9 1 + ε
6−ε
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Comments

These results are the same as those obtained previously for fixed priority
algorithms with advice, but a factor 2 better for number of bits.

There is a trade-off between number of bits and ratio possible for
Maximum Independent Set, depending on the gadgets.

The amount of advice required for optimality is the same as the advice
required for approximation, without the (1− H(ε)) term.

PROBLEM Approximation Optimality

Maximum Independent Set** (1− H(ε))n/7 n/7

Maximum Bipartite Matching (1− H(ε))n/3 n/3

Maximum Cut (1− H(ε))n/8 n/8

Maximum 3-Satisfiability (1− H(ε))n/3 n/3

Unit Job Scheduling with PC (1− H(ε))n/9 n/9
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Thank you for your attention.
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