

eressachte technischer Hochschule Zinich 20. fegeres inschule et Austraufege zursch	Eigen dissister bische ische rischschule Zielen verse Fastrat inschule af Kuchronige Linica
• Apply the relaxation algorithm to the same electrical	Relaxation Algorithm II
circuit.	 Set the second residual equation as the second to last equation, whereby the corresponding tearing variable is also the second to last variable.
 For determining the sequence of equations and variables, make use of the following heuristics: Make the equations causal in the same way as for <i>Problem 4.1</i>. 	 Number the equations, which can be causalized based on the assumption that the second tearing variable is already known, in increasing order following the first set of equations (with the exception of the first residual equation, which comes at the very end).
 Start with the first residual equation. It is being placed as the <i>last equation</i>, whereby the corresponding tearing variable is the <i>last variable</i>. Number the equations, which can be made causal on the basis of the 	The resulting equation system in matrix form has diagonal elements that are all normalized to 1, and contains exactly two non-zero elements above the diagonal. These are located in the columns of the tearing variables and in the rows of the first equation of the causalized equation system.
assumption that the tearing variable is already known, starting with equation #1, and set the variables for which these equations are being solved also at the beginning of the list of variables, starting with variable #1. In this way, the diagonal elements can be normalized to 1.	• Consequently, the problem of minimizing the number of non-zero elements above the diagonal in the case of the relaxation algorithm is indeed identical with the search for suitable tearing variables.
ober 11, 2012 © Prof. Dr. François E. Cellier Start Presentation	October 11, 2012 © Prof. Dr. François E. Cellier Start Presentation

