

Cidge nössische Technische H Swiss. Federall institute of Tec		Mathematical Modeling of Physical System	ເສີ	
• Reaction k_2 contains a temperature dependence $K(T)$ that was experimentally found:				
	Abs. Temperature T [K]	Equilibrium Const. K [mole m^{-3}]		
	300.0	7.7446×10^{-29}		
	400.0	1.9543×10^{-20}		
	500.0	2.2182×10^{-15}		
	600.0	5.2844×10^{-12}		
	700.0	1.3867×10^{-9}		
	800.0	9.0782×10^{-8} 2.3768 × 10 ⁻⁶		
	900.0 1000.0	2.3768×10^{-5} 3.2509 × 10 ⁻⁵		
	1100.0	3.2509×10^{-4} 2.7861 × 10 ⁻⁴		
	1200.0	1.6788×10^{-3}		
	1300.0	7.6913×10^{-3}		
	1400.0	2.8510×10^{-2}		
	1500.0	8.8716×10^{-2}		
	1600.0	2.4044×10^{-1}		
	1700.0	5.8344×10^{-1}		
	1800.0	1.7947		
	1900.0	2.6061		
	2000.0	4.9431		
• Program $K(T)$ using a table-lookup function.				
December 6, 2012 © Prof. Dr. François E. Cellier Start Presentation			\$¢>	

Engger Guische Techn Ische Hochschule Zülich Swiss Federal Institute af Rechnology Zulich	Mathematical Modeling o	f Physical Systems
 0.0075. The temperature is Simulate the reduce the temperature of algorithm to a section of the first of a section of the first of	system during 5000 seconds. blerance value for the DASSI 10^{-10} . raph the molar masses of Br ₂ , t 0.1 seconds. ond graph the molar mass of H	<i>001 m³</i> . The You need to <i>L</i> integration H_2 , and HBr H during the
December 6, 2012	© Prof. Dr. François E. Cellier	Start Presentation

Eifger Guische Technischer Hochschalle Zühlen Swins-Gederst Hechnischer Machinertuge Zuhlen	Mathematical Modeling of Physical Systems			
• The reaction rate constants at the given temperature are as follows:				
$\kappa_{\theta} = 00.0$	tel the system in the <i>Dymola equation window</i> g a matrix-vector notation.			
$k_3 = 2.82 \cdot 10^{12}$ cond	ulate the system during 0.1 seconds. The initial ditions are $n_{\rm H_2} = 10^{-7}$, and $n_{\rm O_2} = 0.5 \cdot 10^{-7}$. reaction volume is $V = 1.0 \ m^3$.			
	need to reduce the tolerance value of the <i>SSL integration algorithm</i> to 10^{-17} .			
• Plot the molar masses of H ₂ , O ₂ , and H ₂ O on one plot. Plot the molar masses of the other four species on separate plots.				
December 6, 2012 © Prof.	Dr. François E. Cellier			

