Using Arrays 143

[P]. Once the production of [X] becomes limited, [Y] rises. This production of
[Y] causes a decline in [Z]. Eventually, enough [X] is produced to consume the

remaining [Y] and the cycle begins again.

2e+05

T] 1 I L I T] L) T T
— [X]
- [Y] T
! ! { == [2)
% " i
15405 4 n i =
= i i i
3] e H 1
- I " ,“
= i i "
P Ht I i -
2 [i 0
=} h N i
E | P P
) 1 t
g les05 Tl‘. .: ‘.‘ ' ". —
EE P i P
= o S [
= 3 ' \ " 1 1
g R Yo b
2 v [I h
!
@] oA HE oy
') 1
50000 - % b o —~
! ' B 4 ' 1
Vo Do [
Pl L b
nio Vi RN 1
; N : RN ; AN
Y S | EE U NS) S S
5 10 15 20 25 30

Time [s]

Figure 6.10. Oscillatory response from the Oregonator reaction.

6.5 LANGUAGE FUNDAMENTALS
6.5.1 Information hiding

In this chapter we have shown several uses of the protected keyword. If
you have parameters or variables which you wish to hide from users of your
model you can place them in a protected section. The obvious question is
then, “Why would I want to hide things™?

The first reason is that internals of the model (e.g., parameters and variables)
contained within a protected section cannot be referenced externally. This
allows the model developer the freedom to change some of the implementation
details at some later time without fear of “breaking” any existing models that
relied on the original model.

The second reason is that it is not necessary for users of the model to be aware
of all of the internal details. By hiding the details of the model, the interface of
the model (the publicly accessible portion) is simplified. This makes the model
simpler and easier for others to use.

The drawback of making declarations protected is that external modifica-
tions are not possible. For example, consider a model with an internal variable

144 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

whose solution is determined by a differential equation. The start attribute
for the internal variable cannot be modified externally (i.e., modifications can
only be made by the mode] that contains the variable or by a derived model,
as we saw in the Body model in Example 6.3). This can make it difficult
to control the initial state of the entire system since that variable cannot be
modified. Of course, putting the variable in a protected section is still a good
idea if a change in implementation (e.g., one that would eliminate the variable)
is likely, since it prevents users of the model from relying on the presence of
that variable.

6.5.2 Arrays

As shown in this chapter, arrays in Modelica can be useful in solving many
kinds of problems. In addition to creating arrays of variables (as in Section
6.3.2), it is possible to declare arrays of connectors and subcomponents as well
(as shown in Section 6.3.3). In this section we will review the functionality
presented in this chapter and present additional details not covered by the
examples.

6.5.2.1 Arrays of scalars

Arrays of scalars are the simplest example of array usage in Modelica. For
example, declaring an array, x, of 5 Real variables is done as follows:

Real xI[5];

In some cases we might wish to allow a parameter to govern the size of the
array. In that case we would do something like:

parameter Integer X size=5;
Real x[x_size];

In yet other cases, we might wish to leave the size of the array unspecified and
let an initializer determine the size. In that case the array declaration would
look something like:

model Beam
parameter Real x[:];

end Beam;

Later, when an instance of a Beam is declared we can initialize x by writing:

Beam b(x={0.2, 0.77, 0.92});

Within the Beam model, if we wish to know how big the x array is, after the
initialization, we can use the size () function as follows:

Using Arrays 145

model Beam
parameter Real x[:];

equation
for i in 1l:size(x,1l) loop

end for;
end Beam;

The first argument to the size () is the array we are interested in and the
second argument indicates which dimension we are interested in. In this case,
x only has one dimension.

Arrays can be initialized in several ways, as the following code fragment
shows:

parameter Real x[5]={0.1,0.3,0.5,0.7,0.9};
parameter Real vy [:1l=x;

parameter Real z[:]1=0.1:0.2:0.9;

parameter Integer evens([:]=2:2:10;

Array x is initialized directly from an explicit array. The size of y is left
unspecified in the declaration but then the initialization establishes the size as
5 because the values are copied from x.

In the case of z, the array is constructed by starting with the number .1 and
incrementing by .2 until the value exceeds .9 which means that z will have the
same values as y and x. The array construction syntax also works in the same
way with integers, as can be seen in the initialization of evens which creates
the array {2,4,6,8,10}. In fact, this is the most common form of such
constructions and is often used in conjunction with for loops. If no increment
value is given (i.c., there are only two numbers given with a semicolon in
between), it is assumed that the increment is | for both Integer and Real
cases.

An important point to make regarding array expressions is that there is no
difference between:

x

{1, 2, 3, 4, 5}

and

x = 1:5

Likewise, there is no difference between:

for i in {1, 2, 3, 4, 5} loop
end for;

and

146 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA
for i in 1:5 loop
end for;

Because the loop is performed over the elements of an array, loops can be
constructed over non-contiguous or non-sequential indices, for example:

for 1 in {1, 3, 2, 5, 4, 7, 9, 8, 6} loop

end for;

6.5.2.2 Arrays and attributes

Although we have discussed how to declare and initialize an array of scalars,
there is still the issue of how to initialize array attributes. For example, we can
declare an array as:

Real x([5];

But, what if we would like to set the start attribute for each of these five
elements? Just as x is an array, the start attribute is also an array.® Therefore,
the start attribute could be initialized as follows:

Real x[5] (start={0.1,0.2,0.3,0.4,0.5});

6.5.2.3 Arrays of components

As we have seen in several examples, the Modelica syntax allows us to
declare arrays of components. Such arrays can be useful because they provide
increased flexibility for applying constitutive equations to a large number of
variables. In all of the examples shown with arrays of components, each
component in the array was initialized using the same parameter value. This
is often the case and easily accomplished. However, there are cases where
it is useful to initialize each component in the array with a unique parameter
value. Unfortunately, the Modelica language specification does not completely
specify how this can be accomplished.”

6.5.2.4 Multi-dimensional arrays

Most of the examples contain arrays with only a single dimension. Such
arrays are used primarily to represent mathematical vectors. Arrays with
more than a single dimension (e.g., representing matrices) are also possible.
The Reaction model in Section 6.4.4 demonstrated how to create multi-

8These are the semantics in version 1.4 of the Modelica language semantics. However, there are some
problems with this syntax and newer versions of the semantics may be slightly different.
%It is currently an issue being discussed by the Modelica Association.

Using Arrays 147
dimensional arrays in Modelica. When declaring multi-dimensional arrays,
each dimension of the array must be separated by a comma. For example:

Real x[5,2,7,8,12];
While most models use either 1, 2, or 3 dimensional arrays, there is no limit
imposed by the Modelica language on the dimensionality of arrays.

In some cases, a type may define the dimensionality of an array. For
example:

type Point=Real[3];

In such cases, an array of that type such as

Point particles[12];

creates an array with the same shape (i.e., number of rows and columns) as:

Real particles([12,3];

Another issue with multi-dimensional arrays is initialization. To initialize a
multi-dimensional array from a set of literal values, an array of the appropriate
shape must be constructed. For example,

Real x[2,3] = {{1,2,3},{4,5,6}};

Note that the first index represents the “outer” array (i.e., the rows of a two
dimensional array) and the second index represents the “inner” array (i.e., the
columns of a two dimensional array). In this way, a three-dimensional array
could be initialized as follows:

Real yI[2,3,4] = {{{1,2,3,4},{5.6,7,8},{9,10,11,12}},
{{12,11,10,9},{8,7,6,5},{4,3,2,1}}};

As mentioned previously, arrays can be constructed by choosing an interval
and an increment value. So, the following two initializations are equivalent:

Real x([2,3]
Real z ({2, 3]

{{1.2,3},{a,5,6}};
{1:3,4:6};

6.5.3 Looping and equations

In this chapter, we have seen how looping can be used to generate sets of
equations. We discussed looping earlier in Section 5.7.5 but the focus then
was on algorithms. In this section, we will focus on the special implications of
using for within an equation section as opposed to an algorithm section.
While for loops can be convenient in an equation section, they are not always
necessary. For instance, as we can see in Example 6.3, it is not necessary to
write explicit loops because implicit ones are generated when working with
arrays.

148 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

The important thing to remember about looping in an equation section is
that the statements contained within the loop are equations, not assignments.
For example, the following code fragments have quite different meanings:

equation
var = 0;
for i in 1:4 loop
var = var*x+i;
end loop;

algorithm
var := 0
for i in 1:4 loop
var := var*x+i;
end loop;

When the for loop appears in an equation section, the following 5 equations
are generated:

equation
var = 0;
var = var*x+l;
var = var*x+2;
var = var*x+3;
var = var*x+4;

Note that these equations are not linearly independent (i.e., they are singular).
On the other hand, when the for loop occurs within an algorithm section it
generates the following assignments:

algorithm
var := 0;
var := var*x+1l;
var := var*x+2;
var := vVar*x+3;
vay := var*x+4;

the net effect of these assignments is equivalent to:

algorithm
var := 5+x* (4+x* (3+x* (2+x*1))) ;

The fact that this assignment was carried out in five separate steps is no different
than if it had been carried out in one.

6.5.4 Advanced array manipulation features
6.54.1 MATLAB compatibility

Although the examples in this chapter have focused on basic array manipu-
lation techniques, Modelica also includes many advanced array manipulation

Using Arrays 149

features. Modelica shares many of the same features and, in general, the same
syntax for array manipulation as MATLAB.!?

6.5.4.2 Array construction and concatenation

For example, matrices can be created using the same syntax that is used in
MATLAB, i.e.,

Real x[2,3] = [1,2,3;4,5,6];

The fact that the expressions are contained between the “ [and “] ” characters
indicates that this is a matrix construction. Within such matrix construction

61

expressions, a *“, " indicates the construction is proceeding to the next column
(i.e., the second dimension) and the “; ” indicates the construction is proceeding
to the next row. In this way, matrices can be constructed by concatenating

matrices, vectors and scalars.

6.5.4.3 Array subsets

We saw in the CalcMultiplier function, defined in Section 6.4.4.3, the
following array shorthand:

m[products{:,2]] := mlproducts([:,2]]-products[:,1];

‘e had

If the dimensions of each array at the location of the “:” are equal, then such
equations represent relationships between subsets of matrices. For example,
this equation could have been written more explicitly as:

for i in 1l:size(products,l) loop
m[products{i,2]] := m{products(i,2]]-products(i,1];
end for;

Similar types of equations can be written that specify specific elements. For
example, the following is also equivalent to the previous two code fragments:

n = size (products, 1) ;
m{products[1:n,2]]1 := mlproducts(l:n,2]]-products(l:n,1l];

Remember that “1:n” expands to a vector containing every integer value
between 1 and n, inclusively.

6.5.4.4 Vectorizing of functions

The semantics of Modelica are designed so that it is not necessary to create
special vectorized forms of functions. Instead, the normal form of the function
can still be used. For example:

IOMATLAB is a registered trademark of The MathWorks. Inc.

150 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA
sqrt ({1, 2, 3});
is equivalent to:

{sqrt (1), sgrt(2), sqgrt(3)};

In this way, even though sgrt () was defined to take a scalar argument, it can
be applied element-wise to an array.

The general rule for taking advantage of this functionality is that the dimen-
sionality of one or more of the arguments to a function can be given additional
dimensions. However, all arguments that are given additional dimensions must
have the same size in each additional dimension. For example, the following
is legal:

mod ({10,20,30},{4,5,6});
and yields:
{mod(20,4), mod(20,5), mod(30,6)};

Furthermore, this is also legal:

mod ({10,20,30},4);

because only one argument was expanded and it is equivalent to:

{mod (10,4), mod(20,4), mod(30,4)};

On the other hand, this is not legal:

wod ({10,20,30},{4,5));

because the additional dimensions are not the same size.

6.5.4.5 Mathematical operators

The mathematical operators such as “+” and “*” are frequently used with
scalars, but can also be used with arrays. For example, the “+” and “-”
operators can be used to add and subtract arrays that have the same size in each
dimension. Furthermore, the “*”" can be used with arrays in several ways.

The simplest example of using the “*” with arrays is the combination of
multiplying a scalar by an array. Each element of the resulting array is equal
to the product of the scalar and the corresponding element in the array being
multiplied. Another example would be to use the “*” to take the inner product
of two vectors of the same size. In other words, the following code fragment:

Real ul[5], vI[5];
Real s;

equation
s = u*v;

Using Arrays 151

is equivalent to:

Real uls5], vI[s];
Real s;
algorithm
s := 0;
for i in l:size(u,1l) loop
s = s + uli]l*v[i];
end for;

More complex examples are also possible. For example, the “*” can be used
to represent the product of any two arrays as long as the sizes are mathematically
compatible. For example, the following shorthand:

Real A[5,71, ulsl, v(7];
equation
u = A*v;

is equivalent to:

Real A[5,7]1, ul5], v[7];
algorithm
for 1 in 1:5 loop
uli] := 0;
for j in 1:7 loop
ulil = uli) + A[i,j1*vI3];
end for;
end for;

Another example is that the following:

Real A[5,7], uls5], vI[7];
equation
v = u*h;

is equivalent to:

Real Al[5,7], ul51, v[7];
algorithm
for j in 1:7 loop
v([jl := 0;
for i in 1:5 loop
v{il = vI[3] + ulil*ali, jl;
end for;
end for;

Taking the matrix product of two matrices is also possible, as in:

Real A[5,3], BI[3,7];
Real C[5,71;

equation
C = A*B;

152 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

which is equivalent to:

Real al5,31, BI[3,7];
Real C[5,7);
algorithm
C := £111(0,5,7);
for i in l:size(A,1) loop
for j in l:size(B,2) loop
for k in 1l:size(A,2) loop
Cli,3) = CIi,3] + Ali,k1*Blk,j];
end for;
end for;
end for;

One final trick that can be very useful (e.g.. in formulating transfer functions)
is to compute an array containing:

d’n.
{.7:,:17,.1:,..., a—t;:r,} (6.31)
We can do this with the following code fragment:
Real x;
Real dx[5];
equation

x = Modelica.Math.Sin(time) ;
dx [1] = der (x);
Ax[2:5)] = der{(dx[1:41);

In this way, we can construct a vector, dx, such that dx [1] represents the ith
derivative of x.

6.5.5 Built-in functions for arrays

Table 6.1 contains several of the built-in functions for manipulating arrays
in Modelica. Full details of these functions (and others not described) can be
found in the Modelica language specification.

6.6 PROBLEMS

PROBLEM 6.1 Extend the BinarySystem model so that the total energy
and momentum of the system is computed and make sure that it remains constant
throughout the simulation.

PROBLEM 6.2 Using the material presented in Section 6.2, create a model of
the solar system using the information provided in Table 6.2.

PROBLEM 6.3 Create a model to solve the hyperbolic PDE:

d?u d?u

Using Arrays 153

Function name

Purpose

cross (x,v)

Returns the cross product of the x and y vectors.
The size of both vectors must be 3.

diagonal (v)

Generates a square matrix with the elements of v on
the diagonal.

fill{(s,nl,n2,...) Generates an array of size n1xn2x . .. and fills it with the
value s.
identity (n) Returns an nxn identity matrix.

linspace (x1,x2,n)

Linearly interpolate n evenly spaced points along
a line between x1 and x2

matrix(A)

Similar to vectoxr (A) except the size of two
dimensions must be greater than 1.

max (A) Returns the largest element of A.

min (A) Returns the smallest element of A.

ndims (A) Returns the number of dimensions A has.

ones (n) Generates an array of length n and fills it with the value 1.0.

outerProduct (vl,v2)

Returns the outer product of v1 and v2.

product (A)

Returns the product of all elements of A.

scalar (Ad)

Assuming size(A,i)==1for1 <i < ndims(A),
scalar (A) returns the single element of A.

size (A)

Returns a vector containing the size for each dimension of A.

size (A, 1)

Returns the size of dimension i in array A.

skew (x)

Returns the 3x3 skew matrix for x where size (x, 1) ==3.

sum (A)

Returns the sum of all elements of A.

symmetric (A)

Returns a matrix where the upper triangular elements of
A are copied to the lower triangular portion.

transpose (A)

Permutes the first two dimensions of A.

vector (A)

If A is a scalar, vector (A) returns a vector with A as the
only element. If A is an array, it must have only one
dimension with a size greater than 1 and that dimension is
extracted as a vector.

zeros (n)

Generates an array of length n and fills it with the value 0.0.

Tuble 6.1.

Built-in functions for arrays in Modelica.

154 INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

Object Mass (kg) Distance from Sun (m) Tangential Velocity (n/s) Radius (m)

Sun 1.989-10*° 0 0 1.39 - 10°

Mercury 3.303-10%* 69.82 - 10° 38.03 - 10° 4.879 - 10°
Venus 4.869-10%* 108.92-10° 34.79 - 10® 12.10 - 10°
Earth 5.976 - 10** 152.10 - 10° 29.29 - 108 12.74 - 10°
Mars 6.421-10%° 249.2 -10° 21.87-10° 6.780 - 10°
Jupiter ~ 1.900-10*" 816.4 - 10° 12.42 - 103 139.8 - 10°
Saturn 5.688 - 10*® 1.510 - 10*? 9.11 - 10° 116.4 - 10°
Uranus 8.686-10%° 3.001-10'2 6.49 - 10% 50.72 - 108
Neptune 1.024-10%° 4.555 - 10" 5.38 - 10° , 49.24 - 10°
Pluto 1.270 - 10** 7.358 - 10'? 3.58 - 10° 2.390 - 108

Table 6.2. Solar system data.

You may choose to use the following spatial approximation:

d%y Uil — 22U+ U
dz? Az?

PROBLEM 6.4 Create a model for a “collision force” model between two
bodies such that when they are in contact (i.e., the total distance between the
centers of the bodies is less than the sum of their radii) they generate a repelling
force as follows:

(6.33)

F=c(r—r —ry) (6.34)

where c is a large “stiffness™ coefficient, r is the distance between the centers
of the bodies, 1 is the radius of body 1 and 9 is the radius of body 2.

Next, create a “pool table” model with several billiard balls on it. Only
one ball should have an initial velocity. Position the balls so that at least two
collisions take place. Using Dymola, you can declare a Sphere for each body
so that the collisions can be animated (see Example 9.2 for an example).

