

Mechanical System III		
• Data:		
Mass of veh	icle (M) = 1500 kg	
Mass of driv	rer(m) = 100 kg	
Stiffness of	safety belt $(k_1) = 10'000 \text{ N/m}$	
Stiffness of	shock absorber $(k_2) = 300'000 \text{ N/m}$	
Damping of	safety belt $(\boldsymbol{B}_I) = 500 \text{ Ns/m}$	
Damping of	shock absorber $(B_2) = 80'000 \text{ Ns/m}$	
• Limit values:		
Safety belt t	ested up to $(\mathbf{F}_{I}) < 13'340 \text{ N}$	
Ribs break b	beyond $(F_2) > 6670 \text{ N}$	
Distance to	windshield $(d) = 0.5 \text{ m}$	

Mechani	cal System XVI
$\int_{M}^{V} \frac{\nabla_{H}}{\int_{M}} + \int_{M}^{V} \frac{\int_{K^{2}} \mathbf{y}_{M} }{\int_{M}} + \int_{V}^{I} \frac{\int_{K^{2}} \mathbf{y}_{M} }{\int_{M}} + \int_{V}^{I} \frac{\int_{K^{2}} \mathbf{y}_{M} }{\int_{K^{2}} \mathbf{y}_{M} } + \int_{V}^{I} \frac{\int_{K^{2}} \mathbf{y}_{M} }{\int_{K^{2}} \mathbf{y}_{M} } + \int_{K^{2}}^{I} $	$ \begin{array}{c} 0 \\ p_{m}^{\otimes} \bullet Dq \\ p_{m}^{\otimes} \end{array} \qquad $

Mec	hanical System XVI
$dv_M/dt = f_M/M$ $f_M = \cdot (f_{k2} + f_{b2} + f_{kb})$ $df_{k2}/dt = v_M/k_2$ $f_{b2} = b_2 \cdot v_M$ $dv_m/dt = f_{kb}/m$ $v_{Mm} = v_M \cdot v_m$ $f_{kb} = f_{k1} + f_{b1}$ $df_{k1}/dt = v_{Mm}/k_1$ $f_{b1} = b_1 \cdot v_{Mm}$ $dx_{Mm}/dt = v_{Mm} \checkmark$	$\frac{dv_{Mm}/dt = dv_M/dt - dv_m}{}$