
������

��������	
��
�������
���
��

���������	
��

Dymola

Dynamic Modeling Laboratory

User’s Manual

Version 5.3a

© Copyright 1992-2004 by Dynasim AB. All rights reserved.

Dymola is a trademark of Dynasim AB.
Dymola is a registered trademark of Dynasim AB in Sweden.

Modelica is a registered trademark of the Modelica Association.

Dynasim AB

Research Park Ideon
SE-223 70 Lund
Sweden

E-mail: Support@Dynasim.com
URL: http://www.Dynasim.com

Phone: +46 46 2862500
Fax: +46 46 2862501

5

Contents

What is Dymola? . 13

Features of Dymola . 13

Architecture of Dymola . 14
Basic Operations . 14

Simulating an existing model . 15

Building a model . 16
Features of Modelica . 19

Background . 19

Equations and reuse . 19
Modelica history . 20

Getting started with Dymola . 23

Introduction . 23
Simulating a model — industrial robot . 24

Simulation . 32
Other demo examples . 33

Solving a non-linear differential equation . 33

Simulation . 36
Improving the model . 40

6

Using the Modelica Standard Library . 42
The Modelica Standard Library . 43
Creating a library for components . 48

Creating a model for an electric DC motor . 49
Testing the model . 56
Creating a model for the motor drive . 59

Parameter expressions . 61
Building a mechanical model . 65

Introduction to Modelica . 73

Modelica basics . 73

Variables . 74
Connectors and connections . 75
Partial models and inheritance . 75

Acausal modeling . 76
Background . 76
Differential-algebraic equations . 78

Advanced modeling features . 79
Vectors, matrices and arrays . 79
Class parameters . 79

Algorithms and functions . 81
Hybrid modeling in Modelica . 81

Synchronous equations . 82

Relation triggered events . 85
Variable structure systems . 86

Initialization of models . 90

Basics . 90
Continuous time problems . 91
Parameter values . 95

Discrete and hybrid problems . 96
Example: Initialization of discrete controllers . 97

Standard libraries . 100

Summary . 101
References . 101

Developing a model . 107

General concepts . 107
Window types . 107

Class layers . 111

7

Class documentation . 112
Coordinate system . 113

Model editing . 114

Basic operations . 114
Components and connectors . 115
Connections . 121

Creating graphical objects . 123
Changing graphical attributes . 124
Modelica text . 125

Documentation . 126
HTML documentation . 129

External references . 129

HTML options . 130
Editor command reference . 131

File menu . 131

Edit menu . 138
Window menu . 141
Help menu . 142

Special keyboard commands . 143
Model editor initialization . 143

Simulating a model . 147

Basic steps . 147

Simulation menu . 149
Plot window . 156

Variable selector . 157

Plot window interaction . 159
File menu . 160
Plot menu . 160

Animation window . 166
Defining Graphical Objects . 166
File menu . 168

Animation menu . 169
Scripting language . 173

Basic operations . 173

Script files . 176
Help commands . 176
Simulator API . 178

Script functions . 181

8

Debugging models . 182
Over specified initialization problems . 182
Basic steps in debugging models . 182

Finding errors in models . 183
Improving simulation efficiency . 184

Inline integration . 190

Inline integration . 190
Inline integration in Dymola . 192
References . 192

Mode handling . 192
Collecting modes . 192
Using mode information in real-time simulation . 193

Known Limitations . 193
References . 193

Dynamic Model Simulator . 197

Overview . 197

What is Dymosim? . 197
Who wrote Dymosim? . 198

Running Dymosim . 198

Dymosim as a stand-alone program . 199
Dymosim and Matlab . 200

Selecting the integration method . 201

Integrator properties . 201
Dymosim integrators . 203

Dymosim reference . 205

Model functions for Dymosim . 205
Dymosim m-files . 206
Dymosim command line arguments . 207

Basic file format . 208
Dymosim input file “dsin.txt” . 209
Simulation result file “dsres.mat” . 213

Bibliography . 215

Other simulation environments . 219

Using the Dymola-Simulink interface . 219
Graphical interface between Simulink and Dymola . 219
Simulation in Matlab . 224

Real-time simulation . 225

9

dSPACE systems . 225
xPC and Real-Time Workshop . 228
Real-time simulation using RT-LAB . 229

DDE communication . 233
Dymola DDE commands . 233
Explorer file type associations . 233

Dymosim Windows application . 234

Appendix — Modelica . 239

Modelica syntax specification . 239
Lexical conventions . 239

Grammar . 240

Appendix — Advanced Modelica . 249

Declaring functions . 249
User-defined derivatives . 249

How to declare a derivative . 250

External functions . 253
Including external functions . 254
Linking to external library . 254

Other languages . 256
Means to control the selection of states . 257

Motivation . 257

The state select attribute . 258
Using noEvent . 259

Background: How events are generated . 260

Guarding expressions against evaluation . 260
How to use noEvent to improve performance . 261
Combined example for noEvent . 261

Mixing noEvent and events in one equation . 262
Constructing anti-symmetric expressions . 264

Equality comparison of real values . 266

Type of variables . 266
Trigger events for equality . 266
Locking when equal . 267

Guarding against division by zero . 267

Appendix — Migration . 271

Migrating to newer libraries . 271

10

How to migrate . 271
Basic commands to specify translation . 272
How to build a convert script . 275

Appendix — Installation . 281

Installation on Windows . 281
Installing Dymola . 281
Dongle installation . 283

Additional setup . 284
Installing updates . 285
Removing Dymola . 285

Installation on UNIX . 285
Installing Dymola . 285
Additional setup . 286

Removing Dymola . 287
Dymola License Server . 287

Background . 287

Installing the license server . 288
Installing on client computers . 290

Troubleshooting . 290

License file . 291
Compiler problems . 291
Simulink . 292

dSPACE systems . 293
Other Windows-related problems . 293

Index . 295

WHAT IS DYMOLA?

WHAT IS DYMOLA? 13

What is Dymola?

Features of Dymola

Dymola – Dynamic Modeling Laboratory – is suitable for modeling of various kinds of
physical systems. It supports hierarchical model composition, libraries of truly reusable
components, connectors and composite acasual connections. Model libraries are available
in many engineering domains.

Dymola uses a new modeling methodology based on object orientation and equations. The
usual need for manual conversion of equations to a block diagram is removed by the use of
automatic formula manipulation. Other highlights of Dymola are:

• Handling of large, complex multi-engineering models.

• Faster modeling by graphical model composition.

• Faster simulation – symbolic pre-processing.

• Open for user defined model components.

• Open interface to other programs.

• 3D Animation.

• Real-time simulation.

14

Architecture of Dymola

The architecture of the Dymola program is shown below. Dymola has a powerful graphic
editor for composing models. Dymola is based on the use of Modelica models stored on
files. Dymola can also import other data and graphics files. Dymola contains a symbolic
translator for Modelica equations generating C-code for simulation. The C-code can be ex-
ported to Simulink and hardware-in-the-loop platforms.

Dymola has powerful experimentation, plotting and animation features. Scripts can be used
to manage experiments and to perform calculations. Automatic documentation generator is
provided.

Basic Operations

Dymola has two kinds of windows: Main window and Library window. The Main window
operates in one of two modes: Modeling and Simulation.

The Modeling mode of the Main window is used to compose models and model compo-
nents.

The Simulation mode is used to make experiment on the model, plot results and animate the
behavior. The Simulation mode also has a scripting subwindow for automation of experi-
mentation and performing calculations.

Editor

Symbolic Kernel

Experimentation

Plot and Animation

Reporting

External Graphics

(vector, bitmap)

CAD (DXF, STL,

topology, properties)

Model ParametersExperimental Data

Simulink

MATLAB

Model doc. and

Experiment log (HTML,

VRML, PNG, …)

xPC

dSPACE

HIL

Modelica

C Functions

LAPACK

Scripting

Simulation

results

Modelica

Libraries

User Models

M
o

d
e
li

n
g

S
im

u
la

ti
o

n
V

is
u

a
li

z
a
ti

o
n

a
n

d
 A

n
a

ly
s

is D
y

m
o

la
 P

ro
g

ra
m

WHAT IS DYMOLA? 15

Simulating an existing model

Find the model

Dymola starts in Modeling mode. The model to simulate is found by using the Open or
Demo commands in the File menu. Example models are also found in the libraries: Modeli-
ca or ModelicaAdditions or in other libraries opened by the Library command.

Simulation Mode

The Simulation Mode is used for experimentation. It has simulation setup to define duration
of simulation, etc., plot windows, animation windows and variable browser.

Browsing

• Tree Browser for model packages

and models

• Component hierarchy

• Viewer

– diagram

– documentation

Modeling Mode

Simulate Mode

• Simulate controls

 - Setup

 - Simulate

• Plot windows

plot window controls

• Animation windows

animation window controls

Experiment name

Variable browser

16

The variable browser allows selecting plot variables, changing parameters and initial condi-
tions.

An animation window shows a 3D view of the simulated model. The animation can be run
at different speeds, halted, single stepped and run backwards.

Building a model

The graphical model editor is used for creating and editing models in Dymola. Structural
properties, such as, components, connectors and connections are edited graphically, while
equations and declarations are edited with a built-in text editor.

Find a component model

The package browser allows viewing and selecting component models from a list of models
with small icons. It is also possible to get a large icon view

Plot selection

Change initial

condition

Change parameter

WHAT IS DYMOLA? 17

.

Components are dragged from the package browser to the diagram layer and connected.
The component hierarchy is shown in the component browser.

By double clicking on a component, a dialog for giving the name of the component and its
parameters are shown.

Rotational library

Inertia model

small icon

Inertia model

large icon

Large icon view

Package browser

Drag and drop

Graphics editing tools

Components

Diagram layer

18

The model browser allows opening a component for inspection of the documentation or the
model itself, for example, by looking at the underlying Modelica code which is shown in
the Modelica Text layer. This is also the editor for entering Modelica code, i.e. declarations
and equations for low level models.

Text layer

WHAT IS DYMOLA? 19

Features of Modelica

Modelica is an object-oriented language for modeling of large, complex and heterogeneous
physical systems. It is suited for multi-domain modeling, for example for modeling of
mechatronic systems within automotive, aerospace and robotics applications. Such systems
are composed of mechanical, electrical and hydraulic subsystems, as well as control sys-
tems.

General equations are used for modeling of the physical phenomena. The language has been
designed to allow tools to generate efficient code automatically. The modeling effort is thus
reduced considerably since model components can be reused, and tedious and error-prone
manual manipulations are not needed.

Background

Modeling and simulation are becoming more important since engineers need to analyse in-
creasingly complex systems composed of components from different domains. Current
tools are generally weak in treating multi-domain models because the general tools are
block-oriented and thus demand a huge amount of manual rewriting to get the equations
into explicit form. The domain-specific tools, such as circuit simulators or multibody pro-
grams, cannot handle components of other domains in a reasonable way.

There is traditionally too large a gap between the user’s problem and the model description
that the simulation program understands. Modeling should be much closer to the way an en-
gineer builds a real system, first trying to find standard components like motors, pumps and
valves from manufacturers’ catalogues with appropriate specifications and interfaces.

Equations and reuse
Equations facilitate

true model reuse.

Equations are used in Modelica for modeling of the physical phenomena. No particular
variable needs to be solved for manually because Dymola has enough information to decide
that automatically. This is an important property of Dymola to enable handling of large
models having more than hundred thousand equations. Modelica supports several formal-
isms: ordinary differential equations (ODE), differential-algebraic equations (DAE), bond
graphs, finite state automata, Petri nets etc.

The language has been designed to allow tools to generate very efficient code. Modelica
models are used, for example, in hardware-in-the-loop simulation of automatic gearboxes,
which have variable structure models. Such models have so far usually been treated by
hand, modeling each mode of operation separately. In Modelica, component models are
used for shafts, clutches, brakes, gear wheels etc. and Dymola can find the different modes
of operation automatically. The modeling effort is considerably reduced since model com-
ponents can be reused and tedious and error-prone manual manipulations are not needed.

20

Modelica history

Reuse is a key issue for handling complexity. There had been several attempts to define ob-
ject-oriented languages for physical modeling. However, the ability to reuse and exchange
models relies on a standardized format. It was thus important to bring this expertise together
to unify concepts and notations.

A design group was formed in September 1996 and one year later, the first version of the
Modelica language was available (http://www.Modelica.org). Modelica is intended to serve
as a standard format so that models arising in different domains can be exchanged between
tools and users. It has been designed by a group of more than 25 experts with previous
know-how of modeling languages and differential-algebraic equation models. After more
than 30 three-days’ meetings during a five year period, version 2.0 of the language specifi-
cation was finished in January, 2002.

GETTING STARTED WITH

DYMOLA

GETTING STARTED WITH DYMOLA 23

Getting started with Dymola

Introduction

This chapter will take you through some examples in order to get you started with Dymola.
For detailed information about the program, you are referred to the on-line documentation
and the user’s manuals. The on-line documentation is available in the Help menu after se-
lecting Documentation. The tool tips and the “What’s this” feature are fast and convenient
ways to access information.

Start Dymola. A Dymola window appears. A Dymola window operates in one of the two
modes:

• Modeling for finding, browsing and composing models and model components.

• Simulation for making experiments on the model, plotting results, and animating behav-
ior.

Dymola starts in Modeling mode. The active mode is selected by clicking on the tabs in the
bottom right corner of the Dymola window.

The operations, tool buttons available, and types of sub-windows appearing depends on the
mode, and additional ones have been added after this guide was written. Dymola starts with
a useful default configuration, but allows customizing.

24

The Dymola window.

Simulating a model — industrial robot

This first example will show how to browse an existing model, simulate it, and look at the
results. If you want to learn the basics first, you can skip to a smaller example in the next
section “Solving a non-linear differential equation.”

We will study a model of an industrial robot. Start Dymola. The Dymola window appears in
Modeling mode as displayed above. To view the industrial robot model, use the File/Demos
menu and select Robot.

GETTING STARTED WITH DYMOLA 25

Opening a demo exam-

ple.

Dymola starts loading the model libraries needed for the robot model and displays it.

The robot demo.

The package browser in the upper left sub-window displays the package hierarchy and it is
now opened up with the robot model selected and highlighted. The model diagram in the
right sub-window opens up and shows the top-level structure of the model. The model dia-
gram has an icon for the model of the robot with connected drive lines for the joints. The

26

reference angles to the drive lines are calculated by a path planing module giving the fastest
kinematic movement under given constraints.

The component browser in the lower left sub-window also shows the components of the ro-
bot experiment in a tree structured view.

To inspect the robot model, select the icon in the Diagram window (red handles appear, see
below) and press the right button on the mouse. From the menu, choose Show Component.

About to view the me-

chanical structure of

the robot.

It is not necessary to select the robot component explicitly by pressing the left button on the
mouse to access its menu. It is sufficient to just have the cursor on its icon in the diagram
window and press the right button on the mouse. The component browser also gives easy
access to the robot component. Just position the cursor over “mechanics”. The component
browser provides a tree representation of the component structure. The diagram window
and the component browser are synchronized to give a consistent view. When you select a
component in the diagram window, it is also highlighted in the component browser and vice
versa. The diagram window gives the component structure of one component, while the
component browser gives a more global view; useful to avoid getting lost in the hierarchical
component structure.

GETTING STARTED WITH DYMOLA 27

The Diagram window now displays the mechanical structure consisting of connected joints
and masses. The component browser is opened up to also show the internals of the mechan-
ics model component.

The mechanical struc-

ture of the robot.

Double click on, for example, r1 at the bottom of the diagram window. This is a revolute
joint. The Parameter dialogue appears. The Parameter dialogue can also be accessed from
the right button menu. Double clicking the left button selects the first alternative from the
right button menu.

28

Parameter dialogue.

The parameter dialogue allows the user to inspect actual parameter values. In this case the
parameter values are write protected to avoid unintentional changes of the demo example.
Thus the dialogue just has a Close button (and an Info-button). When the parameter values
can be changed there is one OK button and one Cancel button to choose between. The val-
ues are dimmed to indicate they are not given at the top-level model, but somewhere down
in the component hierarchy.

A parameter dialogue may have several tabs. This dialogue has the tabs: General, Anima-
tion and Advanced. In a tab the parameters can be further structured into groups as shown.
It is easy for a model developer to customize the parameter dialogues. Graphical illustra-
tions can be included to show meaning of parameters.

Next to each parameter field is a triangle, this gives you a set of choices for editing the pa-
rameters (Edit gives a matrix editor/function call editor, Edit Text gives a larger input field,
etc.). Some parameters have a list of choices where you can select values instead of writing
them. One example is the parameter n, which defines the axis of rotation. The value for this
revolute joint is {0, 1, 0}, i.e. the axis of rotation is vertical. Press Close.

Choices for n.

GETTING STARTED WITH DYMOLA 29

To learn more about this component, select Info. An HTML browser is opened to show the
documentation of the Revolute joint.

If you do only want to see the documentation select the component in the diagram, press the
right mouse button and select Info. An HTML browser is opened to show the documenta-
tion of the Revolute joint. By double clicking on the other components, you can, for exam-
ple, see what parameters a mass has.

Let us now inspect the drive train model. There are several possible ways to get it dis-
played. Press the Previous button (the toolbar button with the bold left arrow) once to go to
the robot model and then use the right button menu on one of the axis icons. Please, note
that robot.mechanics also has components axis1, ..., axis6, but those are just connectors.
You shall inspect for example robot.axis1. Another convenient way is to use the component
browser and use the right button menu and select Show Component. Since this is the first
menu option, double clicking will open up the component in the Diagram window. Please,
recall that double clicking on a component in the diagram window pops up the parameter
dialogue.

The robot drive train.

The drive train includes a controller. A data bus is used to send measurements and reference
signals to the controller and control signals from the controller to the actuator. The bus for
one axis has the following signals:

There are send elements to output information to the bus as illustrated in the model diagram
above. Similarly there are a read elements to access information from the bus.

angle_ref reference angle of axis flange
angle angle of axis flange
speed_ref reference speed of axis flange
speed speed of axis flange
acceleration_ref reference acceleration of axis flange
acceleration acceleration of axis flange
current_ref reference current of motor
current current of motor
motorAngle angle of motor flange
motorSpeed speed of motor flange

30

The bus from the path planning module is built as an array having 6 elements of the bus for
an axis.

The robot controller

The controller of an axis gets references for the angular position and speed from the path
planning module as well as measurements of the actual values of them. The controller out-
puts a reference for the current of the motor, which drives the gearbox.

The motor model consists of the electromotorical force, three operational amplifiers, resis-
tors, inductors, and sensors for the feedback loop.

GETTING STARTED WITH DYMOLA 31

The robot motor.

View the component gear in a similar way as for the other components. It shows the gear-
box and the model of friction of the bearings and elasticity of the shafts.

The robot gearbox.

32

Simulation

Let us simulate the robot model. To enter the Simulation mode, click on the tab at the bot-
tom right. When you selected the robot the Commands menu became active to indicate that
robot contains a Command for simulating it, select this.

In addition the simulation menu includes commands to setup and run simulations. The Set-
up menu item opens a dialogue allowing the setting of start and stop times. The icon indi-
cates which toolbar button to use for quick access to the set up dialogue. The Simulate
menu item starts a simulation.

In this case, however, a command script has been prepared. To run the script, select Com-
mands select ‘Simulate’. Dymola then translates the model and simulates automatically.
The animation window is opened automatically, because the simulation result contains ani-
mation information.

Animated 3D view of

the robot.

Start the animation by selecting Animation/Run or clicking the run button on the tool-bar,

Animation toolbar.

GETTING STARTED WITH DYMOLA 33

which contains the usual buttons of pausing rewinding, stepping forward and backward, re-
spectively.

It is possible to change the viewing position by opening a view controller, Animation/3D
View Control.

The command Plot makes a plot of the speed reference and actual speed of the third joint.

Plotting the speed.

Other demo examples

Other demo examples can be found under the File/Demos menu. After selecting an exam-
ple, it can be simulated by running a corresponding script file as was done for the robot ex-
ample.

Solving a non-linear differential equation

This example will show how to define a simple model given by an ordinary differential
equation. We will simulate a planar mathematical pendulum as shown in the figure.

34

A pendulum.

The variable m is the mass and L is the distance from the support to the center of mass. Let
us assume the string is inextensible and massless, and further, let us neglect the resistance of
the air and assume the gravitational field to be constant with g as the acceleration of gravity.
The equation of motion for the pendulum is given by the torque balance around the origin
as

J*der(w) = -m*g*L*sin(phi)

where J is the moment of inertia with respect to the origin. Assuming a point mass gives

J = m*L^2

The variable w is the angular velocity and der(w) denotes the time derivative of w, i.e., the
angular acceleration. For the angular position we have

der(phi) = w

Start Dymola or if it is already started then give the command File/Clear All in the Dymola
window.

Click on the tab for Modeling at the bottom right. Select File/New Model.

The first step to create

a new model.

A dialog window opens. Enter “Pendulum” as the name of the model.

GETTING STARTED WITH DYMOLA 35

The dialogue to name a

new model component.

Click OK. You will have then have to ‘Accept’ that you want to add this at the top-level.
You should in general store your models into packages, as will be described later.

A model can be inspected and edited in different views. When specifying a behavior direct-
ly in terms of equations, it is most convenient to work with the model as the Modelica Text.
Press the Modelica Text toolbar button (the second rightmost tool button). The right sub-
window can now be used as a text editor.

To declare the parameters and the variables, enter as shown the declarations for the parame-
ters m, L and g, which also are given default values. The parameter J is bound in terms of
other parameters. Finally, the time varying variables phi and w are declared. A start value is
given for phi, while w is implicitly given a start value of zero.

36

model Pendulum
 parameter Real m=1;
 parameter Real L=1;
 parameter Real g=9.81;
 parameter Real J=m*L^2;
 Real phi(start=0.1);
 Real w;
equation
 der(phi) = w;
 J*der(w) = -m*g*L*sin(phi);
end Pendulum;

New text will not automatically be color coded. To get the color coding of keywords and
types, press the right mouse button and select Highlight Syntax.

Declaration of parame-

ters, variables and

equations.

The model is ready to be saved. Select File/Save. Call the file pendulum.mo and place it in
a working directory.

Simulation

Now it is time to simulate. To enter the Simulation mode, click on the tab at the bottom
right. The simulation menu is now activated and new tool bar buttons appear.

To set up the simulation select Simulation/Setup or click directly on the Setup toolbar but-
ton.

GETTING STARTED WITH DYMOLA 37

Selecting Setup in the

Simulation menu.

The Simulation Setup

menu.

Set the stop time to 10 seconds. Click either OK, or Store in model (additionally this store
some information in the model).

To run the simulation select Simulation/Simulate or click directly on the Simulate toolbar
button.

Selecting Simulate in

the Simulation menu.

Dymola first translates and manipulates the model and model equations to a form suitable
for efficient simulation and then runs the simulation. You may explicitly invoke translation
yourself by selecting Simulation/Translate or click on the Translate toolbar button.

38

Plotting the angle.

When the simulation is finished, the component browser displays variables to plot. Click in
the square box in front of phi to get the angle plotted as shown above.

Let us study a swing pendulum with larger amplitude and let it start in almost the top posi-
tion with phi = 3. It is easy to change initial conditions. Just enter 3 in the value box for phi.
Click on the Simulate tool button.

GETTING STARTED WITH DYMOLA 39

Pendulum angle when

starting in almost the

top position.

The results of previous simulations are available as the experiment Pendulum 1 and we can
open it up and have phi of the two runs plotted in the same diagram.

40

Values of parameters are changed in a similar way. To change the length of the pendulum,
just enter a new value for L.

Improving the model

The parameters and variables are more than real numbers. They are physical quantities. The
Modelica standard library provides type declarations for many physical quantities.

Let us redo the model. Start Dymola or if it is already started then give the command File/
Clear All in the Dymola window. As previously, click on the tab for Modeling at the bottom
right. Select File/New Model. Name it pendulum. Click OK. Press the Modelica Text tool-
bar button (the second rightmost tool button).

Open Modelica.SIunits in the package browser. To define the parameter length, drag Length
to the component browser. A menu pops up:

The choice to add a component is preselected. Click OK. A menu to declare a variable pops
up:

GETTING STARTED WITH DYMOLA 41

Complete the description:

Click OK and the text appearing in the bottom row is inserted into the Modelica text win-
dow.

The other quantities are defined in analogue ways. You have now Length selected in the
package browser, to find the quantity Mass in Modelica.SIunits, enter M and the browser
goes to the first component starting with M. If it is not the desired one, press M once again
and so on to find it.

When completing the form to declare the angle phi, the start value of the angle is defined by
clicking on the small triangle to the left of the value field and selecting Edit. A submenu
pops up:

42

Enter 0.1 for start.

After entering the equations textually as previously the Modelica Text windows displays

The icon on the second line indicates graphical information or annotations. It may be dis-
played. Put the cursor on in the window, click the right mouse button to get the context
menu. Select Expand/Show entire text, which reveals that it is an annotation documenting
which version of the Modelica standard library was used. Dymola uses this information to
check if compatible versions of libraries are used and to support automatic upgrading of
models to new versions of libraries. A model developer can provide conversion scripts that
specify how models shall be upgraded automatically to new versions of a library.

Using the Modelica Standard Library

In this example, we will show how a model is built up using components from the Modelica
Standard Library. The task is to model a motor drive with an electric DC motor, gearbox,
load, and controller.

GETTING STARTED WITH DYMOLA 43

Motor drive built with

standard compon-

nents.

As when building a real system, there are several approaches. One extreme approach is to
build the system from scratch. However, it is often a difficult and time-consuming task. An-
other approach is to investigate if the system already is available on the market or if there is
some product that easily can be adapted or modified. If not, build the system from compo-
nents available when possible and develop only when necessary.

The idea of object-oriented modeling is to support easy and flexible reuse of model know-
ledge. Modelica has been designed to support reuse of model components as parts in differ-
ent models and to support easy adaptation of model components to make them describe
similar physical components. The design of Modelica has also been accompanied by the de-
velopment of model libraries.

The Modelica Standard Library

We will now have a look at the Modelica Standard Library to see what is available and how
we access the model components and their documentation. To open the library, double click
on Modelica in the Package browser.

Opening the Modelica

Standard Library.

Dymola reads in the library. The Modelica Standard Library is hierarchically structured into
sub-libraries.

44

The sub-libraries of the

Modelica Standard Li-

brary.

As shown by the package browser, the Modelica Standard Library includes

1. Blocks with continuous and discrete input/output blocks such as transfer functions, filters,
and sources.

2. Constants provides constants from mathematics, machine dependent constants and con-
stants from nature.

3. Electrical provides electric and electronic components such as resistor, diode, MOS and
BJT transistor.

4. Icons provides common graphical layouts (used in the Modelica Standard Library).

5. Math gives access to mathematical functions such as sin, cos and log.

6. Mechanics includes a one-dimensional translational and rotational components such as
inertia, gearbox, planetary gear, bearing friction and clutch.

7. SIunits with about 450 type definitions with units, such as Angle, Voltage, and Inertia.

8. Thermal provides models for heat-transfer.

To get documentation for the entire Modelica Standard Library, place the cursor on Modeli-
ca, press the right mouse button and select Info. Your web browser is directed to an html file
containing documentation for Modelica. This documentation has been generated automati-
cally from the Modelica description of the library. There is basic information such as the
content of the library, conventions and conditions for use.

Dymola comes also with other free model libraries. To have a list select File / Libraries.

The package menu gives direct access to the sub-libraries. We will need components from
various sub-libraries. We will need rotational mechanical components as well as electrical
components for the motor.

To open the Modelica.Mechanics, click on Mechanics (double-click shows its text).

GETTING STARTED WITH DYMOLA 45

Opening Modelica.Me-

chanics.

To get documentation on Modelica.Mechanics, as previously demonstrated, place the cur-
sor on Mechanics, press the right mouse button and select Info.

Besides using the package browser of the Dymola window, it is also possible to open a li-
brary browser. It is done by either selecting Window/New Library Browser or using the
right mouse button and selecting Show Library Window.

A library window dis-

playing the Modelica

Standard Library.

A Library window includes a package browser, where the components of the selected sub-
library are displayed in a special window.

It is possible to close the package browser by toggling the button to the bottom left.

46

A library window dis-

playing the compo-

nents of the Modelica

Standard Library.

By using the right button at the bottom it is possible to go up in the package hierarchy and
by double clicking on the icons in the window it is possible to go down in the hierarchy. The
left and right arrow buttons allow going back and forth as in an ordinary web browser.

Open Modelica.Mechanics.Rotational in the library window by first double clicking on the
icon for Mechanics

Modelica.Mechanics.

and then on the icon for Rotational. It contains components for rotating elements and gear-
boxes, which are useful for our modeling of the electrical motor drive.

GETTING STARTED WITH DYMOLA 47

The rotational mechan-

ics library window.

The Info for Modelica.Mechanics.Rotational contains important information on design
principles behind the library and a list of components. A quick scan of the list indicates that
the model Inertia may be of interest for us.

Select Inertia and press the right mouse button for a context menu. Select Info to get docu-
mentation for the model.

The context menu for a

component.

To get a model window for Inertia, select its icon in the library window and once again
press the right mouse button, select Show in New Window and a window for the model In-
ertia is created.

48

Mathematical defini-

tion of a rotational in-

ertia.

Switch to the Modelica Text representation, where you find Euler’s equation as the last
equation.

After this introduction of how to access model components and documentation of a library,
we will continue by actually building a model for an electric DC motor. This task will give
us more experience.

Creating a library for components

It is a good idea to insert developed components into a library. It is a good way to keep track
of components and it supports also the drag and drop feature when you will use the models
as components. Let us collect all developed components in a library called DriveLib. To
create it, go to the Dymola window, and select File/New/Package and a dialog is opened.

Creating a new Modeli-

ca package.

Enter DriveLib as the new name of the package and click OK, and ‘Accept’ in the informa-
tion-window.

GETTING STARTED WITH DYMOLA 49

A package DriveLib is created and made visible in the package browser. Select Modelica
text to get the Modelica representation, which at this stage just specifies a package with no
contents.

Creating a model for an electric DC motor
An electrical DC motor.

50

A model of the complexity indicated above will be developed for the electric DC motor. For
simplicity the voltage supply is included in the motor model. The model includes an ideal
controlled voltage source. The electric part of the motor model includes armature resistance
and armature inductance. The electromotive force, emf, transforms electrical energy into ro-
tational mechanical energy. The mechanical part includes the mechanical inertia of the mo-
tor.

Let us start building the motor model. Select in the Dymola window File/New/Model. Enter
Motor as name of the new model. To have the Motor model being a part of DriveLib, we
need to enter DriveLib for Insert in package. This can be done in several ways. Dymola pro-
vides alternatives to be selected from and DriveLib is an available alternative. The are no
other alternative because all other open packages are such as Modelica are write protected.
It is also possible to use the drag and drop feature and drag DriveLib into the slot. In the
package browser, put the cursor on DriveLib and press the left mouse button. While keep-
ing it pressed, drag the cursor to the slot for Insert in package, release the button and the text
DriveLib will appear in the slot.

Inserting Motor in Driv-

eLib.

Click on OK.

Opening DriveLib in the package browser shows that it has a component Motor as desired.

GETTING STARTED WITH DYMOLA 51

An empty Motor model.

The model window now contains an empty Motor model. The diagram window has a gray
frame and grid to indicate that the component is not write protected. It is possible to toggle
the grid using the toolbar button.

We will now start building the motor model. To make it easier to follow the instructions, the
result is displayed below:

The finished motor

model with all compo-

nents.

52

We need a model component for a resistor. It can be found in Modelica.Electrical.Ana-
log.Basic. The basic approach is to use drag and drop. You can drag and drop from the
package browser or from a library window.

To drag from package browser, open in turn Modelica, Electrical, Analog and Basic. Note
that title of the Dymola window is still DriveLib.Motor and also the component browser has
DriveLib.Motor as top level to indicate that we are editing the motor model.

About to drag a resis-

tor from the package

browser.

You can also drag from a library window. If you do not have a library window for it then
open one. Go to Modelica.Electrical.Analog.Basic.

The basic analog com-

ponents library win-

dow.

Drag a resistor from Basic to the Motor window and place it as shown above. The compo-
nent browser displays that Motor has a component Resistor1.

GETTING STARTED WITH DYMOLA 53

Inserting a resistor

component.

When inserting a component is given an automatically generated name. The name may be
changed in the parameter window. Double click on the component, to get its parameter win-
dow. The parameter window can also be reached by pointing on the component and press-
ing the right mouse button and select Parameters.

The parameter window

of a resistor with de-

fault settings.

Change the component name to Ra. The parameter window allows setting of parameter val-
ues. To set the resistance parameter, R, select the value field of parameter R and input 0.5.

54

The parameter window

of a resistor with new

settings.

Click OK.

Similarly drag an inductor to the Motor window. Name it La and set the inductance, L, to
0.05.

Drag a ground component into the motor model. Name it G. The ground component is as
important as in real electrical circuits. It defines the electrical potential to be zero at its con-
nection point. As in the real world, never forget to ground an electrical circuit.

Drag an electromotive force, EMF, component into the motor model. Name it emf.

A voltage source is to be found in Modelica.Electrical.Analog.Sources. Use a library win-
dow or package browser to locate it. Select SignalVoltage and drag it to the model window
of Motor. Name it Vs. Let Vs be selected and use Edit/Rotate 90 to turn the signal input,
Vs.inPort, from a top position to a left position. SignalVoltage produces between its two
electrical pins, p and n, a voltage difference, p.v-n.v, that is equal to the signal input. Get the
Info for SignalVoltage displayed in your web browser (point on the icon and use the right
mouse button menu). The documentation shows that SignalVoltage extends the model Mod-
elica.Electrical.Analog.Interfaces.OnePort. Click on that link. The documentation shows
that the pin p is a filled blue square. To get the proper sign we would like to have pin p in
the top position. To flip the component, use Edit/Flip Vertical.

A rotating inertia component is to be found in Modelica.Mechanics.Rotational. Drag and
drop such an inertia component. Name it Jm and set the inertia parameter, J, to 0.001.

Now all model components are in place. Components are connected by drawing lines be-
tween connectors. To connect the resistor to the inductor, point at the right connector of the
resistor (the small white square) and drag to the left connector of the inductor. The resistor
and the inductor are now connected and the graphical result is a line between them. When
connecting the voltage source and the resistor, break the line by clicking at an intermediate
point. There is a possibility to obtain automatic Manhattanize of connections. Select the
connection, Edit/Manhattanize. Draw all connections. Note that we could have drawn a
connection between two components as soon as we have the components and we have not
to wait until all model components are in place.

Finally, we have to introduce a signal connector for the voltage control and a flange connec-
tor corresponding to the shaft of the motor so the motor can be connected to an environ-

GETTING STARTED WITH DYMOLA 55

ment. We would like to place the icon of the connectors at the border of the grid of the
drawing pane, because the icon of a model component also includes the connectors. The
connector inPort must be compatible with the connector of Vs.inPort. There is a simple au-
tomatic to get a connector inPort that is a clone of Vs.inPort. Start drawing a connection
from Vs.inPort and go to the left until you reach the border of the grid. Then you double
click and select Create Connector from the menu popped up. The connector flange_b is cre-
ated in a similar way. If you would like to adjust the position of a connector it is easy to get
into connect mode. This can be avoided by toggling the toolbar button Connect Mode (to
the right of the Toggle Grid button).

Click on the toolbar button (to left of the button for activating the Diagram view) to find
that you also there can see icons for the connectors. Let us draw an icon for the motor mod-
el. One design is shown below.

The icon of the electri-

cal DC motor.

To draw it, we will use the toolbar for editing graphics.

Toolbar for editing.

Start by drawing the big red cylinder (shaded rectangle); Click the Draw rectangle button
(yellow rectangle) and lay out a rectangle. Let it be selected. Click on the arrow to the right
of the Fill Color button. Select Colors... and then select a red color. Click OK. To select the
gradient, click once again on the arrow to the right of the Fill Color button. Select Gradient/
Horizontal. Draw the rest of the parts using draw rectangle or draw closed polygon in an
analogous way. To enter the text, click the Text button (the button labeled A) and lay out a
rectangle that is as long as the cylinder and one grid squares high. In the window prompt for

56

the string enter %name. The %-sign has the magic function that when the model is used, the
actual component name will be displayed.

We have now edited the icon and the diagram. It is also important to document the model.
When creating the model, the dialog has a slot Description. It is possible to edit this after-
wards. Select Edit/Attributes to open the dialogue.

Model attributes.

Enter a description and click OK.

A longer documentation can be provided in the following way. Click on the toolbar button
for Documentation (the button between the Diagram button and the Modelica Text button).

Documentation View.

To enter a description, put the cursor in the window. Click right mouse button and select
Edit Source. The description is given as html code. When done, click right mouse button
and deactivate Edit Source.

We have now created the model. Save it.

Testing the model

It is possible to check the model for syntactic and semantic errors. Select Edit/Check. Hope-
fully your model will pass the check and you will get the following message:

GETTING STARTED WITH DYMOLA 57

Checking the model.

The connector inPort defines the voltage reference, and should be defined for the complete
model, but is viewed as a known input to the model.

It is important to test all models carefully, because that eliminates tedious debugging later
on. Let us connect the motor to a voltage source. Create a model called TestMotor (select
File/New/Model or the Edit/New Model in the context-menu for DriveLib) and insert it into
DriveLib. It is good practice to keep test models. Use the package browser to drag over a
Motor component from DriveLib to TestMotor. We need a source for the signal input to the
motor. Signal sources are to be found in Modelica.Blocks.Sources.

Signal sources.

Drag, for example, over Step to the model window and connect it to the motor.

Now it is time to simulate. Click on the tab for Simulation. Click on the toolbar button Sim-
ulate to start a simulation.

58

To inspect the result, we will first look at the angular position of the motor,
Motor1.flange_b.phi. Open Motor in the plot selector by clicking on the + sign. Open the
flange_b and tick phi.

Angular position.

First, we may establish that a positive input signal, makes angular position increase. The
plot looks almost like a straight line. However, there are some wriggles in the beginning.
Zoom in; use the mouse to stretch a rectangle over that portion of the curve you would like
to see. We may also plot the angular velocity Motor1.Jm.w: There is an oscillation which
dies out and the velocity becomes constant. There is much to be done to validate the model.
However, model validation is out of the scope for this introduction to Dymola.

It is possible to show several curves in the same diagram. It is just to tick the variables to be
plotted. A curve is erased by ticking once more. The toolbar button Erase Curves (white
rectangle) erases all curves in the active diagram. It also possible to have several diagrams.
To get a new diagram, select Plot/New Diagram or click on the toolbar button. The new di-
agram becomes active. Tick Motor1.Jm.w and the result shown below is obtained. Selecting
a diagram makes it active. Selecting Plot/Delete Diagram removes the diagram.

GETTING STARTED WITH DYMOLA 59

Angular velocity.

Creating a model for the motor drive

The task was to build a model for a motor drive and it ought now to be a simple task to com-
plete the model. We will just give a few hints. Note that the full name of the components are
given in the component browser at the lower left.

To generate the position error, you may use the model component Modeli-
ca.Blocks.Math.Feedback. For the controller, there is Modelica.Blocks.Continuous.PID.

For the meaning of ratio for the gearbox model, please, consult Info for the model. Set ratio
to 100 as indicated. It means that the motor load rotates 100 times slower than the DC mo-
tor. The library Modelica.Mechanics.Rotational.Sensors contains a sensor for angles.

60

The completed motor

drive.

To test the model MotorDrive for normal operation, we need to define a reference for the
position. This can be done in different ways. A simple approach is to add a signal source di-
rectly to MotorDrive. However, we may like to use MotorDrive also for other purposes. If
we would like to use the drive as a component we could add a connector for the reference as
we did for the electric DC motor model. However, here we will take the opportunity to
show another useful way, namely use of extends. We will develop a new class, say Motor-
DriveTest, which extends MotorDrive. Select MotorDrive in the package browser and se-
lect ‘Edit/Extend From’ in the context menu. This gives the same dialogue as File/New/
Model, but with several fields filled out. (It extends from MotorDrive and is inserted in the
same package, DriveLib.) Enter MotorDriveTest as the name of the model. Click OK. The
result is a model window, where the diagram layer looks exactly like that of MotorDrive.
However, the components cannot be edited. Try to move or delete a component. It has no
effect. Drag over a component Step from Modelica.Blocks.Sources and connect it. Save the
model.

A model can be used for different tasks. One is tuning the controller manually. Click on the
tab for Simulate. Translate the model MotorDriveTest. The PID controller has four parame-
ters: k, Ti, Td and Nd.

GETTING STARTED WITH DYMOLA 61

Tuning the controller.

There are many ways to tune a PID controller. One is to disable the integrator part by setting
a large vale for Ti, say 1000 here. Disable also the derivative part by setting Td small, say
0.001. Simulate for 10 seconds. The step response for k = 1 is very slow. Increase it to find
out what happens. We leave the problem of tuning the controller to the interested reader.

Parameter expressions

Modelica supports parameter propagation and parameter expressions, which means that a
parameter can be expressed in terms of others. Assume that the load is a homogeneous cyl-
inder rotating long its axis and we would to have its mass, m, and radius, r, as primary pa-
rameters on the top level. The inertia is

J = 0.5 * m * r^2

We need to declare m and r in MotorDrive. Open MotorDrive. Activate the Modelica Text
representation; press the Modelica Text toolbar button (the second rightmost tool button).

The parameters and variables are more than real numbers. They are physical quantities. The
Modelica standard library provides type declarations for many physical quantities. Open
Modelica.SIunits in the package browser. For the parameter r, which is a radius, it is natural
to declare it as being of type Radius. To find it enter R and the browser goes to the first
component starting with R. If it is not the desired one, press R once again and so on to find

62

it.When you have found Radius, drag it to the component browser below. The choice to add
a component is preselected. Click OK. A menu to declare a variable pops up. Complete the
declaration:

Click OK and the text appearing in the bottom row is inserted into the Modelica text win-
dow. The parameter m is defined in an analogue way.

Parameter declara-

tions added to motor

drive.

In Modelica Text representation above, the components and connections are indicated by
icons. It is possible have them expanded textually. Click the right mouse button and select
Expand/Show components and connect.

GETTING STARTED WITH DYMOLA 63

It is also possible to expand the annotations such as the graphics for the icon of the model,
the positions and sizes of the icons of the components, the path of the connections etc., by
clicking the right mouse button and select Expand/Show entire text. However, we refrain
from showing it in this document.

Activate the diagram representation. Double click on the load icon to open the parameter
window.

Binding a parameter to

an expression.

Click in the value field of J and enter the expression for J. Click OK. The model window
now displays the expression for the load inertia. When entering the expression, you are
some times not sure about the exact name of the variables names, for example is the radius
called r, r0 or r1? The problem is even more pronounced when you would like to reference
a variable a bit down in the component hierarchy. Dymola can assist you. First you enter
0.5* and then you click on the small triangle to the left of the value field. Select Component
Reference and then m.

64

You have now 0.5*m in the value field for J. Enter *. Use the menus to get a reference to r.
Complete the expression with the square. Click OK. The model window now displays the
expression for the load inertia.

The component’s pa-

rameter definition is

visible in the model.

Switch to Simulation mode.

Translate MotorDriveTest.

GETTING STARTED WITH DYMOLA 65

A bound parameter

cannot be changed in-

teractively.

The parameters r and m can be set interactively between simulation runs, but not load.J, be-
cause it is no longer a free parameter, because there is an expression binding it to r and m.

Building a mechanical model

We will now develop a more complex model, a 3D mechanical model of a pendulum called
a Furuta pendulum. It has an arm rotating in a horizontal plane with a single or double pen-
dulum attached to it, see below.

66

The Furuta pendulum.

Start Dymola. The package browser shows the library MultiBody. This library includes 3D
mechanical components such as joints and bodies, which can be used to build a model of
the Furuta pendulum. Use the package browser to open MultiBody. You may also create a
new library window. Select MultiBody in the package browser and click the right mouse
button and select Open Library Window.

The MBS library win-

dow.

To build the Furuta pendulum, you will need to use the Parts and Joints sub-libraries. Open
them by double-clicking.

GETTING STARTED WITH DYMOLA 67

The MBS parts library

window.

The MBS joints library

window.

Select File/New/Model and give the name Furuta.

The first step in building an MBS model is to define an inertial system. Drag the World icon
onto the Furuta window. The default parameters need not be changed. The gravity of accel-
eration is set to 9.81 and pointing in the negative direction of the y axis.

We then need a revolute joint. Drag the model Joints.Revolute onto the Furuta window. You
can either drag from the library window, but it is also convenient to drag from the package
browser. Select Edit/Rotate 90. This just changes the appearance of the icon. Double click
on the icon.

68

Change the name to R1. The axis of rotation is set as the parameter n. We would like to have
a vertical axis of rotation; use the list of choices and select “y axis”. When simulating, it is
natural to try different initial configurations by setting angles and possibly angular veloci-
ties for the joints. Use the list of choices of initType to select the alternative “initialize gen-
eralized position and velocity variables”. The initial value of the angle is specified by
setting the parameter phi_start and the initial velocity is specified by setting w_start. These
two values are easy to change between simulation runs. Click OK. Connect the connector of
world to the bottom connector of the revolute joint.

A bar is then connected to the revolute joint. There is one bar which has the visual appear-
ance of a box during animation, called BodyBox in the Parts library. Drag over a compo-
nent. Double click on the icon. Name it B1. We would like the bar to be 0.5 long and
initially horizontal and pointing in the positive x direction. This is specified by setting the
vector r between the two ends of the body to {0.5, 0, 0}. Click on the Edit icon just to the
left of the value field of r and an vector editor pops up. Enter 0.5 in the first field. Click OK.
Since you did not set all value explicitly, you will get question if default values should be
used. Click “Use defaults”. The width and height will be 0.1 by default.

To get nicer animation, you can set different colors for the bars. For example, use the list of
choices of color to make the bar red.

From the bar B1, we connect another revolute joint, R2, having a horizontal axis of rotation,
n={1, 0, 0} and a BodyBox, B2, (rotated −90), with r={0, −0.5, 0}.

To get a double pendulum, create another similar joint and another BodyBox and connect
them. This is accomplished easily by selecting the two already present and choosing Edit/
Duplicate.

GETTING STARTED WITH DYMOLA 69

You should now have arrived at a model that is similar to the following.

The diagram of the Fu-

ruta pendulum.

Now it is time to simulate. To enter the Simulation mode, click on the tab at the bottom
right. The simulation menu is now activated and new tool bar buttons appear.

When building 3D mechanical models, it is possible to get visual feedback to check that the
mechanical system is put together as intended. Click on the toolbar button Visualize. The
animation window shows the initial configuration of the system.

70

Translate the model. In the plot dialogue, open R2 and enter a value for phi_start, say 170
degrees, and simulate for 5 seconds. View the pendulum in the animation window; you may
want to adjust the perspective by using Setup/3D View Control.

3D View Control.

Change parameters and study the different behavior.

Try to control the pendulum in such a way as to get a stable upright position. (A trick is to
use a “mechanical PD controller”, i.e. a spring and damper attached to the tip of the second
bar and to a high position.)

INTRODUCTION TO

MODELICA

INTRODUCTION TO MODELICA 73

Introduction to Modelica

Modelica basics

Modelica supports both high level modeling by composition and detailed library component
modeling by equations. Models of standard components are typically available in model li-
braries. Using a graphical model editor, a model can be defined by drawing a composition
diagram by positioning icons that represent the models of the components, drawing connec-
tions and giving parameter values in dialogue boxes. Constructs for including graphical an-
notations in Modelica make icons and composition diagrams portable.

Schematic picture of a

motor drive.

To describe how the details of a component are modeled, consider a simple motor drive sys-
tem as defined above. The system can be broken up into a set of connected components: an
electrical motor, a gearbox, a load and a control system. A Modelica model of the motor
drive system is given below (excluding graphical annotations).

74

A Modelica model of

the motor drive.

model MotorDrive

 PI controller;

 Motor motor;

 Gearbox gearbox(n=100);

 Shaft Jl(J=10);

 Tachometer wl;

equation

 connect(controller.out, motor.inp);

 connect(motor.flange , gearbox.a);

 connect(gearbox.b , Jl.a);

 connect(Jl.b , wl.a);

 connect(wl.w , controller.inp);

end MotorDrive;

It is a composite model which specifies the topology of the system to be modeled in terms
of components and connections between the components. The statement Gearbox gear-
box(n=100);declares a component gearbox of class Gearbox and sets the default value
of the gear ratio, n, to 100.

A motor model.

A component model may be a composite model to support hierarchical modeling. The ob-
ject diagram of the model class Motor is shown above. The meaning of connections will be
discussed next as well as the description of behavior on the lowest level using real equa-
tions.

Variables

Physical modeling deals with the specification of relations between physical quantities. For
the drive system, quantities such as angle and torque are of interest. Their types are declared
in Modelica as

type Angle = Real(quantity = "Angle", unit = "rad",

 displayUnit = "deg");

type Torque = Real(quantity = "Torque", unit = "N.m");

where Real is a predefined type, which has a set of attributes such as name of quantity, unit
of measure, default display unit for input and output, minimum value, maximum value and

INTRODUCTION TO MODELICA 75

initial value. The Modelica Standard Library, which is an intrinsic part of Modelica in-
cludes these kinds of type definitions.

Connectors and connections

Connections specify interactions between components. A connector should contain all
quantities needed to describe the interaction. Voltage and current are needed for electrical
components. Angle and torque are needed for drive train elements.

connector Pin

 Voltage v;

 flow Current i;

end Pin;

connector Flange

 Angle r;

 flow Torque t;

end Flange;

A connection, connect(Pin1, Pin2), with Pin1 and Pin2 of connector class Pin, con-
nects the two pins such that they form one node. This implies two equations, namely Pin1.v
= Pin2.v and Pin1.i + Pin2.i = 0. The first equation indicates that the voltages on both
branches connected together are the same, and the second corresponds to Kirchhoff’s cur-
rent law saying that the current sums to zero at a node. Similar laws apply to flow rates in a
piping network and to forces and torques in a mechanical system. The sum-to-zero equa-
tions are generated when the prefix flow is used in the connector declarations. The Modeli-
ca Standard Library includes also connector definitions.

Partial models and inheritance

A very important feature in order to build reusable descriptions is to define and reuse par-
tial models. A common property of many electrical components is that they have two pins.
This means that it is useful to define an interface model class TwoPin, that has two pins, p
and n, and a quantity, v, that defines the voltage drop across the component.

partial model TwoPin

 Pin p, n;

 Voltage v;

equation

 v = p.v - n.v; p.i + n.i = 0;

end TwoPin;

The equations define common relations between quantities of a simple electrical compo-
nent. The keyword partial indicates that the model class is incomplete. To be useful, a con-
stitutive equation must be added. To define a model for a resistor, start from TwoPin and
add a parameter for the resistance and Ohm’s law to define the behavior.

76

model Resistor "Ideal resistor"

 extends TwoPin;

 parameter Resistance R;

equation

 R*p.i = v;

end Resistor;

A string between the name of a class and its body is treated as a comment attribute and is in-
tended to describe the class. Tools may display this documentation in special ways. The
keyword parameter specifies that the quantity is constant during a simulation experiment,
but can change values between experiments. For the mechanical parts, it is also useful to
define a shell model with two flange connectors,

partial model TwoFlange

 Flange a, b;

end TwoFlange;

A model of a rotating inertia is given by

model Shaft

 extends TwoFlange;

 parameter Inertia J = 1;

 AngularVelocity w;

equation

 a.r = b.r;

 der(a.r) = w;

 J*der(w) = a.t + b.t;

end Shaft;

where der(w) means the time derivative of w.

Acausal modeling

In order to allow reuse of component models, the equations should be stated in a neutral
form without consideration of computational order, i.e., acausal modeling.

Background

Most of the general-purpose simulation software on the market such as ACSL, Simulink
and SystemBuild assume that a system can be decomposed into block diagram structures
with causal interactions (Åström et al. (1998)). This means that the models are expressed as
an interconnection of submodels on explicit state-space form

dx

dt
------ f x u,()=

y g x u,()=

INTRODUCTION TO MODELICA 77

where u is input, y is output and x is the state. It is rare that a natural decomposition into
subsystems leads to such a model. Often a significant effort in terms of analysis and analyt-
ical transformations is needed to obtain a problem in this form. It requires a lot of engineer-
ing skills and manpower and it is error-prone.

To illustrate the difficulties, a Simulink model for the simple motor drive (see page 73) is
shown below. The structure of the block diagram does not reflect the topology of the physi-
cal system. It is easy to recognize the controller in the Simulink model for the motor drive,
but the gearbox and the inertias of the motor and the load are no longer visible. They appear

combined into a gain coefficient, 1 / Jl + Jmn2

A Simulink model for

the motor drive.

A Simulink model for

the motor.

There is a fundamental limitation of block diagram modeling. The blocks have a unidirec-
tional data flow from inputs to outputs. This is the reason why an object like a gearbox in
the simple motor drive cannot be dealt with directly. It is also the reason why motor and
load inertia appear in the mixed expression in the Simulink model. If it is attempted to sim-
ulate the basic equations directly there will be a loop which only contains algebraic equa-
tions. Several manual steps including differentiation are required to transform the equations
to the form required by Simulink. The need for manual transformations imply that it is cum-
bersome to build physics based model libraries in the block diagram languages. A general
solution to this problem requires a paradigm shift.

78

Differential-algebraic equations

In Modelica it is possible to write balance and other equations in their natural form as a sys-
tem of differential-algebraic equations, DAE,

where x is the vector of unknowns that appear differentiated in the equation and y is the
vector of unknowns that do not appear differentiated. Modelica has been carefully designed
in such a way that computer algebra can be utilized to achieve as efficient simulation code
as if the model would be converted to ODE form manually. For example, define a gearbox
model as

model Gearbox "Ideal gearbox without inertia"

 extends TwoFlange;

 parameter Real n;

equation

 a.r = n*b.r;

 n*a.t = b.t;

end Gearbox;

without bothering about what are inputs from a computational point of view and use it as a
component model, when modeling the drive system on page 73.

This use actually leads to a non-trivial simulation problem. The ideal gearbox is rigidly con-
nected to a rotating inertia on each side. It means the model includes two rigidly connected
inertias, since there is no flexibility in the ideal gearbox. The angular position as well as the
velocity of the two inertias should be equal. All of these four differentiated variables cannot
be state variables with their own independent initial values.

A DAE problem, which includes constraints between variables appearing differentiated is
sometimes called a “high index DAE”. When converting it to ODE form, it is necessary to
differentiate some equations and the set of state variables can be selected smaller than the
set of differentiated variables. There is an efficient algorithm by Pantelides (1988) for the
determination of what equations to differentiate and an algorithm for selection of state vari-
ables by Mattsson and Söderlind (1993).

In the drive example, the position constraint needs to be differentiated twice to calculate the
reaction torque in the coupling, and it is sufficient to select the angle and velocity of either
inertia as state variables. The constraint leads to a linear system of simultaneous equations
involving angular accelerations and torques. A symbolic solution will contain a determinant

of the form Jl + Jmn2. The tool thus automatically deduces how inertia is transformed

through a gearbox.

0 f
dx

dt
------ x y u, , ,()=

INTRODUCTION TO MODELICA 79

Advanced modeling features

The modeling power of Modelica is great. Some of the more powerful constructs are sum-
marized below.

Vectors, matrices and arrays

Modeling of, for example, multi-body systems and control systems is done conveniently
with matrix equations. Multi-dimensional arrays and the usual matrix operators and matrix
functions are thus supported in Modelica.

The modeling of continuous time transfer function is given below as an example. It uses a
restricted model called block having inputs and outputs with given causality. The polynomi-

al coefficients in a0 + a1s + ... + ans
n are given as a vector {a0, a1, ... , an}.

partial block SISO "Single Input/Single Output block"

 input Real u "input";

 output Real y "output";

end SISO;

block TransferFunction

 extends SISO;

 parameter Real a[:]={1, 1} "Denominator";

 parameter Real b[:]={1} "Numerator";

protected

 constant Integer na=size(a, 1);

 constant Integer nb(max=na) = size(b, 1);

 constant Integer n=na-1 "System order";

 Real b0[na] =

 cat(1, b, zeros(na - nb)) "Zero expanded b vector.";

 Real x[n] "State vector";

equation

 // Controllable canonical form

 der(x[2:n]) = x[1:n-1];

 a[na]*der(x[1]) + a[1:n]*x = u;

 y = (b0[1:n] - b0[na]/a[na]*a[1:n])*x + b0[na]/a[na]*u;

end TransferFunction;

It is also possible to have arrays of components and to define regular connection patterns. A
typical usage is the modeling of a distillation column which consists of a set of trays con-
nected in series. The use of component arrays for spatial discretization when modeling heat
exchangers is illustrated in Mattsson et al. (1998).

Class parameters

Component parameters such as resistance values have been discussed. Reuse of model li-
brary components is further supported by allowing model class parameters.

80

As an example assume that we would like to replace the PI controller in the motor drive
model on page 73 by an auto tuning controller. It is of course possible to just replace the
controller in a graphical user environment, i.e., to create a new model. The problem with
this solution is that two models must be maintained. Modelica has the capability to instead
substitute the model class of certain components using a language construct at the highest
hierarchical level, so only one version of the rest of the model is needed. Based on the mod-
el MotorDrive on page 74 a model MotorDrive2 with redeclared controller is described as

model MotorDrive2 =

 MotorDrive(redeclare AutoTuningPI controller);

This is a strong modification of the motor drive model and there is the issue of possible in-
validation of the model. The keyword redeclare clearly marks such modifications. Further-
more, the new component must be a subtype of PI, i.e., have compatible connectors and
parameters. The type system of Modelica is greatly influenced by type theory, Abadi and
Cardelli (1996), in particular the notion of subtyping (the structural relationship that deter-
mines type compatibility) which is different from subclassing (the mechanism for inherit-
ance). The main benefit is added flexibility in the composition of types, while still
maintaining a rigorous type system. Inheritance is not used for classification and type
checking in Modelica.

The public components of a class are typically its connectors and parameters. A model of a
PI controller has connectors for the reference signal, measured value and control output and
parameters such as gain and integral time. So it is natural to require that also an autotuning
controller has those components.

In many real applications there are many PI controllers. This makes it clumsy to use the ap-
proach described above to change controllers, because we need to know the names of all
controllers. To avoid this problem and prepare for replacement of a set of models, one can
define a replaceable class, ControllerModel in the drive model:

partial block SISOController

 input Real ref;

 input Real inp;

 output Real out;

end SiSOController;

model MotorDrive3

 replaceable block ControllerModel = SISOController;

protected

 ControllerModel controller;

 // then same as MotorDrive.

end MotorDrive3;

where the replaceable model ControllerModel is declared to be of type SISOController,
which means that it will be enforced that the actual class will have the inputs ref and inp
and the output out, but it may be parameterized in any way. Setting ControllerModel to
for example PID is done as

INTRODUCTION TO MODELICA 81

model PIDDrive =

 MotorDrive3(redeclare block ControllerModel = PID);

The use of model class parameters to support machine-medium decomposition is illustrated
in Mattsson et al. (1998), Ernst et al. (1997) and Tummescheit and Eborn (1998).

Algorithms and functions

Algorithms and functions are supported in Modelica for modeling parts of a system in pro-
cedural programming style. Modelica functions have a syntax similar to other Modelica
classes and matrix expressions can be used. Assignment statements, if statements and loops
are available in the usual way. A function for polynomial multiplication is given as an ex-
ample. It takes two coefficient vectors as inputs and returns the coefficient vector for the
product.

function polynomialMultiply

 input Real a[:], b[:];

 output Real c[:] = zeros(size(a,1) + size(b, 1) - 1);

algorithm

 for i in 1:size(a, 1) loop

 for j in 1:size(b, 1) loop

 c[i+j-1] := c[i+j-1] + a[i]*b[j];

 end for;

 end for;

end polynomialMultiply;

Hybrid modeling in Modelica

Realistic physical models often contain discontinuities, discrete events or changes of struc-
ture. Examples are relays, switches, friction, impact, sampled data systems etc. Modelica
has introduced special language constructs allowing a simulator to introduce efficient han-
dling of such events. Special design emphasis was given to synchronization and propaga-
tion of events and the possibility to find consistent restarting conditions after an event.

A hybrid Modelica model is described by a set of synchronous differential, algebraic and
discrete equations leading to deterministic behaviour and automatic synchronization of the
continuous and discrete parts of a model. The consequences of this view are discussed and
demonstrated at hand of a new method to model ideal switch elements such as ideal diodes
ideal thyristors or friction. At event instants this leads to mixed continuous/discrete systems
of equations that have to be solved by appropriate algorithms. For modeling of continuous
time systems, Modelica provides DAEs to mathematically describe model components. For
discrete event systems this is different, because there does not exist a single widely accept-
ed description form. Instead, many formalisms are available, e.g., finite automata, Petri
nets, statecharts, sequential function charts, DEVS, logical circuits, difference equations,
CSP, process-oriented languages that are all suited for particular application areas.

82

In Modelica the central property is the usage of synchronous differential, algebraic and dis-
crete equations. The idea of using the well-known synchronous data flow principle in the
context of hybrid systems was introduced in Elmqvist (1993). For pure discrete event sys-
tems, the same principle is utilized in synchronous languages (Halbwachs, 1993) such as
SattLine (Elmqvist, 1992), Lustre (Halbwachs, 1991) and Signal (Gautier et al., 1994), in
order to arrive at save implementations of realtime systems and for verification purposes.

Synchronous equations

A hybrid Modelica model basically consists of differential, algebraic and discrete equa-
tions.

Sampled data system.

A typical example is given in the figure above where a continuous plant

is controlled by a digital linear controller

using a zero-order hold to hold the control variable u between sample instants (i.e.,

u(t) = u(ti) for), where Ts is the sample interval, xp(t) is the state vector of the

continuous-time plant, y(t) is the vector of measurement signals, xc(ti) is the state vector of

the digital controller and r(ti) is the reference input. In Modelica, the complete system can

be easily described by connecting appropriate blocks. However, for simplicity of the fol-
lowing discussion, an overall description of the system in one model is used:

model SampledSystem

 parameter Real Ts=0.1 "sample interval";

 parameter Real A[:, size(A,1)],

 B[size(A,1), :],

 C[:, size(A,2)],

 D[size(C,1), size(B,2)];

 constant Integer nx = 5;

 input Real r [size(B,2)] "reference";

 output Real y [size(B,2)] "measurement";

 Real u [size(C,1)] "control";

 Real xc[size(A,1)] "discrete state";

yur
plantcontroller

Ts

Ts

-

td

dxp
f xp u,()=

y g x
p

()=

xc ti() Axc ti Ts–() B r ti() y ti()–()+=

u ti() Cxc ti Ts–() D r ti() y ti()–()+=

ti t ti Ts+<≤

INTRODUCTION TO MODELICA 83

 Real xp[nx] "plant state";

equation

 der(xp) = f(xp, u); // plant

 y = g(xp);

 when sample(0,Ts) then // controller

 xc =A*pre(xc) + B*(r-y);

 u =C*pre(xc) + D*(r-y);

 end when;

end SampledSystem;

This Modelica model consists of the continuous equations of the plant and of the discrete
equations of the controller within the when clause. Note, that der(x) defines the time de-
rivative of x. During continuous integration the equations within the when clause are deac-
tivated. When the condition of the when clause becomes true an event is triggered, the
integration is halted and the equations within the when clause are active at this event in-
stant. The operator sample(...) triggers events at sample instants with sample time Ts and

returns true at these event instants. At other time instants it returns false. The values of vari-
ables are kept until they are explicitly changed. For example, u is computed only at sample
instants. Still, u is available at all time instants and consists of the value calculated at the
last event instant.

Within the controller, the discrete states xc are needed both at the actual sample instant

xc(ti) and at the previous sample instant xc(ti – Ts), which is determined by using the pre(...)

operator. Formally, the left limit x(t–)of a variable x at a time instant t is characterized by

pre(x), whereas x itself characterizes the right limit x(t+). Since xc is only discontinuous at

sample instants, the left limit of xc(ti) at sample instant ti is identical to the right limit of

xc(ti – Ts) at the previous sample instant and therefore pre(xc) characterizes this value.

The synchronous principle basically states that at every time instant, the active equations
express relations between variables which have to be fulfilled concurrently. As a conse-
quence, during continuous integration the equations of the plant have to be fulfilled, where-
as at sample instants the equations of the plant and of the digital controller hold
concurrently. In order to efficiently solve such types of models, all equations are by block-
lower-triangular partitioning, the standard algorithm of object-oriented modeling for contin-
uous systems (now applied to a mixture of continuous and discrete equations), under the as-
sumption that all equations are active. In other words, the order of the equations is
determined by data flow analysis resulting in an automatic synchronization of continuous
and discrete equations. For the example above, sorting results in an ordered set of assign-
ment statements:

// "known" variables: r, xp, pre(xc)

y := g(xp);

when sample(0,Ts) then

 xc := A*pre(xc) + B*(r-y);

 u := C*pre(xc) + D*(r-y);

end when;

der(xp) := f(xp, u);

84

Note, that the evaluation order of the equations is correct both when the controller equations
are active (at sample instants) and when they are not active.

The synchronous principle has several consequences: First, the evaluation of the discrete
equations is performed in zero (simulated) time. In other words, time is abstracted from the
computations and communications, see also Gautier et al. (1994). Second, in order that the
unknown variables can be uniquely computed it is necessary that the number of active
equations and the number of unknown variables in the active equations at every time instant
are identical. This requirement is violated in the following example:

equation // incorrect model fragment!

 when h1 < 3 then

 close = true;

 end when;

 when h2 > 1 then

 close = false;

 end when;

If by accident or by purpose the relation h1<3 and h2>1 becomes true at the same event
instant, we have two conflicting equations for close and it is not defined which equation
should be used. In general, it is not possible to detect by source inspection whether condi-
tions becomes true at the same event instant or not. Therefore, in Modelica the assumption
is used that all equations in a model may potentially be active at the same time instant dur-
ing simulation. Due to this assumption, the total number of (continuous and discrete) equa-
tions shall be identical to the number of unknown variables. It is possible to rewrite the
model above by placing the when clauses in an algorithm section and changing the equa-
tions into assignment statements:

algorithm

 when h1 < 3 then

 close := true;

 end when;

 when h2 > 1 then

 close := false;

end when;

In this case the two when clauses are evaluated in the order of appearance and the second
one gets higher priority. All assignment statements within the same algorithm section are
treated as a set of n equations, where n is the number of different left hand side variables
(e.g., the model fragment above corresponds to one equation). An algorithm section is sort-
ed as a whole together with the rest of the system. Note, that another assignment to close
somewhere else in the model would still yield an error.

Handling hybrid systems in this way has the advantage that the synchronization between
the continuous time and discrete event parts is automatic and leads to a deterministic behav-
iour without conflicts. Furthermore, some difficult to detect errors of other approaches,
such as deadlock, can often be determined during translation already. Note, that some dis-
crete event formalisms, such as finite automata or prioritized Petri nets, can be formulated
in Modelica in a component-oriented way, see Elmqvist et al. (2000).

INTRODUCTION TO MODELICA 85

The disadvantage is that the types of systems which can be modeled is restricted. For exam-
ple, general Petri nets cannot be described because such systems have non-deterministic be-
haviour. For some applications another type of view, such as a process oriented type of view
or CSP, may be more appropriate or more convenient.

Relation triggered events

During continuous integration it is required that the model equations remain continuous and
differentiable, since the numerical integration methods are based on this assumption. This
requirement is often violated by if clauses.

A discontinuous com-

ponent.

For example the simple block above with input u and output y may be described by the fol-
lowing model:

model TwoPoint

 parameter Real y0=1;

 input Real u;

 output Real y;

equation

 y = if u > 0 then y0 else -y0;

end TwoPoint;

At point u=0 this equation is discontinuous, if the if-expression would be taken literally. A
discontinuity or a non-differentiable point can occur if a relation, such as x1 > x2 changes its

value, because the branch of an if statement may be changed. Such a situation can be han-
dled in a numerical sound way by detecting the switching point within a prescribed bound,
halting the integration, selecting the corresponding new branch, and restarting the integra-
tion, i.e., by triggering a state event. This technique was developed by Cellier (1979). For
details see also Eich-Soellner and Führer (1998).

In general, it is not possible to determine by source inspection whether a specific relation
will lead to a discontinuity or not. Therefore, by default it is assumed that every relation po-
tentially will introduce a discontinuity or a non-differentiable point in the model. Conse-
quently, relations in Modelica automatically trigger state events (or time events for relations
depending only on time) at the time instants where their value is changed. This means, e.g.,
that model TwoPoint is treated in a numerical sound way (the if-expression u > 0 is not
taken literally but triggers a state event).

In some situations, relations do not introduce discontinuities or non-differentiable points.
Even if such points are present, their effect may be small, and it may not affect the integra-
tion by just integrating over these points. Finally, there may be situations where a literal

u

y0

-y0

continuation of branch
for switching point detection

y

u y

86

evaluation of a relation is required, since otherwise an “outside domain” error occurs, such
as in the following example, where the argument of function sqrt to compute the square
root of its argument is not allowed to be negative:

y = if u >=0 then sqrt(u) else 0;

This equation will lead to a run time error, because u has to become small and negative be-
fore the then-branch can be changed to the else-branch and the square root of a negative
real number has no real result value. In such situations, the modeler may explicitly require a
literal evaluation of a relation by using the operator noEvent () :

y = if noEvent(u>=0) then sqrt(u) else 0;

Modelica has a set of additional operators, such as initial() and terminal() to detect the ini-
tial and final call of the model equations, and reinit(...) to reinitialize a continuous state
with a new value at an event instant. For space reasons, these language elements are not dis-
cussed. Instead, in the next section some non-trivial applications of the discussed language
elements are explained.

Variable structure systems

Parametrized curve descriptions

If a physical component is modelled detailed enough, there are usually no discontinuities in
the system. When neglecting some “fast” dynamics, in order to reduce simulation time and
identification effort, discontinuities appear in a physical model.

Real and ideal diode

characteristic.

As a typical example, a diode is shown in the figure above, where i is the current through
the diode and u is the voltage drop between the pins of the diode. The diode characteristic is
shown in the left part of the figure. If the detailed switching behaviour is negligible with re-
gards to other modeling effects, it is often sufficient to use the ideal diode characteristic
shown in the right part of the figure, which typically give a simulation speedup of 1 to 2 or-
ders of magnitude.

It is straightforward to model the real diode characteristic in the left part of the figure, be-
cause the current i has just to be given as a function (analytic or tabulated) of the voltage
drop u. It is more difficult to model the ideal diode characteristic in the right part of the fig-
ure, because the current at u = 0 is no longer a function of u, i.e., a mathematical description

i

u

i

u

i

u

real diode ideal diode

INTRODUCTION TO MODELICA 87

in the form i = i(u) is no longer possible. This problem can be solved by recognizing that a
curve can also be described in a parameterized form i = i(s), u = u(s) by introducing a curve
parameter s. This description form is more general and allows us to describe an ideal diode
uniquely in a declarative way as shown in the figure below.

Ideal diode model.

In order to understand the consequences of parameterized curve descriptions, the ideal di-
ode is used in the simple rectifier circuit below.

Simple rectifier circuit.

Collecting the equations of all components and connections, as well as sorting and simplify-
ing the set of equations under the assumption that the input voltage v0(t) of the voltage

source is a known time function and that the states (here: v2) are assumed to be known,

leads to

i1 i2

v1 v2u

u

i1

s=0

s
s

0 i1 i2+=

u v1 v2+=

off s 0<=

u if off then s else 0=

i
1

if off then 0 else s=

i1 i2

v1
v2

v0

v=0

R1

R2C

ideal diode

i0

88

The first 5 equations are coupled and build a system of equations in the 5 unknowns off, s,

u, v1 and i0. The remaining equations are used to compute i2 , i1 and the state derivative .

During continuous integration the Boolean variables, i.e., off, are fixed and the Boolean
equations are not evaluated. In this situation, the first equation is not touched and the next 4
equations form a linear system of equations in the 4 unknowns s, u, v1, i0 which can be

solved by Gaussian elimination. An event occurs if one of the relations (here: s < 0) chang-
es its value.

At an event instant, the first 5 equations are a mixed system of discrete and continuous
equations which cannot be solved by, say, Gaussian elimination, since there are Real and
Boolean unknowns. However, appropriate algorithms can be constructed: (1) Make an as-
sumption about the values of the relations in the system of equations. (2) Compute the dis-
crete variables. (3) Compute the continuous variables by Gaussian elimination (discrete
variables are fixed). (4) Compute the relations based on the solution of (2) and (3). If the re-
lation values agree with the assumptions in (1), the iteration is finished and the mixed set of
equations is solved. Otherwise, new assumptions on the relations are necessary, and the iter-
ation continues. Useful assumptions on relation values are for example:

a. Use the relation values computed in the last iteration.

b. Try all possible combinations of the values of the relations systematically (exhaustive
search).

In the above example, both approaches can be simply applied, because there are only two
possible values (s < 0 is false or true). However, if n switches are coupled, there are n rela-

tions and therefore 2n possible combinations which have to be checked in the worst case.

Below parameterized curve descriptions of the ideal thyristor and the ideal GTO thyristor
are shown for further demonstration. Especially note that also non-unique curve parameters
s can be used by introducing additional discrete variables (here: fire) to distinguish the
branches with the same parameterization values.

off s 0<=

u v1 v2–=

u if off then s else 0=

i0 if off then 0 else s=

R1 i0⋅ v0 t() v1–=

i2

v2

R2

------=

i1 i0 i2–=

td

dv
2

i1

C
----=

td

dv
2

INTRODUCTION TO MODELICA 89

Ideal Thyristor.

Ideal GTO thyristor.

The technique of parameterized curve descriptions was introduced in Clauß et al. (1995)
and a series of related papers. However, no proposal was yet given how to actually imple-
ment such models in a numerically sound way. In Modelica the (new) solution method fol-
lows logically because the equation based system naturally leads to a system of mixed
continuous/discrete equations which have to be solved at event instants.

In the past, ideal switching elements have been handled by (a) using variable structure
equations which are controlled by finite automata to describe the switching behaviour, see
e.g., Barton (1992), Elmqvist et al. (1993), and Mosterman et al. (1996), or by (b) using a
complementarity formulation, see e.g. Lötstedt (1982) and Pfeiffer and Glocker (1982). The
approach (a) has the disadvantage that the continuous part is described in a declarative way
but not the part describing the switching behaviour. As a result, e.g., algorithms with better
convergence properties for the determination of a consistent switching structure cannot be
used. Furthermore, this involves a global iteration over all model equations whereas param-
eterized curve descriptions lead to local iterations over the equations of the involved ele-
ments. The approach (b) seems to be difficult to use in an object-oriented modeling
language and seems to be applicable only in special cases (e.g. it seems not possible to de-
scribe ideal thyristors).

i1 i2

v1 v2u

u

i1

s=0

s
s

fire

s

fire = true

0 i1 i2+=

u v1 v2+=

off s 0< or pre off() and not fire=

u if off then s else 0=

i
1

if off then 0 else s=

i1 i2

v1 v2u

u

i1

s=0

s
s

fire

s

fire = true

fire =
false

0 i1 i2+=

u v1 v2+=

off s 0< or not fire=

u if off then s else 0=

i
1

if off then 0 else s=

90

Initialization of models

A dynamic model describes how the states evolve with time. The states are the memory of
the model, for example in mechanical systems positions and velocities. When starting a
simulation, the states need to be initialized.

For an ordinary differential equation, ODE, in state space form, dx/dt = f(x, t), the state
variables, x, are free to be given initial values. However, more flexibility in specifying ini-
tial conditions than setting state variables is needed. In many cases we would like to start at
steady state implying that the user specifies dx/dt = 0 as initial condition to get the initial
values of x calculated automatically by solving f(x, t) = 0. Besides the states, a model has
also other variables and in many cases it is natural to specify initial conditions in terms of
these variables.

Modelica provides powerful language constructs for specifying initial conditions. They per-
mit flexible specification of initial conditions as well as the correct solution of difficult,
non-standard initialization problems occurring in industrial applications. Modelica provides
a mathematically rigid specification of the initialization of hybrid differential algebraic
equations.

Dymola manipulates symbolically the initialization problem and generates analytic Jacobi-
ans for nonlinear subproblems to make the solution of the initialization problem more ro-
bust and reliable. Moreover, the special analysis of the initialization problem allows
Dymola to give diagnosis and user guidance when the initialization problem turns out not to
be well posed.

Basics

Before any operation is carried out with a Modelica model, especially simulation, initializa-
tion takes place to assign consistent values for all variables present in the model. During
this phase, also the derivatives, der(…), and the pre-variables, pre(…), are interpreted as
unknown algebraic variables. To obtain consistent values, the initialization uses all equa-
tions and algorithms that are utilised during the simulation.

Additional constraints necessary to determine the initial values of all variables can be pro-
vided in two ways:

1. Start values for variables

2. Initial equations and initial algorithms

For clarity, we will first focus on the initialization of continuous time problems because
there are some differences in the interpretation of the start values of continuous time vari-
ables and discrete variables. Also there are special rules for the usage of when clauses dur-
ing initialization. All this makes it simpler to start discussing pure continuous time
problems and after that discuss discrete and hybrid problems.

INTRODUCTION TO MODELICA 91

Continuous time problems

Initial equations and algorithms

Variables being subtypes of Real have an attribute start allowing specification of a start val-
ue for the variable

 Real v(start = 2.0);

 parameter Real x0 = 0.5;

 Real x(start = x0);

The value for start shall be a parameter expression.

There is also another Boolean attribute fixed to indicate whether the value of start is a guess
value (fixed = false) to be used in possible iterations to solve nonlinear algebraic loops or
whether the variable is required to have this value at start (fixed = true). For constants and
parameters, the attribute fixed is by default true, otherwise fixed is by default false. For a
continuous time variable, the construct

 Real x(start = x0, fixed = true);

implies the additional initialization equation

 x = x0;

Thus, the problem

 parameter Real a = -1, b = 1;

 parameter Real x0 = 0.5;

 Real x(start = x0, fixed = true);

equation

 der(x) = a*x + b;

has the following solution at initialization

 a := -1;

 b := 1;

 x0 := 0.5;

 x := x0; // = 0.5

 der(x):= a*x + b; // = 0.5

Initial equations and algorithms

A model may have the new sections initial equation and initial algorithm with additional
equations and assignments that are used solely in the initialization phase. The equations and
assignments in these initial sections are viewed as pure algebraic constraints between the
initial values of variables and possibly their derivatives. It is not allowed to use when claus-
es in the initial sections.

Steady state

To specify that a variable x shall start in steady state, we can write

initial equation

 der(x) = 0;

92

A more advanced example is

 parameter Real x0;

 parameter Boolean steadyState;

 parameter Boolean fixed;

 Real x;

initial equation

 if steadyState then

 der(x) = 0;

 else if fixed then

 x = x0;

 end if;

If the parameter steadyState is true, then x will be initialized at steady state, because the
model specifies the initialization equation

initial equation

 der(x) = 0;

If the parameter steadyState is false, but fixed is true then there is an initialization equation

initial equation

 x = x0;

If both steadyState and fixed are false, then there is no initial equation.

The approach as outlined above, allows x0 to be any expression. When x0 is a parameter
expression, the specification above can also be given shorter as

 parameter Real x0;

 parameter Boolean fixed;

 parameter Boolean steadyState;

 Real x(start = x0, fixed = fixed and not steadyState);

initial equation

 if steadyState then

 der(x) = 0;

 end if;

Mixed Conditions

Due to the flexibility in defining initialization equations in Modelica, it is possible to for-
mulate more general initial conditions: For example, an aircraft needs a certain minimum
velocity in order that it can fly. Since this velocity is a state, a useful initialization scheme is
to provide an initial velocity, i.e., an initial value for a state, and to set all other state deriv-
atives to zero. This means, that a mixture of initial states and initial state derivatives is de-
fined.

How many initial conditions?

How many initial conditions are needed for a continuous time problem?

INTRODUCTION TO MODELICA 93

For an ordinary differential equation, ODE, in state space form, dx/dt = f(x, t), exactly
dim(x) additional conditions are needed, in order to arrive at 2*dim(x) equations for the
2*dim(x) unknowns x(t0) and dx/dt(t0).

The situation is more complex for a system of differential algebraic equations, DAE,

 0 = g(dx/dt, x, y, t)

where x(t) are variables appearing differentiated, y(t) are algebraic variables and dim(g) =
dim(x) + dim(y). Here it can only be stated that at most dim(x) additional conditions h(..)
are needed in order to arrive at 2*dim(x)+dim(y) equations for the same number of un-
knowns, dx/dt(t0), x(t0), y(t0):

The reason is that the DAE problem may be a higher index DAE problem, implying that the
number of continuous time states is less than dim(x).

It may be difficult for a user of a large model to figure out how many initial conditions have
to be added, especially if the system has higher index. At translation Dymola performs an
index reduction and selects state variables. Thus, Dymola establishes how many states there
are. If there are too many initial conditions, Dymola outputs an error message indicating a
set of initial equations or fixed start values from which initial equations must be removed or
start values inactivated by setting fixed = false.

If initial conditions are missing, Dymola makes automatic default selection of initial condi-
tions. The approach is to select continuous time states with inactive start values and make
their start values active by turning their fixed attribute to true to get a structurally well
posed initialization problem. A message informing about the result of such a selection can
be obtained.

Interactive setting of start values

The initial value dialogue of the Dymola window includes the continuous time variables
having active start values i.e., fixed=true and the start value being a literal. Setting parame-
ters may of course influence an active start value bound to a parameter expression.

When setting variables from scripts Dymola generates a warning if setting the variable has
no effect what so ever, e.g. if it is a structural parameter.

Non-linear algebraic loops

A non-linear algebraic problem may have several solutions. During simulation a numerical
DAE solver tends to give the smoothest solution. A DAE solver is assumed to start at a con-
sistent point and its task is to calculate a new point along the trajectory. By taking a suffi-
ciently small step and assuming the existence of a Jacobian that is non-singular there is a
local well-defined solution.









=

)t,y,x,xh

)t,y,x,xg
0

0000

0000

)()()((

)()()((

ttt

ttt

&

&

94

The initialization task is much harder and precautions must be taken to assure that the cor-
rect solution is obtained. The means to guide the solver include min and max values as well
as start values for the unknowns.

As a simple example, consider a planar pendulum with fixed length L.

A planar pendulum.

The position of the pendulum can be given in polar coordinates. Introduce an angle, phi,
that is zero, when the pendulum is hanging downward in its rest position.

The model can be given as

 parameter Real g = 9.81;

 parameter Real m = 1;

 parameter Real L = 1;

 Real phi, w;

equation

 der(phi) = w;

 m*der(w) = -(m*g/L)*sin(phi);

Assume that we want to specify the initial condition in Cartesian coordinates defined as

 x = L*sin(phi);

 y = -L*cos(phi);

If we define

 Real y(start = 0; fixed = true);

the pendulum will start in a horizontal position. However, there are two horizontal posi-
tions, namely

 x = -L and x = L

To indicate preference for a positive value for x, we can define

 Real x(start = L);

INTRODUCTION TO MODELICA 95

It means that we provide a guess value for numerical solvers to start from. They will hope-
fully find the positive solution for x, because, it is closer to L than the negative solution.

For the angle phi there are many values giving the desired position, because adding or sub-
tracting 2π gives the same Cartesian position. Also, here the start value can be used to indi-
cate the desired solution. How, critical it is to get a special solution depends of course on
what phi will be used for in the model and the aim of the simulation. If no start value is giv-
en zero is used.

Parameter values

Parameters are typically given values in a model through definition equation or set interac-
tively before a simulation. Modelica also allows parameter values to be given implicitly in
terms of the initial values of all variables.

Recall the planar pendulum and assume that we would like to specify the initial position as

 Real x(start = 0.3; fixed = true);

 Real y(start = 0.4; fixed = true);

This means that we in fact also specify the length of the pendulum to be 0.5. To specify that
the parameter L shall be calculated from the initial conditions, we define it as

 parameter Real L(fixed = false);

Recall that the attribute fixed is by default true for constants and parameters, otherwise
fixed is by default false.

The semantics of parameters in Modelica is a variable that is constant during simulation.
The possibility to let the parameter value to depend on the initial values of time dependent
(continuous-time or discrete) variables does not violate this semantics.

This feature has many useful applications. It allows powerful reparametrizations of models.
As an example, consider the model of an ideal resistor. It has one parameter, R, being the re-
sistance. Assume that we would like to have use it as a resistive load with a given power
dissipation at a steady state operating point. It is just to extend from the resistor model given
in the Modelica Standard Library and

1. Add a parameter P0 to specify the power dissipation.

2. Set fixed=false for parameter R.

3. Add an initial equation section with v*i = P0.

In power systems, it is common practice to specify initial conditions in steady state and use
different kind of load models including resistive load and specify their steady state operat-
ing conditions in terms of active and reactive power dissipation.

In some cases parameters may be provided outside of a Modelica model and the actual val-
ues may be read from file or parameter values may be inquired from a database system dur-
ing initialization:

96

 parameter Real A(fixed=false);

 parameter Real w(fixed=false);

 Real x;

initial equation

 (A,w) = readSineData("init.txt");

equation

 der(x) = -A*sin(w*x);

Discrete and hybrid problems

The language constructs for specifying initial conditions for discrete variables are as for the
continuous time variables: start values and initial equations and algorithms.

Variables being subtypes of Real, Integer, Boolean and String have an attribute start allow-
ing specification of a start value for the variable.

For discrete variables declarations

 Boolean b(start = false, fixed = true);

 Integer i(start = 1, fixed = true);

imply the additional initialization equations

 pre(b) = false;

 pre(i) = 1;

This means that a discrete variable v itself does not get an initial value (= v(t0+ε)), but the

pre-value of v (= v(t0- ε)) does.

When clauses at initialization

For the initialization problem there are special semantic rules for when clauses appearing in
the model. During simulation a when clause is only active when its condition becomes
true. During initialization the equations of a when clause are only active during initializa-
tion, if the initial() operator explicitly enables it.

 when {initial(), condition1, ...} then

 v = ...

 end when;

Otherwise a when clause is in the initialization problem replaced by v = pre(v) for all its
left hand side variables, because this is also the used equation during simulation, when the
when-clause is not active.

Non-unique initialization

In certain situations an initialization problem may have an infinite number of solutions,
even if the number of equations and unknown variables are the same during initialization.
Examples are controlled systems with friction, or systems with backlash or dead-zones. As-
sume for example backlash is present. Then, all valid positions in this element are solutions
of steady state initialization, although this position should be computed from initialization.
It seems best to not rely on some heuristics of the initializer to pick one of the infinite num-

INTRODUCTION TO MODELICA 97

ber of solutions. Instead, the continuous time equations may be modified during initializa-
tion in order to arrive at a unique solution. Example:

 y = if initial() then

 // smooth characteristics

 else

 // standard characteristics

Well-posed initialization

At translation Dymola analyses the initialization problem to check if it is well posed by
splitting the problem into four equation types with respect to the basic scalar types Real, In-
teger, Boolean and String and decides whether each of them are well-posed.

As described for the pure continuous-time problem, Dymola outputs error diagnosis in case
of over specified problems. In case of under specified problems Dymola makes automatic
default selection of initial conditions.

How many initial conditions?

Basically, this is very simple: Every discrete variable v needs an initial condition, because
v(t0- ε) is otherwise not defined. Example:

 parameter Real t1 = 1;

 discrete Real u(start=0, fixed=true);

 Real x(start=0, fixed=true);

equation

 when time > t1 then

 u = ...

 end when;

 der(x) = -x + u;

During initialization and before the when-clause becomes active the first time, u has not yet
been assigned a value by the when-clause although it is used in the continuous part of the
model. Therefore, it would be an error, if pre(u) would not have been defined via the start
value in the u declaration.

On the other hand, if u is used solely inside this when-clause and pre(u) is not utilized in
the model, an initial value for u may be provided but does not influence the simulation, be-
cause the first access of u computes u in the when-clause and afterwards u is utilized in oth-
er equations inside the when-clause, i. e., the initial value is never used.

Since it may be tedious for a modeller to provide initial values for all discrete variables,
Modelica only requires to specify initial values of discrete variables which influence the
simulation result. Otherwise, a default value may be used.

Example: Initialization of discrete controllers

Below four variants to inialize a simple plant controlled by a discrete PI controller are dis-
cussed.

98

Variant 1: Initial values are given explicitly

 parameter Real k=10, T=1 "PI controller parameters";

 parameter Real Ts = 0.01 "Sample time";

 input Real xref "Reference input";

 Real x (fixed=true, start=2);

 discrete Real xd(fixed=true, start=0);

 discrete Real u (fixed=true, start=0);

equation

 // Plant model

 der(x) = -x + u;

 // Discrete PI controller

 when sample(0, Ts) then

 xd = pre(xd) + Ts/T*(xref - x);

 u = k*(xd + xref - x);

 end when;

The model specifies all the initial values for the states explicitly. The when clause is not en-
abled at initialization but it is replaced by

 xd := pre(xd)

 u := pre(u)

The initialization problem is thus

 x := x.start // = 2

 pre(xd) := xd.start // = 0

 pre(u) := u.start // = 0

 xd := pre(xd) // = 0

 u := pre(u) // = 0

 der(x) := -x + u // = -2

Variant 2: Initial values are given explicitly and the controller equations are used during
initialization. It is as Variant 1, but the when clause is enabled

// Same declaration as variant 1

equation

 der(x) = -x + u;

 when {initial(), sample(0,Ts)} then

 xd = pre(xd) + Ts/T*(xref - x);

 u = k*(xd + xref - x);

 end when;

It means that the when clause appears as

 xd = pre(xd) + Ts/T*(xref - x);

 u = k*(xd + xref - x);

in the initialization problem, which becomes

 x := x.start // = 2

 pre(xd):= xd.start // = 0

 pre(u) := u.start // = 0

INTRODUCTION TO MODELICA 99

 xd := pre(xd) + Ts/T*(xref - x);

 u := k*(xd + xref - x);

 der(x) := -x + u;

Variant 3: As Variant 2 but initial conditions defined by initial equations

 discrete Real xd;

 discrete Real u;

 // Remaining declarations as in variant 1

equation

 der(x) = -x + u;

 when {initial(), sample(0, TS)} then

 xd = pre(xd) + Ts/T*(xref - x);

 u = k*(xd + xref - x);

 end when;

initial equation

 pre(xd) = 0;

 pre(u) = 0;

leads to the following equations during initialization

 x := x.start // = 2

 pre(xd):= 0

 pre(u) := 0

 xd := pre(xd) + Ts/T*(xref - x)

 u := k*(xd + xref - x)

 der(x) := -x + u;

Variant 4: Steady state initialization

Assume that the system is to start in steady state. For continuous time state, x, it means that
its derivative shall be zero; der(x) = 0; While for the discrete state, xd, it means pre(xd) =
xd; and the when clause shall be active during initialization

 Real x (start=2);

 discrete Real xd;

 discrete Real u;

 // Remaining declarations as in Variant 1

equation

 // Plant model

 der(x) = -x + u;

 // Discrete PID controller

 when {initial(), sample(0, Ts)} then

 xd = pre(xd) + Ts/T*(x - xref);

 u = k*(xd + x - xref);

 end when;

initial equation

 der(x) = 0;

 pre(xd) = xd;

100

The initialization problem becomes

 der(x) := 0

 // Linear system of equations in the unknowns:

 // xd, pre(xd), u, x

 pre(xd) = xd

 xd = pre(xd) + Ts/T*(x - xref)

 u = k*(xd + xref - x)

 der(x) = -x + u;

Solving the system of equations leads to

 der(x) := 0

 x := xref

 u := xref

 xd := xref/k

 pre(xd) := xd

Standard libraries

In order that Modelica is useful for model exchange, it is important that libraries of the most
commonly used components are available, ready to use, and sharable between applications.
For this reason, an extensive base library is developed together with the Modelica language
from the Modelica Association, see http://www.Modelica.org. It is called Modelica Stan-
dard Library and it is an intrinsic part of Modelica. It provides constants, types, connectors,
partial models and model components in various disciplines. Predefined quantity types and
connectors are useful for standardization of the interfaces between components and achieve
model compatibility without having to resort to explicit co-ordination of modeling activi-
ties. Component libraries are mainly derived from already existing model libraries from
various object-oriented modeling systems. They are realized by specialists in the respective
area, taking advantage of the new features of Modelica not available in the original model-
ing system. The Modelica Standard Library consists currently of the following sublibraries

Constant Mathematical and physical constants (pi, eps, h, ...).

Icons Icon definitions of general interest.

Math Mathematical functions (such as sin, cos).

SIunits SI-unit type definitions (such as Voltage, Torque).

Blocks Input/output blocks.

Electrical Electric and electronic components.

INTRODUCTION TO MODELICA 101

The package ModelicaAdditions is a collection of libraries which is supplied by DLR (Ger-
man Aerospace Research Establishment) to provide often needed components which are
missing in Modelica Standard Library. It is planned to provide the components of Modeli-
caAdditions in an improved form in a future version of Modelica Standard Library. Modeli-
caAdditions includes currently of the following sublibraries

Summary

Model classes and their instantiation form the basis of hierarchical modeling. Connectors
and connections correspond to physical connections of components. Inheritance supports
easy adaptation of components. These concepts can be successfully employed to support hi-
erarchical structuring, reuse and evolution of large and complex models independent from
the application domain and specialized graphical formalisms.

The benefits of acausal modeling with DAE’s has been clearly demonstrated and compared
to traditional block diagram modeling. It has also been pointed out that tools can incorpo-
rate computer algebra methods to translate the high-level Modelica descriptions to efficient
simulation code.

References

Abadi, M. and L. Cardelli (1996): A Theory of Objects. Springer-Verlag.

Barton P.I. (1992).: The Modelling and Simulation of Combined Discrete/Continuous Proc-
esses. Ph.D. Thesis, University of London, Imperial College.

Barton, P. and C.C. Pantelides (1994): “Modeling of combined discrete/continuous process-
es.” AIChE J. , 40, pp. 966–979.

Mechanics 1D-rotational and 1D-translational mechanical components.

Thermal Components for Thermal systems.

Blocks Additional input/output control blocks.

HeatFlow1D Made obsolete by Modelica.Thermal.HeatTransfer.

MultiBody 3D-mechanical systems.

Petri Nets Components to model state machines and Petri nets.

Tables Linear interpolation in one and two dimensions.

102

Benner, P., V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga (1998): “SLICOT – A sub-
routine library in systems and control theory.” In Datta, Ed., Applied and Computational
Control, Signals and Circuits, vol. 1. Birkhäuser.

Breunese, A. P. and J. F. Broenink (1997): “Modeling mechatronic systems using the SI-
DOPS+ language.”In Proceedings of ICBGM’97, 3rd International Conference on Bond
Graph Modeling and Simulation, Simulation Series, Vol.29, No.1, pp. 301–306. The Soci-
ety for Computer Simulation International.

Cellier F.E. (1979): Combined Continuous/Discrete System Simulation by Use of Digital
Computers: Techniques and Tools. Diss ETH No 6483, ETH Zürich, Switzerland.

Clauß C., J. Haase, G.]urth, and P. Schwarz (1995): “Extended Amittance Description of
Nonlinear n-Poles.’’ Archiv für Elektronik und Übertragungstechnik / International Journal
of Electronics and Communications, 40, pp. 91-97.

Dymola. Homepage: http://www.dynasim.se/.

Eich-Soellner E., and C. Führer. Numerical Methods in Multibody Dynamics. Teubner,
1998.

Elmqvist, H. (1978): A Structured Model Language for Large Continuous Systems. PhD
thesis TFRT-1015, Department of Automatic Control, Lund Institute of Technology, Lund,
Sweden.

Elmqvist H. (1992): “An Object and Data-Flow based Visual Language for Process Con-
trol.’’ ISA / 92-Canada Conference & Exhibit, Instrument Society of America, Toronto.

Elmqvist H., F. E. Cellier, and M. Otter (1993): “Object–Oriented Modeling of Hybrid Sys-
tems.’’ Proceedings ESS’93, European Simulation Symposium, pp. xxxi-xli, Delft, The
Netherlands.

Elmqvist, H., D. Brück, and M. Otter (1996): Dymola — User’s Manual. Dynasim AB, Re-
search Park Ideon, Lund, Sweden.

Elmqvist H., B. Bachmann, F. Boudaud, J. Broenink, D. Brück, T. Ernst, R. Franke, P. Fritz-
son, A. Jeandel, P. Grozman, K. Juslin, D. Kagedahl, M. Klose, N. Loubere, S.E. Mattsson,
P. Mosterman, H. Nilsson, M. Otter, P. Sahlin, A. Schneider, H. Tummescheit, and H. Vang-
heluwe (1998): Modelica TM – A Unified Object-Oriented Language for Physical Systems
Modeling, Version 1.1, 1998. Modelica homepage: http: //www.modelica.org / .

Elmqvist H., S.E. Mattsson, and M. Otter (1999): “Modelica – A language for Physical Sys-
tem Modeling, Visualization and Interaction.’’ Proceedings of 1999 IEEE Symposium on
Computer-Aided Control System Design, CACSD'99, Plenary talk, Hawaii, USA.

Elmqvist H., S. E. Mattsson, and M. Otter (2000): “Object–Oriented Modeling and Hybrid
Modeling in Modelica.’’ Proceedings of the 4th International Conference on Automation of
Mixed Processes: Hybrid Dynamic Systems, ADPM2000, pp. 7-16, DASA, Dortmund, Ger-
many.

Engelson, V., H. Larsson, and P. Fritzon (1999): “Design, simulation and visualization envi-
ronment for object-oriented mechanical and mult-domain models in Modelica.” In Pro-

INTRODUCTION TO MODELICA 103

ceedings of the IEEE International Conference on Information Visualisation. IEEE
Computer Society, London, UK.

Ernst, T., M. Klose, and H. Tummescheit (1997) : “Modelica and Smile — A case study ap-
plying object-oriented concepts to multi-facet modeling.” In Proceedings of the 1997 Euro-
pean Simulation Symposium (ESS’97). The Society for Computer Simulation, Passau,
Germany.

Fritzson, P., L. Viklund, D. Fritzson, and J. Herber (1995): “High-level mathematical mod-
eling and programming.” IEEE Software, 12:3.

Gautier T., P. Le Guernic, and O. Maffeis (1994): “For a New Real-Time Methodology.’’
Publication Interne No. 870, Institut de Recherche en Informatique et Systemes Aleatoires,
Campus de Beaulieu, 35042 Rennes Cedex, France.

Halbwachs N., P. Caspi, P. Raymond, and D. Pilaud (1991): “The synchronous data flow
programming language LUSTRE.’’ Proc. of the IEEE, 79(9), pp. 1305–1321.

Halbwachs N. (1993): Synchronous Programming of Reactive Systems. Kluwer.

IEEE (1997): “Standard VHDL Analog and Mixed-Signal Extensions.” Technical Report
IEEE 1076.1. IEEE.

Jeandel, A., F. Boudaud, P. Ravier, and A. Buhsing (1996): “U.L.M: Un Langage de
Modélisation, a modelling language.” In Proceedings of the CESA’96 IMACS Multiconfer-
ence. IMACS, Lille, France.

Joos, H.-D. (1999): “A methodology for multi-objective design assessment and flight con-
trol synthesis tuning.” Aerospace Science and Technology, 3.

Kloas, M., V. Friesen, and M. Simons (1995): “Smile — A simulation environment for en-
ergy systems.” In Sydow, Ed., Proceedings of the 5th International IMACS-Symposium on
Systems Analysis and Simulation (SAS’95), vol. 18–19 of Systems Analysis Modelling Sim-
ulation, pp. 503–506. Gordon and Breach Publishers.

Lötstedt P. (1982): “Mechanical systems of rigid bodies subject to unilateral constraints.”
SIAM J. Appl. Math., Vol. 42, No. 2, pp. 281-296.

Mattsson, S. E., M. Andersson, and K. J. Åström (1993): “Object-oriented modelling and
simulation.” In Linkens, Ed., CAD for Control Systems, chapter 2, pp. 31–69. Marcel Dek-
ker Inc, New York.

Mattsson, S. E., H. Elmqvist, and M. Otter (1998): “Physical system modeling with Model-
ica.” Control Engineering Practice, 6, pp. 501–510.

Mattsson, S. E. and G. Söderlind (1993): “Index reduction in differential-algebraic equa-
tions using dummy derivatives.” SIAM Journal of Scientific and Statistical Computing,
14:3, pp. 677–692.

Mosterman P. J., and G. Biswas (1996): “A Formal Hybrid Modeling Scheme for Handling
Discontinuities in Physical System Models.” Proceedings of AAAI-96, pp. 905-990, Port-
land, OR.

104

Mosterman, P. J., M. Otter, and H. Elmqvist (1998): “Modeling Petri nets as local copn-
straint equations for hybrid systems using Modelica.” In Proceedings of the 1998 Summer
Simulation Conference, pp. 314–319. Society for Computer Simulation International, Reno,
Nevada, USA.

Otter, M., H. Elmqvist, and S. E. Mattsson (1999) : “Hybrid modeling in Modelica based on
the synchronous data flow principle.” In Proceedings of the 1999 IEEE Symposium on
Computer-Aided Control System Design, CACSD’99. IEEE Control Systems Society, Ha-
waii, USA.

Pantelides, C. (1988): “The consistent initialization of differential-algebraic systems.”
SIAM Journal of Scientific and Statistical Computing, 9, pp. 213–231.

Pfeiffer F., and C. Glocker (1996): Multibody Dynamics with Unilateral Contacts. John Wi-
ley.

Piela, P., T. Epperly, K. Westerberg, and A. Westerberg (1991): “ASCEND: An object-ori-
ented computer environment for modeling and analysis: the modeling language.” Comput-
ers and Chemical Engineering, 15:1, pp. 53–72.

Sahlin, P., A. Bring, and E. F. Sowell (1996): “The Neutral Model Format for building sim-
ulation, Version 3.02.” Technical Report. Department of Building Sciences, The Royal In-
stitute of Technology, Stockholm, Sweden.

Åström, K. J., H. Elmqvist, and S. E. Mattsson (1998): “Evolution of continuous-time mod-
eling and simulation.” In Zobel and Moeller, Eds., Proceedings of the 12th European Simu-
lation Multiconference, ESM’98, pp. 9–18. Society for Computer Simulation International,
Manchester, UK.

Tummescheit, H. and J. Eborn (1998): “Design of a thermo-hydraulic model library in
Modelica.” In Zobel and Moeller, Eds., Proceedings of the 12th European Simulation Mul-
ticonference, ESM’98, pp. 132–136. Society for Computer Simulation International,
Manchester, UK.

DEVELOPING A MODEL

DEVELOPING A MODEL 107

Developing a model

This chapter describes the Dymola environment for developing models. The general aspects
of the Dymola main window are described first, followed by a more detailed command ref-
erence. Simulation of the developed model is described in “Simulating a model” on
page 147.

General concepts

Window types

Dymola uses two types of windows (the main Dymola window and the library window),
that support different kinds of operations and also have different visual appearance.

Window modes

The main Dymola window can operate in two modes, Modeling and Simulation. The mode
of the window controls which operations are available and the default appearance of the
window. Going back to a previous mode restores its layout.

This chapter discusses the graphical editor, i.e. the modeling mode. The simulation mode is
described in “Simulating a model” on page 147.

108

The mode of the window is set by clicking on the tabs at the lower-right corner of the Dy-
mola window. Alternatively the keyboard shortcuts Ctrl+F1 and Ctrl+F2 or the Window/
Mode menu can be used, see “Window menu” on page 142.

Window mode tabs.

Modeling Changes the window to modeling mode. This mode is used to browse models,
compose new models or to change existing models.

Simulation Changes the window to simulation mode. This mode is used to set up an exper-
iment and simulate a model. The results can be plotted and visualized with 3D animation.

Edit window

An edit window is used to compose models from existing classes (models and connectors),
connections between connectors and graphical information. An edit window by default
shows a single layer of a class; each layer represents a different aspect of the class, see
“Class layers” on page 111.

The edit window has a toolbar with buttons to select layer and to start drawing operations.
There are browsers for packages and the component structure along the left side. The user
may insert components into a model by dragging components from the package browser.

Editor showing the

icon layer.

DEVELOPING A MODEL 109

Package and component browsers

The Dymola window contains two browsers along the left edge of the window. The package
browser (top) displays the hierarchy of several packages and it is possible to drag a compo-
nent model from the tree into the graphical editor in order to add a component to a model.
The component browser (bottom) provides a tree representation of the current model’s com-
ponent structure.

The diagram window and the component browser are synchronized to give a consistent
view. When you select a component in the diagram window, it is also highlighted in the
component browser and vice versa. The diagram window gives the top-level component
structure of a component, while the component browser gives the entire hierarchical com-
ponent structure.

When a model is chosen in the package browser, it becomes the root model of the graphical
editor. The check, translate and simulate commands operate on the root model. Navigation
into its component hierarchy allows inspection of model details, but does not change the
root model or permit editing.

The contents of the package browser and the component browser is by default sorted ac-
cording to order of declaration in the enclosing class. Clicking on the header line sorts the
contents in alphabetical order. Clicking a second time restores declaration order.

Modified classes are marked in red in the package browser until they are saved. A package
(and all classes inside it) is marked read-only if the Modelica file is read-only.

Package browser context menu

Pressing the right mouse button in the package browser presents a menu with the following
choices. A similar menu is presented when pressing the right mouse button in the compo-
nent browser.

Open Library Window Creates a new library window, see below.

Open Class in This Window Opens the class of the selected class in this window.

Open Class in New Window Opens a new main window with the selected class.

Check Checks the selected class for errors. See “Edit/Check” on page 140.

Search...Searches the selected class for all classes or components matching a search pat-
tern. See “File/Search...” on page 134.

Close Closes an open hierarchy and all lower levels.

Info... Displays extended documentation for the selected class. HTML documentation will
be used if it is available, both for the standard packages and for classes written by users.

 What’s this?
You can also use “What’s This”on each class to display its documentation in a small popup-
window inside Dymola.

110

Several editing operations are also available, in particular to create/remove/modify classes
of a package.

Remove Removes the class from its enclosing package.

Rename Renames a class. This can move the class the class to a different package. For
changing the order of classes within a package use “Order”.

Duplicate Class Duplicates a class, see “File/New.../Duplicate Class” on page 133.

Extend From Creates a new class, which extends from the selected class. See also “File/
New.../Model etc.” on page 131.

New Class in Package Creates a new class of the desired type in the selected package. See
also “File/New.../Model etc.” on page 131.

Order Moves the class up or down in the package browser. This requires that the class and
the enclosing package are both stored in the same file. Use “Rename” if you want to move
the class to another package.

Note that dangling references to the removed or renamed class may not be detected. Make
“Check” on the enclosing package to detect some potential problems, see “Edit/Check” on
page 140.

Library window

A library window shows the contents of a Modelica package, typically models, connectors
or other packages. The user may insert components into a model by dragging components
from library windows to an edit window. Double-clicking on a model or a nested package
opens it.

The library window can show a tree view of the package, an icon view of the package or
both. Library windows do not allow editing and there is no toolbar.

A library window with

icon view only.

Modifier window

Modifiers of a component (and possibly its sub-components) are viewed and modified us-
ing a modifier window. It also shows the name, icon, comments and full path of the corre-
sponding model. See also “Modifier window” on page 116.

DEVELOPING A MODEL 111

A modifier window.

Class layers

Edit windows use four layers to represent different aspects of a class. The first two layers
are graphical:

• The icon layer represents the class when it is used as a component or connector in another
model, that is, the diagram layer displays the icon layer of its components. The surround-
ing background of the icon layer is light blue when editing is possible.

• The diagram layer shows the major contents of the class, i.e., components, connectors and
connections, decorated with additional graphical primitives. The surrounding background
of the diagram layer is light grey when editing is possible.

The other two layers use a textual representation:

• The documentation layer shows the one-line description of the class, plus the longer info
text that gives a complete explanation of its behavior. These texts are available when
browsing classes and components. It is also used for automatically generated HTML doc-
umentation.

• The Modelica text layer shows simple declarations of local constants, parameters and
variables, and the equations of the class. Components with graphical representation are by
default hidden.

Connectors are typically placed in the diagram layer of a model. Public connectors are also
shown in the icon layer to assist the graphical layout of the icon and to make it possible to
connect to the component. Protected connectors are only shown in the diagram layer.

112

Diagram layer of an edit

window.

Modelica text of a model.

Class documentation

Two levels of documentation is available in the documentation layer or in the component or
connector modifier windows, if the author of the model has provided it. If no documenta-
tion is available in the model, Dymola will search the base classes for documentation.

DEVELOPING A MODEL 113

Description and information

The first level is a short one-line description of the class, which is shown in the documenta-
tion layer and in the modifier window.

The second level of extended documentation is available in the documentation layer, or by
using the right mouse button menu. Other comments are associated with declarations or
equations. Units and declaration comments are also shown in the modifier window.

HTML documentation

Dymola can automatically produce HTML code for Modelica models. The HTML file may
contain all classes used as base classes or as components; this ensures a complete descrip-
tion of the model or the package. All references to classes are clickable links, which makes
browsing easy and efficient. Class libraries are described with a clickable list of its compo-
nents, followed by the description of each component.

The user may include arbitrary HTML code in the documentation. This makes it possible to
take advantage of images, tables and other forms of formatting.

Coordinate system

Every class has a master coordinate system that is used for all graphical information in the
class. The view of a class in a window is normally scaled so the entire master coordinate
system is visible. The surrounding parts of the window are empty if the aspect ratios of
master coordinate system and window do not match. The user can change the zoom factor
to show more or less of the model. The master coordinate system is defined with real num-
bers and does not depend on screen or window size.

A class may also have a grid specification, which is used to make drawing operations easier.
Points defined by the user will “jump” to the nearest grid point. Points read from a file are
not snapped to the current grid.

Associated with every model class is also a default component size. Components and con-
nectors dragged into the model class will initially have the default size, but can be reshaped
after insertion.

Specification

The coordinate system can be defined by the user in the Graphics tab of Edit/Attributes. The
default coordinate system, grid and component size are either

• Inherited from a base class, or

• Copied from the program defaults (–100, –100) to (100, 100) with grid (2, 2). The default
component size is (20, 20).

Alignment of components in a diagram is facilitated by gridlines. Gridlines are drawn for
every 10th of the class’ grid points.

114

Model editing

Basic operations

The default interaction mode, known as “select mode” or “pick mode” is used both to select
and move objects, and also to connect connectors. Other modes are temporary; for example,
after inserting a component the program goes back to select mode.

Selecting objects

Left mouse button se-

lects, moves and re-

shapes.

Visible objects, i.e., components, connectors and graphical primitives, are selected with the
left mouse button. Many commands operate on the current selection, one or more objects
marked with small red squares at the corners (called handles). The component browser also
indicates selected components.

The procedure for selecting objects in the diagram or icon layers is as follows:

• Clicking on an unselected object makes this object selected, and the previous selection is
unselected.

• Clicking on an unselected object while holding down the Shift key toggles the select sta-
tus of this object, without unselecting the previous selection.

• Multiple objects can be selected by pressing the left mouse button with the cursor between
objects, and then moving the mouse (while holding the left button down) to span a selec-
tion rectangle. All objects inside the selection rectangle are selected, and the Shift key has
the same effect as described above.

• Clicking on a selected object does not change the current selection (if Shift is not pressed).

• Components can also be selected by clicking in the component browser.

In an edit window, double-clicking on an object opens a dialog with additional information.
For components and connectors several attributes may be changed, see “Modifier window”
on page 116.

See also “Edit/Select All” on page 139.

Context menus

Right mouse button

presents a context

menu.

Pressing the right mouse button usually presents a menu with operations suitable for the se-
lected object. Context menus are presented for components and connectors, for lines and
connections, and also for the model itself when no object is selected.

Context menus are also available in the package and component browsers, and in the library
window.

Moving objects

Objects are moved by pressing down the left mouse button with the cursor over one of the
selected objects, and then moving the mouse (while holding the left button down) to the de-

DEVELOPING A MODEL 115

sired position. All selected objects are moved the same distance, rounded to a multiple of
the grid.

Note that when connect mode is enabled, connectors must be selected first, then moved.
Clicking on a connector followed by an immediate move will draw a connection.

Moving objects with ar-

row keys.

Selected graphical objects can be moved by pressing the arrow keys. The default is to move
one grid unit (as specified in Edit/Attributes). If the Ctrl key is held down, the objects are
moved half a grid unit. If the Shift key is held down, the objects move half a gridline (five
grid units).

Connections are automatically adjusted after a move operation to make sure that the end
points still reach the corresponding connectors. Edit/Manhattanize can be used to clean up
skewed connections.

Reshaping objects

First select an object. The object can then be reshaped by moving the handles, for example,
making a component larger or changing the shape of a polygon. The object is redrawn while
the handle is moved.

Common reshaping operations are also available in the Edit menu, for example, rotation
and flipping horizontally and vertically.

Deleting objects

Pressing the Delete key deletes the current selection. Connections attached to any deleted
components or connectors are also by default deleted, in order to maintain model consisten-
cy.

Only objects defined in the class being edited can be deleted. Inherited objects, while also
shown as selected, are not deleted. Objects in read-only models cannot be deleted.

Components and connectors

Inserting a component or a connector

Components and connectors are inserted by dragging a class from the package browser, or a
library window, into the editor. The dragging procedure is:

• Select a class in the package browser or in a library window.

• While pressing the left mouse button, move the cursor to an edit window and position the
icon at the desired position.

• Release the left mouse button to confirm the insertion.

The size of the inserted component or connector is according to the specified component
size defined in the enclosing class.

Name and modifiers

are set after inserting.

The newly inserted component or connector is automatically given a name composed from
the name of its class and a sequence number (to avoid name conflicts). Name, comment and
modifiers can be changed in the modifier window, see “Modifier window” on page 116.

116

Size can be adjusted by moving the handles. Orientation is changed with commands in the
Edit menu.

It is also possible to insert a name into the Modelica text editor by dragging from the pack-
age browser or a library window. This can for example be used to declare variables of types
from Modelica.SIunits or functions from Modelica.Math.

Context menu for components

Pressing the right mouse button when a component is selected presents a menu with the fol-
lowing choices. A similar menu is presented when pressing the right mouse button in the
component browser.

Parameters... Opens the modifier window, see below.

Show Component Shows the class of the component or connector in this window. Press
the Previous button to go back.

Open Class in New Window Opens a new main window with the class of the component
or connector.

Attributes... Opens a Component Attribute dialog, see “Component attributes” on
page 120.

Info... Displays extended documentation for the class of the component or connector.
HTML documentation will be used if it is available, both for the standard packages and for
classes written by users.

Modifier window

Double-clicking on a component or connector in the graphical editor displays a dialog win-
dow with additional information. The modifier window can also be started from “Parame-
ters...” in the context menu of components and extends-clauses in the component browser.
This makes it possible to directly change inherited parameters.

In the “General” tab, the first section shows the name of the component or connector and
the component-specific comment. The second section shows the full path of the corre-
sponding class and the class-specific comment. The icon is shown on the right.

The rest of the modifier window contains the modifiers of the component or connector. For
a component or connector that is not read-only, name, comment and modifiers can be
changed (provided the component or connector is found at the top-level in the component
browser). Note that it is possible to set parameters even if the component or connector is not
at the top-level, these are stored as hierarchical modifiers.

Parameters can be or-

ganized in Tabs and

Groups.

The parameters of the modifier window can be structured at two levels. The first level con-
sists of Tabs which are displyed on different pages of the window. The second level is a
framed group on the page. Different variables with the same Tab and Group attributes are
placed together.

DEVELOPING A MODEL 117

A modifier window.

When multiple components have been selected, the modifier window contains the intersec-
tion of all parameters. If the selected components do not use the same value for a parameter,
then the symbol <<...>> is shown instead of a value; changing this field sets the parameter
for all selected components.

A modifier window for

multiple selection.

Component and connector modifiers

Component modifiers are displayed in a table with columns for name, value, unit, and de-
scription of the variables. The list of variables is extracted from declarations in the class and
its base classes, and the actual modifier values are defined in the component in the edited
class.

118

The actual value of a variable is changed by clicking in the corresponding field and typing
in the new value. An existing actual value is erased by clicking in the corresponding field
and pressing the Delete key. The Tab/Shift-Tab keys move from one input field to another.

The Add Modifiers tab is used to add new modifiers, e.g., start values or nested modifiers.

Pressing the OK button will generate a modifier list for the component. Only modifiers with
non-empty value fields are used.

The modifiers that appear and can be set are:

• Normal parameters, i.e. variables declared with the keyword parameter in the model.
These can be set to a value that is either numeric or computed from other parameters.

• Class parameters, i.e. replaceable classes in the model, that can be redeclared to another
class here. Suitable choices are presented in form of a drop-down list with the icons of the
classes. It is also possible to write the class name directly (e.g. by copying a name from
the model-browser before opening the dialogue and then pasting it into this field). One
can also add hierarchical modifiers to class name. The choices can be given using the an-
notation choices as described in the Modelica specification. Note that the declaration in-
side choices refer to global scope, i.e. must use full lexical path.

• Hierarchical and other forms of free form modifiers, e.g. x(start=2, unit="m"). This
is used as a catch-all for more complex cases, and can replace values for normal parame-
ters/class parameters.

• Add modifiers. This is a comma-separated list of free form modifiers, and can be used to
add free form modifiers for new variables. The next time the modifier dialogue is opened
the list elements have been moved to the items. The field does not appear if the model is
read-only.

Grey backgrounds for modifiers indicate default values, e.g. from the class of the compo-
nent. One can see where the default originates from by clicking “What’s This” on the modi-
fier field, or using “View Parameter Settings” in its context menu.

The context menu of a modifier can be accessed by pressing the triangle to the right of the
input field (or by using the right mouse button inside the field). The context menu allows
you to:

Edit Allows hiearchical inspection and editing. This uses a matrix editor for matrices (see
page 119), a function call editor for function calls, and a parameter dialog for structured
modifiers and redeclarations.

Edit Text Shows a larger input field for modifying long modifiers.

Copy Default Copies the text of the default value to the input field for further editing.

Edit Combined Edits an array of calls to functions or record constructors.

DEVELOPING A MODEL 119

Editor for array of

records.

View Parameter Settings Shows where the default originates from, and all modifiers ap-
plied between the original declaration and the current one.

Propagate Inserts a parameter declaration in the enclosing model and binds the compo-
nent’s parameter to it by introducing a modifier of the type p=p. Default values are not
propagated to the new parameter declaration.

Class Reference Inserts a reference to a class in the model.

Component Reference Inserts a reference to a component in the model at the insertion
point of the input field.

Select Class Provides a class selector for redeclarations with all matching classes.

Select Record Selects a record constructor or constant among suitable candidates.

Any changes become effective when pressing the OK button, and are discarded by pressing
the Cancel button. If the shown model is read-only no changes are possible and only a Close
button appears.

Array and matrix editor

The array and matrix editor allows editing of both elements and array size. A context menu
available to insert rows (before the selected entry) and delete rows and columns. Insertion
after the last entry is performed by increasing the size.

Editor for matrices.

The matrix editor has an extended dialog for plotting one- and two-dimensional table func-
tions, which is displayed by pressing the Plot >>> button.

120

Matrix editor with plot.

The contents of the table can be interpreted in three different ways when plotted. The type
of plot is selected by pressing the corresponding button. Maps are available if the matrix
size is greater than 2x2.

Table Plots columns 2..n versus first column. Vectors are plotted against index number.

Map Rows Plots rows of a 2D map. Plots rows 2..n versus first row, except the first ele-
ment of each row.

Map Columns Plots columns of a 2D map. Plots columns 2..n versus the first column, ex-
cept first element of each column.

At present it's not possible to directly adjust the size of the plot. However, it is possible to
adjust the size of the matrix editor when the plot is not shown. When the Plot >>> button
is pressed the plot size will be squared with the same height as the matrix editor.

Component attributes

Several component attributes can be changed with Attributes... from the context menu.
These attributes reflect component properties specified in the Modelica language. The illus-
tration below shows the default settings.

DEVELOPING A MODEL 121

The component at-

tributes dialog.

Connections

A connection is a graphical representation of a connect statement between two connec-
tors. Connections can be made when Dymola is in connect mode, as indicated by the
pressed-down tool button. If the model is read-only, or connect mode is off, connections
cannot be made.

Creating a connection

Connections are defined interactively in Dymola in a manner similar to drawing lines.

• Click on a connector and draw a line, possibly with multiple line segments (see “Lines
and polygons” on page 123). Note that the mouse button must be pressed down while
drawing the first line segment.

• Click on another connector to finish the connect operation. Double-clicking outside a con-
nector presents the context menu.

The line segments of the connection snap to the grid of the class by default, but are then ad-
justed so the connection end points reach the corresponding connectors. This may cause
skewed lines if the grid is coarse, but it can usually be adjusted with Edit/Manhattanize. The
manhattanize operation inserts points until there are at least four points to work with, so the
line can be drawn at right angles.

If automatic manhattanize is enabled, connections are manhattanized immediately when
created, moved or reshaped. If automatic manhattanize is on, moving a component automat-
ically manhattanizes all connections to the component.

Connections are imme-

diately checked.

When a connection has been defined some checks are performed automatically.

• A connection that begins and ends at the same connector is not allowed.

122

• Two connections between the same connectors are not allowed.

• The connectors at each end of the connection are checked for compatibility. The case of
nested connectors is described below. If any other incompatibility is detected the error
message displays the declarations of the two connectors. The connection can then be can-
celled.

When drawing a connection, the default color is taken from the starting connector. The con-
nection gets the color of the outline of the first rectangle, polygon or ellipse in the icon layer
of the starting connector. This change facilitates color-coding of connections depending on
the type of connector.

Note that drawing a line between two connectors (see line drawing below) does not create a
connection.

Context menu while connecting

Pressing the right mouse button or double-clicking the left mouse button while the connec-
tion is being draw presents a menu with these choices.

Create Connector Creates a new connector at the cursor position and the connection is
completed. This connector has the same type as the connector at the start of the connection.
This operation is typically used to draw a connection from a component which should end
with an identical connector in the enclosing class.

Create Node Creates a new protected connector (internal node) at the cursor position and
the connection is completed. This connector has the same type as the connector at the start
of the connection. The size of the new connector is 1/10 of the normal component size.

Cancel connection Cancels the connection operation; no connection is made.

Nested connectors

When a connection between incompatible connectors is attempted, it is checked if one of
them has nested connectors. If so, a dialog for selecting a subconnector is presented.

Nested connector dia-

log

DEVELOPING A MODEL 123

In this case a connection from the Pin Resistor1.n to the connector Cable1 is made. Cable
has two nested connectors Pin1 and Pin2. The pull-down choices shows these alternatives.

Creating graphical objects

Graphical objects are drawn by clicking on buttons in the draw toolbar. The corresponding
toolbar button is shown in a depressed state while the drawing operation is in progress. The
toolbar also contain two buttons for setting line and fill style attributes, with associated pull-
down menus.

The drawing toolbar.

The graphical tools described in this section work in essentially the same way:

• Select a tool by clicking on the appropriate button in the toolbar.

• Move the cursor to the “start” position in the edit window.

• Interact with the tool, for example, spanning a rectangle.

• After the interaction has been completed, Dymola returns to the default select/move/con-
nect mode.

A common operation is to define two points, for example, the end points of a line segment
or two opposite corners of a rectangle. This can be made in two different ways:

• Click the left mouse button at the start position, move the mouse to the end position, end
click the left mouse button a second time.

• Press the left mouse button at the start position, move the cursor while pressing the left
mouse button, and release the button at the end position.

The drawing operations snap the definition points to the grid of the model class. The details
of the drawing operations are described below.

Lines and polygons

Click on the polyline or polygon button in the toolbar, and draw line segments. Interaction
ends when the left mouse button has been clicked twice at the same position.

Polygons are automatically closed by Dymola.

Skewed lines can be cleaned up with Edit/Manhattanize which applies a manhattan-mode
algorithm to the intermediate points of the line

Lines are not connec-

tions.

Note that drawing a line between two connectors does not create a connection, although the
difference may be impossible to see in the editor.

Rectangles and ellipses

Click on the rectangle or ellipse button in the toolbar, and draw the shape in an edit window.
Ellipses are drawn to touch the bounding box at four points.

124

Text

Click on the text button in the toolbar, and draw the text object in an edit window. Dymola
prompts for a new text string in a separate dialog window.

The text is centered in the bounding box; the size of the text is chosen as big as possible
without overflowing the bounding box. If the minimum font size option is set, the text may
be truncated (indicated with ellipses ...) and a small bounding box may overflow vertically.
If space is extremely limited the text is not drawn at all.

These tokens are expanded in a text string:

%class Name of the enclosing class.

%name Name of the component this text is enclosed in.

%path The full path name of the component.

%par The value of parameter named par in the model.

%=par The value of parameter named par in the model,
printed as par=value.

Double-clicking on a text displays a dialog window for changing its contents.

Bitmap

Draws a bitmap which is read from an external file. Click on the bitmap button in the tool-
bar, and draw the outline in an edit window, then specify the bitmap filename. Supported
file formats are BMP, GIF, JPEG and PNG. The bitmap is scaled preserving aspect ratio,
centered in the bounding box.

Default graphics

Classes without graphical information are automatically given a simple default layout when
displayed by Dymola. The purpose of the default graphics is to provide some meaningful
graphics while the model is initially edited.

• Components and connectors without graphics are represented by a rectangle and a text
with the name of the component at the center.

The default layout can easily be changed by the user.

Changing graphical attributes

The user must first select one or more primitive graphical objects, and then pick one of the
style buttons on the toolbar to change the corresponding visual attributes of the selection.
Note that line color and fill area color are different attributes (a rectangle has both, for ex-
ample), and have different buttons in the toolbar. Text color is set as line color.

Selecting an attribute from the menu sets that attribute for the selected objects (when appli-
cable), and also marks it as the default. Clicking on the button sets all line (or fill) style at-
tributes for the selected objects.

DEVELOPING A MODEL 125

Line style

The line style attributes are

• Color, (or no color, for example to draw a filled area without border).

• Line style (solid, dashed, dotted, dash-dot or dash-dot-dot).

• Thickness (single, double or quad).

• Arrow style (none, start, end, both or harpoon).

Fill style

The fill style attributes are

• Color, (or no color, for example to draw a rectangle).

• Fill pattern (solid, left diagonal, right diagonal or cross pattern).

• Gradient (flat, horizontal, vertical or spherical).

Modelica text

Modelica text such as declarations, equations and algorithms are edited in the Modelica text
layer. By default it contains the Modelica text for declarations of non-graphical components
of the class, e.g., constants, parameters and variables, and equations of the model.

Modelica text layer.

Graphical components and connections are by default indicated by icons inserted into the
the text. Using the context menu it possible to show the corresponding Modelica text.

126

Context menu

Pressing the right mouse button presents a context menu with common text operations.
Most of these operations are also available in the Edit menu.

Undo, Redo Undoes and redoes the last editing operation in the text editor. Same as Edit/
Undo and Edit/Redo.

Cut, Copy, Paste Copies text between the clipboard and the editor.

Delete Deletes all text in the editor.

Select All Selects all text in the Modelica text layer.

Find Find and replace text in the text editor. Enter the text you search for and press OK.

Goto Line Sets cursor at specified line and scrolls window if necessary.

ExpandSelects the expansion level. Normally graphical components and connections are
represented with icons in the corresponding Modelica text. By editing the expand-level you
can you can see these, and also the contents of the annotations.

Highlight Syntax Scans the text in the editor and applies syntax highlighting for the Mod-
elica language. Any syntax errors are reported in the message window.

Settings Defines settings that affect the editor.

Insert Presents a submenu with common Modelica constructs. This makes it easier to enter
Modelica code.

Edit function call Inside a function call this allows you to modify the arguments using a
modifier window.

Selected Class Allows you to open the selected class, or its documentation.

Documentation

Class documentation consists of a one-line description and a larger documentation text.
This information, as well as full model path, is shown in the documentation layer.

DEVELOPING A MODEL 127

Documentation layer of

a model (viewing).

Context menu when viewing

Pressing the right mouse button presents a context menu with common text operations.
Most of these operations are also available in the Edit menu.

Copy Copies text from the documentation layer to the clipboard.

Select All Selects all text in the documentation layer.

Find Find and replace text in the text editor. Enter the text you search for and press OK.

Goto Line Sets cursor at specified line and scrolls window if necessary.

Edit Source Switches the documentation layer from viewing mode to editing mode, see
below.

Editing description

The description string is edited by selecting Edit/Attributes from the menubar. It also possi-
ble to modify other attributes of the class, and to select if the class is stored in one file or
hiearchically, see “Edit/Attributes...” on page 140.

128

Model attributes.

Editing documentation text

Choosing Edit Source from the context menu switches the documentation layer to editing
mode. In this mode the unformatted HTML code of the documentation is shown, and can be
edited.

Documentation layer of

a model (editing).

Arbitrary HTML can be

used for documenta-

tion.

The user may include arbitrary HTML code in the documentation by enclosing it in an
<HTML> …. </HTML> escape sequence in the textual documentation. This makes it possible

DEVELOPING A MODEL 129

to take advantage of images, tables and other forms of formatting. For example, a plot im-
age can be referenced with:

<HTML>

The result is shown here:

</HTML>

In addition the browser also supports universal resource identifiers for anchor-tags using the
syntax href=”Step” (using normal lexical lookup in Modelica) or href=”Modelica://Modeli-
ca.Blocks.Sources.Step” (using full lexical names). These are transformed into references
that the browser can understand when exporting HTML-code.

Context menu when editing

Pressing the right mouse button presents a context menu with common text operations.
Most of these operations are also available in the Edit menu.

Undo, Redo Undoes and redoes the last editing operation in the editor. Same as Edit/Undo
and Edit/Redo.

Cut, Copy, Paste Copies text between the clipboard and the editor.

Delete Deletes all text in the editor.

Select All Selects all text in the documentation layer.

Find Find and replace text in the text editor. Enter the text you search for and press OK.

Goto Line Sets cursor at specified line and scrolls window if necessary.

Edit Source Switches the documentation layer back to viewing mode.

HTML documentation

Dymola can produce HTML code for Modelica classes. Models are described both graphi-
cally with bitmaps of the icon and diagram layers, and textually with descriptions and full
model code. The HTML code may include all classes used as base classes or as components
to ensures a complete description of the model or the package. All references to classes are
hyperlinks, which makes browsing easy and efficient. Class libraries are described with a
clickable list of its components, followed by the description of each component.

Pressing the Info… button will use HTML documentation if it is available, both for the Dy-
mola standard packages and for classes written by users. This requires the conventions of
the default online documentation.

External references

Four different types of HTML documentation can be generated. They differ in terms of
what classes are documented and how links to other files are created. What kind of informa-
tion is emitted for each class is controlled by another set of options.

130

Generate online documentation

This is the suggested

default mode.

HTML documentation and associated bitmaps are created in the help subdirectory of the
top-level model or package. A separate HTML file is also created for each subpackage. Dy-
mola assumes this structure for references to other classes, creating links to the help subdi-
rectories of each package.

This setting generates complete HTML with a full set of links, without the need to create
duplicate files. Model changes require only local regeneration of HTML, but all related
models should be consistently documented in this way.

Generate HTML for referenced classes

Complete HTML is generated for the model and all referenced classes. The user will be
asked for the filename of the top-level HTML file; all other generated files will be saved in
the same directory.

This setting creates a directory with a complete set of files and no links to other directories,
thus ensuring maximum portability of the produced HTML. Such a directory can easily be
moved to a web-server, for example. The main drawbacks are the storage overhead, and the
need to regenerate when any referenced model has been changed.

Generate links to online documentation

Generates HTML in the file specified by the user and links to other libraries if the HTML
files exist. This mode is similar to “Generate online documentation” except that the HTML
file is not automatically stored in the help directory. It can for example be used to docu-
ment a model in a library during development, before creating the final library documenta-
tion.

Do not generate external links

HTML without any links to other files is generated. This setting provides pretty-printed
documentation for a single model or package only.

HTML options

The generated HTML code is controlled with regards to documentation contents, references
to other files and the size of graphics.

Class contents Controls what kind of information is included in the HTML file for each
class. This makes it possible to reduce the size of the documentation and hide certain parts,
such as the equations. The parameter section is a tabular description of all parameters, in-
cluding parameters inherited from base classes.

External references Controls what kind of HTML documentation is generated, see above.

Diagram image size Bitmap images are not scalable and the best size depends on several
factors, e.g., the number of components, complexity of graphics and the intended use of the
documentation. Dymola uses a combination of heuristic sizing and user control.

DEVELOPING A MODEL 131

The HTML options dia-

log, default settings

shown.

Editor command reference

File menu

Toolbar

The toolbar contains buttons open and save models, and to print. The final button enabled
interactive help, see “Help/What’s This” on page 143.

File/New.../Model etc.

Creates a new model, connector, record, block or function. Dymola presents a dialog win-
dow where the user must enter the name of the new model, a short description, and if this is
a partial model. The name must be a legal Modelica identifier and not clash with existing
models.

The fourth field is the name of the base class (if the class should extend from an existing
model). It is possible to drag a class name from the package browser into this field.

Drag from the pack-

age browser to extend

or insert in a package.

The fifth field is the optional name of the package the new model should be inserted into.
The package must already exist. Leave this field empty if the model class should not be in-
serted into a package. Existing modifiable packages are available in a drop-down list.

132

Creating a new model.

File/New.../Package

Creates a new package; as for creating new models, the user is asked for package name, a
short description, optional base class to extend from, and the name of an optional parent
package.

Dymola supports two ways of storing packages:

• Saving the package as a single file. All models etc. of the package are stored in this file.
This alternative is recommended for small packages.

• Saving all models etc. of a package in separate files. The package itself is stored as a di-
rectory in the file system, plus a file called package.mo which stores package documen-
tation and other annotations. This alternative is recommended for large packages.

Use separate files for

concurrent develop-

ment.

Saving the contents of a package in separate files supports multiple developers concurrently
working on the package (editing different models, of course). When a version management
system is used, storing models as separate files allows version control on a per-model basis.

Note: the storage format can be changed by “Edit/Attributes” after the package has been
created see “Edit/Attributes...” on page 140, or for a top-level package using “Save As” and
not changing the name, see “File/Save As” on page 134.

DEVELOPING A MODEL 133

Creating a new pack-

age.

File/New.../Duplicate Class

Creates a new class with the same definition as the current class. The user must give the
new class a unique name in the scope where it is inserted. If the package name is empty, the
the duplicate class is inserted in the global scope, i.e., outside of any packages.

Duplicating a class.

File/Open...

Reads the contents of a Modelica file. The names of all read classes is shown in the status
bar; errors found when parsing the Modelica model are shown in the message window. The
number of read classes and the number of errors and warnings are shown after the file has
been opened.

If any referenced classes (used as base class or the class of a component) cannot be found,
Dymola will search for additional packages defined in the directories of DYMOLAPATH or
MODELICAPATH.

Dymola will automatically change the current working directory to the directory of the
opened file.

134

File/Libraries

The libraries menu is

extended when option-

al libraries are in-

stalled.

Displays a menu with shortcuts to known libraries. Selecting one of the libraries is equiva-
lent to opening the filename shown in the statusbar with File/Open.

The library menu is built with library commands in dymola\insert\dymodraw.ini.

File/Demos

Displays a menu with shortcuts to predefined demo models. Note that in many cases there is
a corresponding script file which should be opened after the model. See also “Simulation/
Run Script...” on page 149.

File/Save

Saves the class in the current window.

• If the original model definition was read from a file, that file is updated.

• Otherwise, a the user is prompted for a filename. The name of the class with file exten-
sion.mo is default.

If the name of the class is “Unnamed” (for a new class), Dymola will ask for a another class
name.

Dymola will ask the user to save a modified class before terminating.

File/Save As

Duplicates the current model and saves it to a new file. See also “File/New.../Duplicate
Class” on page 133. For a top-level class or package it is also possible to save it with the
same name, but to a different file (or directory).

File/Save All...

Saves all modified model classes with a File/Save operation.

File/Save Total...

Saves the class in the current window and all classes used by it. This creates a single file
with the complete definition of a class, which is independent of other files and libraries.

File/Clear All

Performs a Save All operation and then removes all model definitions in Dymola, except
the Modelica standard libraries.

File/Search...

Shows all classes or components matching a search pattern. File/Search... will search all
classes read by Dymola. Selecting Search... in the package browser will only search the se-
lected package.

DEVELOPING A MODEL 135

The search dialog.

The search pattern can be matched against two general topics of the classes:

Modelica text Match search pattern anywhere in Modelica text, except for documentation
and other annotations. The full Modelica text of a package is not searched, only the classes
inside the package. Examples:

model M "pattern"

 Real x = pattern;

equation

 pattern = 0;

end M;

Full documentation Match search pattern against the full documentation of classes.

It is also possible to match the search pattern against specific details of the model. This
group is disabled if the Modelica text is searched.

Class name Match search pattern against names of classes.

Description Match search pattern against the description string of classes or components.

Component name Match search pattern against the names of components. Example:

model M

 CompType pattern;

end M;

Use of class Match search pattern against uses of class as the type of components and in
extends clauses. Matches in redeclarations and extends are marked with a special icons. Ex-
amples:

136

model M

 extends pattern;

 pattern comp_name;

 CompType c1(redeclare pattern c2);

end M;

The search options control how the matching is done for each searched item:

Complete match Match the complete contents of topics. If not checked, the search pattern
will match parts of the topics.

Match case Match upper and lower case exactly. If checked, the search pattern a will not
match A.

The search result at the bottom of the search dialog displays the name of the class or com-
ponent matching, where the matching item is located, and the short description of the
matching item. The results can be sorted by clicking on the corresponding heading.

Two operations are available on the matching items. Double click on a matching class
opens that class in the associated edit window. Double click on a component opens the en-
closing class and selects the matched item. Classes can be dragged into the graphical editor
to insert a component.

File/Change Directory...

Display a dialog which allows the user to change the current directory. The current directo-
ry is used as the default location for opening files, and for saving simulation results.

cd

Change Directory may also be given as a textual command. A cd command without direc-
tory specification prints the current working directory in the log window.

Changing directory.

File/Print...

Prints the contents of the window on the current printer. This command is only available in
the Windows version of Dymola.

DEVELOPING A MODEL 137

File/Export/To Clipboard

Copies the contents of the active window to the clipboard in Enhanced Metafile Format,
which can then be pasted in common word processors. Such an image can be rescaled and
edited in e.g. Microsoft Word. This command is only available in the Windows version of
Dymola.

File/Export/Image...

Saves a PNG image of the contents of the active window (without window borders). The
image is identical to the image shown in the window, so the size and representation can be
changed by first resizing the window.

Exported images are included in the command log.

File/Export/Animation

Saves the current animation window in AVI (Audio-Video Interleaved), animated GIF or
VRML format.

To export an animation in AVI format, the user must select small file size, which may incur
some loss of image quality due to compression, or large file size without loss of quality. It is
also possible to change the frame rate, i.e., the number of image frames per second.

AVI export setup.

To create animated GIF images, Dymola requires that GIF Construction SetTM from Alche-
my Mindworks has been installed on the computer. Environment variable DYMOLAGIFCON
must point to the executable program, and Dymola must be started afterwards.

File/Export/Setup HTML…

Sets up options for exporting HTML. See “HTML documentation” on page 129.

File/Export/HTML…

Exports comprehensive model and library documentation in standardized HTML format ac-
cording to the options in File/Export/Setup/HTML. See “HTML documentation” on
page 129.

File/Save Log...

Saves the contents of the command log window to file. The user is prompted for a filename.
The contents of the command log can be saved in three different formats.

138

• HTML log with embedded images created with File/Export/Image. This format is the
closest to the command log as shown in Dymola.

• Textual log, without any images but including command output.

• As script file, containing all commands given but without the output from the commands.

File/Clear Log

Erases the contents of the command log.

File/Recent Files

Shows a list of the most recent files which were opened with File/Open... (see page 133) or
Simulation/Run Script... (see page 149). Selecting one of the files opens it again, typically
to open models after File/Clear All or to re-run a script.

File/Exit

Terminates the program. Before terminating, Dymola will ask if modified model classes
should be saved, one by one.

exit

The exit command can also be given as a textual command, for example in a script.

Edit menu

Toolbar

The toolbar contains buttons for the drawing operations, to toggle gridlines, and to toggle
connect mode. The final button checks the model for errors.

DEVELOPING A MODEL 139

Edit/Undo and Edit/Redo

Undoes or redoes the previous editing operation.

Edit/Cut

Copies the current selection to an internal clipboard and deletes them. Text is copied to the
operating system clipboard.

Edit/Copy

Copies the current selection to an internal clipboard without deleting them. Text is copied to
the operating system clipboard.

Edit/Paste

Pastes objects from the internal clipboard to the current window. The current selection is
not replaced by the pasted objects.

Edit/Delete

Deletes the current selection. The objects are not placed in the internal clipboard. See also
“Deleting objects” on page 115 regarding deletion of connections.

Edit/Duplicate

Creates a duplicate set of the selected objects. Duplicated components are given new names
by appending a digit to the old name, in order to avoid name conflicts. The new objects are
offset one grid point from the originals. The new objects become the current selection.

Connections between duplicated components are also duplicated; connections to unselected
objects are not.

Edit/Select All

Selects all objects in the current window. Note that it also selects objects inherited from
base classes

Edit/Order

The ordering operations are used to move graphical objects or components forward (drawn
later) or backward (drawn earlier). The relative order of the selected objects is maintained.
Note that for components, Bring to Front or Bring Forward means that the component is
moved down in the component browser because components are drawn in order.

Bring to Front Brings the selected objects to the front, so they are not obstructed by any
other objects.

Send to Back Sends the selected objects to the back, behind all unselected objects.

Bring Forward Brings the selected objects one step forward.

Send Backward Send the selected objects one step backward.

140

Edit/Manhattanize

Applies a “Manhattan” algorithm to make selected lines and connections more pleasing.
Non-endpoints are moved to make all line segments horizontal or vertical.

Edit/Rotate 90 and Edit/Rotate –90

Rotates the selected components 90 degrees clock-wise (counter-clock-wise).

Edit/Flip Horizontal and Edit/Flip Vertical

Flips the selected components left-right (up-down).

Edit/Check

Checks the class in the current window for errors. The class is checked for syntactic errors,
references to undefined classes and the consistency of equations. No simulation code is
generated.

Edit/Draw

These are the commands to interactively draw new shapes, and related setup. See also “Cre-
ating graphical objects” on page 123.

• Drawing graphical shapes (line, rectangle, ellipse, polygon, text and bitmap).

• Show gridlines to make alignment of objects easier.

• Toggle connect mode, see “Connections” on page 121.

Edit/Attributes...

The General tab contains options related to model properties specified in the Modelica lan-
guage.

• Restriction of the general class (e.g., model or connector).

• Aspects related to protection and redeclaration.

• Dynamic typing (inner and outer).

DEVELOPING A MODEL 141

General model at-

tributes.

The Graphics tab contains options that affect the graphics of the class.

• Change the coordinate system of the current class.

• Change the grid and the default component size of the current class.

See also “Coordinate system” on page 113.

Graphical model at-

tributes.

142

Edit/Options

The Appearance tab contains two options that affect the operation of the graphical editor.

• Restrict minimum font size, to make small texts more easily readable. As a consequence,
these texts may overflow their bounding boxes.

• Automatic Manhattanize of connections. If enabled, connections are manhattanized im-
mediately when created, moved or reshaped.

• Include protected classes in package browser. If true, protected classes are shown in the
package browser. If false protected classes are not shown.

Editor options.

Window menu

Toolbar

The toolbar contains buttons showing the previous and next model viewed in the window,
and for viewing different layers of the model, see also “Class layers” on page 111. The last
control sets the zoom factor.

Recent Models

Clicking on the button displays the previous top-level model shown in this window. Repeat-
ed clicks on this button toggles between the two most recently shown models. Clicking on
the down-arrow displays a menu with recent model to allow arbitrary selection.

Window/Mode/Modeling (Ctrl+F1)

Changes window to modeling mode. This mode is used to compose new models or to
change existing models.

Window/Mode/Simulation (Ctrl+F2)

Changes window to simulation mode. This mode is used to set up an experiment and simu-
late a model. The results can be plotted and visualized with 3D animation.

DEVELOPING A MODEL 143

Window/View/Previous

Shows the previous model viewed in the editor.

Window/View/Next

Shows the next model selected, if Window/View/Previous has been used before.

Window/View/Icon

Displays the icon layer of the class.

Window/View/Diagram

Displays the diagram layer of the class.

Window/View/Documentation

Displays the description and documentation of the class.

Window/View/Modelica Text

Displays the declarations and equations of the class.

Window/New Library Window

Crates a new library window, see “Library window” on page 110.

Window/New Dymola Window

Creates a new modeling and simulation window.

Zooming

By selecting a zoom factor, more or less of the model is shown in the icon or diagram lay-
ers. Selecting 100% will scale the model so the coordinate system fits in the window. By se-
lecting a larger zoom factor, parts of the model can be viewed in greater detail. Scrollbars
makes it possible to move around in the model.

Help menu

Help/What’s This

Displays interactive help for the graphical user interface. After selecting help/What’s This
the cursor changes. Then click on the item in the user interface you want help on.

Help/Contents

Opens the online manual for Dymola.

Help/Documentation

Opens a web browser window with the root of the online documentation, which contains
the Dymola manual, articles and links to other resources.

144

Help/Dymola support

Opens a mail window for sending a message to the support staff at Dynasim.

Help/Dynasim website

Opens a web browser window with the Dynasim webpage.

Help/About

Displays copyright and license information about Dymola.

Special keyboard commands

Delete

Deletes the current selection.

Shift

Enables multiple selection of objects. Pressing Shift at the end of the connection operation
negates the meaning of the automatic manhattanize option.

Ctrl+F1 and Ctrl+F2

Changes window mode, see “Window/Mode/Modeling (Ctrl+F1)” on page 142.

Arrow keys

In the diagram and icon layers, selected graphical objects can be moved by pressing the ar-
row keys. See also “Moving objects” on page 114.

Model editor initialization

The initialization script file, called dymodraw.ini, contains commands that are executed
at program startup to configure the model editor for a particular user. A default file is pro-
vided with Dymola, and the user may create a customized file based on the default file, for
example, to add more library windows.

Dymola uses the environment variable DYMOLAPATH to locate dymodraw.ini. The con-
tents is a list of directories separated by space or ;. Dymola will search for these files in the
current directory, then in each of the directories specified in DYMOLAPATH, and finally in the
default Dymola directory.

Filenames may begin with a reference to an environment variable in the following form:

$DYMOLA/insert/dymodraw.ini

The current value of environment variable DYMOLA is substituted for $DYMOLA.

In addition to the commands described below, comments can be inserted. Any text from the
character until the end of the line is regarded as a comment.

SIMULATING A MODEL

SIMULATING A MODEL 147

Simulating a model

This chapter describes how to simulate a Modelica model in Dymola. First, the basic steps
in setting up a simulation, running it and plotting and animating the results are described.
See also “Getting started with Dymola” on page 21, which includes several examples.

The section “Simulation menu” on page 149 describes the commands and options for set-
ting up and running a simulation. Plotting of results are described in the section “Plot win-
dow” on page 156 and animation in the section “Animation window” on page 166. The
section “Scripting language” on page 173 describes the scripting feature. How to find errors
and improve simulation efficiency are discussed in the section “Debugging models” on
page 182. The two sections “Inline integration” on page 190 and “Mode handling” on
page 192 describes to approaches to increase simulation speed for real-time simulation.

Basic steps

The basic steps when simulating a model will be out-lined below. The focus will be on the
use of Dymola’s graphical user interface. The script facility is described in section “Script-
ing language” on page 173.

148

Selecting model

The model to be used in a simulation experiment is selected in Modeling mode. The pack-
age browser is used to select a model as the active model. The title of the Dymola window
is set to the name of the active model. To enter the Simulation mode click on the Simulation
tab in the bottom right corner of the Dymola window.

Translation

To prepare a model for simulation, it needs to be translated. The translation is initiated by
pressing the Translate button in the toolbar.

Setting parameters and initial conditions

After translation new values for parameters and initial values can be entered using the vari-
able selector, which displays a tree of all variables.

The variable selector

for setting parameters

and initial values.

For parameters, such as J1.J, there is an input field in the value column. New values are set
by clicking in the corresponding value cell and entering the new value. The description
strings are extracted from the model classes.

For time varying variables having active start values i.e., fixed=true and the start value be-
ing a literal, there are also input fields to change their start values. Above J1.phi and J1.w
are examples of such variables. Setting parameters may of course also influence an active
start value bound to a parameter expression.

Specify simulation run

To set up the experiment, click on the Setup Experiment button to get a menu for setting
simulation time, output interval and specifying integration method etc.

SIMULATING A MODEL 149

Perform simulation

To run the simulation, click on the Simulate button.

Plot results

Dymola supports plotting of any variable. Multiple plot windows may be created. Each plot
window may contain several diagrams. Multiple curves in each diagram are allowed. Multi-
ple diagrams in a plot window allow the user to lay out the curves nicely with aligned time
axis and different heights and y-scales of the diagrams.

Variables to be plotted are selected by clicking in the variable selector. When a variable is
selected the square in front of the name is ticked. The variable selector above has J1.w and
J2.w selected for plotting.

A plot window, active in

the variable selector.

Simulation menu

The simulation menu includes commands to setup and run simulations.

The most common simulation commands are available in the tool bar:

Simulation/Run Script...

Executes the commands in the script file. The scripting facilities are described in more de-
tail in “Scripting language” on page 173.

150

Simulation/Translate

Translates the active model to simulation code. Error messages and warnings are shown in
the message window. After successful translation, the class is ready for simulation.

Simulation/Simulate

Simulates the model for one simulation period according to the specified experiment setup.
If the active model has not been translated or an editing operation has invalidated the previ-
ous translation, then the model is automatically translated before simulation.

Simulation/Continue

Continues the simulation for one simulation period (start time to stop time) from the previ-
ous stop time.

Simulation/Stop

Interrupts the execution of a translation, command script or simulation. An active stop but-
ton indicates that one of these operations is in progress.

Simulation/Linearize

The command Simulate/Linearize calculates a linearized model at the initial values. The
linearized model is stored in Matlab format and can be loaded into Matlab with the m-file
tloadlin.

Simulation/Setup

Opens a dialogue for specifying experiment name, simulation interval, integration method
etc.

General tab of Simula-

tion/Setup.

General tab includes

• Experiment name to specify the name of the experiment. It is used to name the result file.

SIMULATING A MODEL 151

• Simulation Interval to specify Start time and Stop time for the simulation.

• Output Interval to specify how often results shall be stored. It can be specified in terms
of Interval length or Number of Intervals for the simulation. By default the results are
also stored at discrete events.

• Integration specifies Algorithm to be used to solve the differential equations and Toler-

ance specifies required accuracy. Fixed integrator step is specified for fixed step integra-
tors such as Euler.

The information from this tab can also be stored in the model, by selecting “store in model”.

Model translation tab includes

Model translation tab

of Simulation/Setup.

• Evaluate parameters to have all parameters except top-level parameters evaluated at
translation in order to generate more efficient simulation code. These parameters cannot
be set interactively before a simulation run.

• Generate listing of flat Modelica code in .mof file to output a listing of all variable dec-
larations and equations.

• Include a variable for elapsed CPU time during simulation introduces a new extra
variable, CPUtime, with the accumulated CPU time during simulation. The slope of this
signal is an indirect measure of the computational complexity of the simulation.

• Log default connections outputs diagnostics when unconnected connectors receive a de-
fault value according to the Modelica semantics. This may help in finding an incorrectly
composed model.

• Log selected default initial conditions reports the result of the automatic selection of de-
fault initial conditions. If initial conditions are missing, Dymola makes automatic default
selection of initial conditions. The approach is to select continuous time states with inac-

152

tive start values and make their start values active by virtually turning their fixed to true
to get a structurally well posed initialization problem.

• Output information on the automatic state selection reports on the state selection for
index reduction.

• Output information when differentiating for index reduction reports about which
equations that are differentiated.

• Output read classes to screen during parsing

• Warn about parameters with no default lists all free parameters not given an explicit
value in the model.

Output tab includes

Output tab of Simula-

tion/Setup.

• Textual data format stores result in textual format instead of binary.

• Double precision stores results in double precision instead of single precision.

• Store defines which categories of variables to store.

• Equidistant grid stores result equidistantly as given by simulation setup.

• Store variables at events stores variables before and after events.

The information from this tab can also be stored in the model, by selecting store in model.

SIMULATING A MODEL 153

Debug tab includes

This tab makes it possible to track down problems during simulation, e.g. chattering, prob-
lems with non-linear systems of equations, state-selection. How to use these are described
in more detail in “Debugging models” on page 182.

Normally these settings do not require a new translation, but does on the other hand only
take effect when running inside Dymola.

• Normal warning messages If you want to disable all non-fatal warnings and errors.

• Settings included in translated model Useful if you want to debug the model when not
running inside Dymola.

• Events during simulation Log events during the simulation. Useful for finding errors in
the event logic including chattering.

• Events during initialization Also log events during the initial phase.

• Nonlinear... For finding problems with non-linear system of equations, e.g. ill-posed
problems, or missing noEvent (see “Using noEvent” on page 259).

• Which states that dominate error If the simulation is slow due to tolerance requirements
for some state variable this can help in which variables are the critical ones.

154

Compiler tab

Compiler tab of Simu-

lation/Setup.

Allows the user to change the compiler used by Dymola to compile simulation code into an
executable program that performs the simulation.

Dymola uses a C compiler to compile the generated C code into a simulation program. The
default compiler shipped with Dymola on PC is a distribution of the GNU C Compiler
(gcc). Users of Microsoft Visual C++ or WATCOM C/C++ may use these compilers in-
stead. If support for a compiler has not been selected when installing Dymola, the corre-
sponding choice is disabled, see also “Multiple compiler support” on page 282.

On UNIX system the default compiler is used. The compilation is controlled by the shell
script dymola/insert/dsbuild.sh.

Several different kinds of problems may occasionally arise when compiling the generated C
code produced by Dymola. Pressing the "Verify compiler setup" button performs several
tests and reports any potential problems. See also “Troubleshooting” on page 290.

SIMULATING A MODEL 155

Realtime tab

Realtime tab of Simula-

tion/Setup.

Activating items in this tab requires the real-time simulation option of Dymola and that you
use MicroSoft Visual C++ with DDE as compiler.

• Synchronize with realtime This enables (soft) realtime simulation with frequency of
about 20Hz running under Windows . For hardware-in-the-loop simulation see the section
on other simulation environments.

• Slowdown factor This makes it possible to simulate in scaled realtime.

• Load result interval [s] How often the result file should be loaded. Online plots are up-
dated this often.

• Inline integration Select inline integration method. The implicit methods are important
for real-time integration of stiff systems (i.e. models with time-scales faster than the). For
the higher order methods it is possible to select order, and for all implicit methods the code
is optimized for one step-size, which should be given here. This step-size should be the
same as the fixed-step size when running in Dymola and the same as the real-time step-
size when running on other platforms.

Simulation/Visualize

Visualizes initial configuration of 3D models.

Simulation/Show Log

Opens the message window and shows a log for the last simulate command.

156

Plot window

Dymola supports plotting of any variable. In Simulation mode, multiple plot windows may

be created. Each plot window may contain several diagrams. Multiple curves in each dia-
gram are allowed. Multiple diagrams in a plot window allow the user to lay out the curves
nicely with aligned time axis and different heights and y-scales of the diagrams.

The default layout of plot window displays the names of plotted signals in a legend above
the diagram, and the unit of the signals (if available) along the vertical axis.

Default plot window.

The user can set diagram heading and axis titles. The legend can be located in several dif-
ferent places, for example inside the diagram. See also “Plot/Setup...” on page 161.

User-defined titles and

location of legend.

When plotting, there must be an active plot window. If the active plot window has multiple
diagrams, one of the diagrams is active, indicated by an enclosing grey rectangle, and the
plot commands are directed to this diagram.

SIMULATING A MODEL 157

A plot window where

the upper diagram is

active.

Variable selector

The variable selector displays a tree view of all variables. Each submodel represents one
level of the hierarchy, and all variables of a submodel instance are grouped together. Com-
ponents are by default sorted according to order of declaration in the enclosing class. Click-
ing on the header line toggles alphabetical order.

If more than one variable is selected, they will be plotted in a single diagram with a com-
mon scale. Variables that contain data for 3 D animation are not shown.

The variable selector

window.

Selecting plot variables

Operations when selecting plot variables are

158

• Click on the + symbol in front of a submodel name, or double-click on the submodel

name. If not already open, opens the submodel and displays variables and nested submod-
els. Otherwise the submodel is closed.

• Click on a variable. Plots the variable if it was previously unselected; diagram is normal-
ly rescaled. If the variable was already selected, it is removed from the diagram.

• Click on a variable while pressing the SHIFT key. Plots multiple variables. All vari-
ables from the previous non-shifted click to the last click are plotted. Note that multiple
variables are only plotted if the range is limited to a single submodel instance.

The Erase Curves button erases all variables (see “Plot/Erase Curves” on page 161).

Selecting independent variable

The default behavior for plotting is trend curves. It means that time is the independent vari-
able (x-axis variable). To select another independent variable, go to the variable selector,
put the cursor on the variable and press right mouse button. A menu pops up where the first
alternative is the current independent variable and then follows the selected variable. Time
is always an alternative to allow going back to plotting trend curves.

Advanced mode

Pressing the “Advanced” button in the plot selector displays buttons for selecting which
categories of variables are displayed in the plot selector. It also allows plotting of the differ-
ence between signals and to compare the results of multiple simulations.

Advanced plot selector

mode.

p= Set parameters of translated model. You must first translate the model.

x0= Set initial conditions of translated model. You must first translate the model.

v0= Set initial guess values of translated model. You must first translate the model. These

values are intended to help the initialization of non-linear system.

Constants Show constants in plot-selector. This includes all variables that do not vary dur-
ing the simulation, including parameters, constants, and other variables that are bound to
parameter or constant expresssions.

Time varying Show all variables that vary during the simulation, excluding parameters,
constants, and other variables that are bound to parameter or constant expresssions.

Online Load preliminary result during simulation. This enables plotting and animation
while a simulation is running. Disabling this gives slightly better performance.

Original Plot the selected signals.

Difference Plot the difference between selected signals.

SIMULATING A MODEL 159

Compare Results Use last results as master result file. When selecting a plot variable it
also plots the corresponding variables from the other results.

Search Filter Entering a regular expression limits which variables are shown in the plot
selector. Special symbols in the regular expression are:

Time The value column of the plot selector will show the values of variables for this time.
Enter time and press return.

Relative tic mark labels

When the range is too small to display abosulte tic mark labels, diagrams use relative axes
instead of absolute axes. This mode is highlighted by bold+underlined text for the base
number and “+” signs in front of the relative offsets.

Plot window interaction

Dynamic tooltips

Resting the cursor over a plotted signal displays a tooltip with information about the closest
data point. The data point is also highlighted. If several signals are close to the cursor, data
for all of them are shown; if possible a common value for the independent variable is used.

Tooltip for a single

signal.

Tooltip for multiple

signals and a common

independent variable.

* Match everything.

? Match any single character.

{ab} Match characters a or b.

{a-z} Match characters a through z.

{^ab} Match any characters except a and b.

E+ Match one or more occurences of E.

(ab|cd) Match ab or cd.

\\d Match any digit.

\\w Match any digit or letter.

^ Match from start.

$ Match at end.

160

Zooming the plot window

The user can interactively zoom in on interesting parts of a diagram and easily zoom back
to a previous zoom level. Certain operations reset the zooming.

• Clicking on the left mouse button. Zooms the diagram 100% around the clicked point.

• Pressing the left mouse button and spanning a rectangle. Zooms in on the drawn rect-
angle, which is scaled to fit the diagram.

• Clicking on the right mouse button. Returns to the previous zoom level. Limits defined
with menu command Plot/Range are also used in the context.

File menu

File/Export Image...

Saves PNG image of active plot window, excluding window borders and menubar. The user
is prompted for a file name.

Plot menu

The plot menu includes commands to load results, create and edit plots and diagrams.

The most common plot commands are available in the tool bar:

When plotting, there must be an active plot window. If the active plot window has multiple
diagrams, one of the diagrams is active and the plot commands are directed to this diagram.

Plot/Open Result...

Reads the result from a simulation made with Dymola to allow variables to be plotted. Note
that the result of a simulation is automatically opened.

Plot/New Plot Window

Creates a new active plot window which is initially empty.

Plot/New Diagram

Creates a new active diagram in the active plot window.

Plot/Delete Diagram

Deletes the currently active diagram.

Plot/Rescale

Rescales the current diagram so that the full range of all plotted variables is shown. If the
diagram has not been zoomed in, rescaling is performed automatically when new variables
are selected for plotting.

SIMULATING A MODEL 161

Plot/Erase Curves

Erases all curves in the active diagram. If automatic rescaling is enabled, the diagram is res-
caled to the default scale.

Plot/Toggle Grid

Enables grid lines in the diagram if they are not visible, otherwise disables grid lines.

Plot/Setup...

Signals tab of the plot

window setup.

Signals tab Selecting a signal displays the corresponding information in the rest of the
window. It is also possible to navigate by pressing the Up and Down arrow keys to select a
signal. If a comment for the signal exists it is shown below the listbox.

The Legend field contains the current description of the selected signal. Edit the text and
press Apply to change the legend. If the text is empty, no legend is shown for this signal.
Pressing the Reset button fills the edit field with the default legend. User-defined legends
are shown on page 156.

The Properties group shows the name of the result file, the number of data points, as well
as minimum and maximum values of the signal. Plotted values can interrogated in the dia-
gram, see “Dynamic tooltips” on page 159.

162

Titles tab of the plot

window setup.

Titles tab The user may enter a heading to be displayed above the active diagram. An
empty heading is not shown; the space is used for the diagram instead.

Vertical axis title specifies the title for the vertical axis of the diagram.

None No title is shown by the vertical axis.

Description The title is extracted from the descriptions and units of plotted signals.

Custom The title is specified by the user in the input field.

Horizontal axis title specifies the title for the horizontal axis of the diagram.

None No title is shown by the horizontal axis.

Description The title is extracted from the independent variable, if other than time.

Custom The title is specified by the user in the input field.

 Examples of user-defined heading and custom axis titles are shown on page 156.

SIMULATING A MODEL 163

Legend tab of the plot

window setup.

Legend tab The legend displays names and other properties about plotted signals. The ap-
pearance of the signals is set as follows:

• Show units of variables in the vertical axis title or in the legend. The unit is shown in the
axis title (if all signals have the same unit) or in the legend (if there are multiple units on
one axis).

• Show variables description adds the description of the variable, as specified in the mod-
el, to the vertical axis title or the legend. The variable description is shown along the axis,
if it is the same for all signals.

• Use line styles instead of color (solid, dashed, dotted) to distinguish curves. This is useful
for printing diagrams on monochrome printers. If disabled, curves are distinguished by
color.

• Do not use markers to distinguish curves with identical color or line style. By default
markers are used when so many curves are plotted that colors or line styles must be re-
used.

The layout of the legend is controlled by these settings:

• Show variable legend is the default. If unchecked, no legend is displayed.

• Arrange legend horizontally lists the signals from left to right in the legend (the default).
If unchecked, the signals are listed vertically in the legend.

• Draw a frame around the legend when outside of diagram. Inside the diagram the frame
is always drawn.

164

Location of the legend is either outside of the diagram (above, below or to the right of the
diagram), or close to one of the corners inside the diagram. See page 156 for examples of
diagrams with different locations of the legend.

Options tab of the plot

window setup.

Options tab Sets up options controlling plotted variables:

• Automatically rescale plot to fit data when zoomed out. When diagram is zoomed in,
automatic rescaling is disabled.

• Erase plot when loading new file after simulation to have automatic erase of the dia-
gram when new results are load (and thus when a simulation is run).

• Automatically replot after simulation; if not selected signals must be manually plotted
after a simulation.

• Number of results to keep when simulating. Manually loaded results are not included.

• Time window from end defines the size of the time window during online plotting.

SIMULATING A MODEL 165

Range tab of the plot

window setup.

Range tab Allows the user to define the minimum and maximum ranges of the axes and to
select logarithmic scale instead of linear scale. Other setings are:

• Same horizontal and vertical axis increment may be used when the relative scale of
vertical and horizontal axes is important.

• Fit Plotted Data rescales the diagram to fit plotted variables. This is same as pressing the
Rescale button and then reads the default range.

Logarithmic scale used

in Bode plot.

166

Animation window

Animating models re-

quires the Animation

option.

Dymola supports a 3-dimensional model-view built up by graphical objects such as boxes,
spheres and cylinders, rendered with shading and hidden surfaces removal.

The animation window.

Visual modeling

Dymola supports visual modeling in addition to dynamic modeling with a library of graphi-
cal objects. When a model class is described in Dymola with equations and submodels, it is
also possible to define its visual appearance. This is done by including predefined graphical
objects of various shapes. Any model variable can be used to define the changes of the visu-
al appearance.

Graphical objects

Examples of supported 3D graphical objects are: Box, Sphere, Cylinder, Cone, Beam, Gear-
wheel and Vector arrows

Parameters such as size can be specified. Coordinate systems can be defined by a complete
3-dimensional transformation (3x3-matrix+translation). The information can either be para-
metric or depend on the dynamics of the model.

Defining Graphical Objects

Graphical 3D objects can either be created by using one of the models in ModelicaAddi-
tions.MultiBody.Parts, or by directly declaring a VisualShape object. The vector visualizers
are created by using one of the models in ModelicaAdditons.MultiBody.Visualizers, note
that the force and torque sensors must be inserted between the objects. The model Visu-
alShape has the following interface:

model VisualShape "General Visual Object."

 parameter Real r0[3] = {0, 0, 0}

 "Origin of visual object.";

 parameter Real Length = 1 "Length of visual object.";

SIMULATING A MODEL 167

 parameter Real Width = 1 "Width of visual object.";

 parameter Real Height = 1 "Height of visual object.";

 parameter Real LengthDirection[3] = {1, 0, 0}

 "Vector in length direction.";

 parameter Real WidthDirection[3] = {0, 1, 0}

 "Vector in width direction.";

 parameter String Shape = "box" "Name of shape";

 parameter Real Material[4] = {1, 0, 0, 0.5}

 "Color and specular coefficient.";

 parameter Real Extra = 0.0

 "Additional parameter for cone and pipe.";

 input Real S[3,3] "3 x 3 transformation matrix.";

 input Real r[3] "Position of visual object.";

...

end VisualShape;

Note that r is given in the global coordinate system, whereas the vectors r0, LengthDirec-
tion, and WidthDirection are in the local coordinate system as defined by S.

Shape specifies the name of the shape. Predefined shapes are: “box”, “sphere”, “cylinder”,
“cone”, “pipe”, “beam”, “gearwheel” and “wirebox”. External shapes are specified as DXF-
files (AutoCAD R12/LT2 format, only 3DFace is supported). External shape must be
named like “1”, “2” etc. The corresponding definitions should be in files 1.dxf, 2.dxf etc.
Since the DXF-files contain color and dimensions for the individual faces the correspond-
ing information in the model is currently ignored, but the specular coefficient is utilized.
The DXF-files are found relative to the directory of the current model.

Material[4] = {r,g,b,specular} specifies the color of the object. {r,g,b} affects the color of
diffuse and ambient reflected light. Specular is a coefficient defining white specular reflec-
tion. Note, r g, b and specular are given in the range 0-1. Specular=1 gives a metallic ap-
pearance.

The position r and orientation S are inputs to control the movements of the object. An ex-
ample showing some of the available shapes is given below.

model shapes

 parameter Real r[3] = {0,0,0};

 parameter Real Length=0.2,Width=0.2,Height=0.2;

 parameter Real LengthDirection[3] = {1,0,0};

 parameter Real WidthDirection[3] = {0,1,0};

 VisualShape v1 (r0 = r+{0,-0.5,0}, Shape = "box",

 Length = Length, Width = Width, Height= Height,

 LengthDirection = LengthDirection,

 WidthDirection = WidthDirection);

 VisualShape v2 (r0 = r+{0.4,-0.5,-0.1},

 Shape = "cylinder", Material = {0, 1, 0, 0.75},...);

 VisualShape v3 (r0 = r+{0.8,-0.5,-0.2}, Shape = "cone",

 Material = {0, 0, 1, 1},...);

 VisualShape v4(r0 = r+{0,-0.1, 0}, Shape = "cone",

 Extra = 0.5, Material = {1, 1, 0, 0.5}, ...);

168

 VisualShape v5 (r0 = r+{0.4,-0.1,-0.1},Shape = "pipe",

 Extra = 0.5, Material = {0, 1, 1, 0.75},...);

 VisualShape v6 (r0 = r+{0.8,-0.1,-0.2}, Shape = "beam",

 Material = {1, 0, 1, 1});

equation

 v1.S = identity(3);

 v1.r = {0,0,0};

...

end shapes;

model VisualTest

 shapes s1(r=[0, -0.2, 0]);

 shapes s2(r=[0, 0.6, 0],

 Length=0.3, Width=0.2, Height=0.1,

 LengthDirection={1, 1, 0},

 WidthDirection={-1, 1, 0})

 "Rotated 45 degrees counter-clockwise";

end VisualTest;

Overview of available

shapes.

File menu

In the File menu the commands Export Image... and Export Animation... provide export of
the animation window in several file formats, see page 136.

SIMULATING A MODEL 169

Animation menu
Animation menu

Animation/Open Result...

Reads the result file from a simulation made with Dymola. The 3D-view is replaced by the
the rendering of the new result file. The result file is by default automatically opened after
simulation and if it contains animation data the animation window is opened automatically.

Animation/New Animation Window

Creates a new animation window.

The animation toolbar

Animation/Run (function key F3)

Starts an animation. The animation runs from the current frame until the last frame. If Dy-
mola is in continuous mode, the animation automatically restarts with the first frame.

Animation/Pause (function key F4)

Stops a running animation. This command has no effect if no animation is running.

Animation/Rewind (function key F7)

Rewinds the animation to the first frame. A running animation is stopped.

Animation/Reverse (function key Shift+F6)

Moves the animation backward at high speed.

Animation/Backstep (function key F6)

Displays the previous frame of the animation. If the animation is at the first frame, this
command steps to the last frame. A running animation is stopped.

Animation/Step Forward (function key F5)

Displays the next frame of the animation. If the animation is at the last frame, this command
steps to the first frame. A running animation is stopped.

170

Animation/Forward (function key Shift+F5)

Moves the animation forward at high speed.

Animation/Setup…

Changes several options that control animation and viewing of animated objects.

The animation setup

dialog.

Visual tab contains

• Run animation continuously, which toggles continues mode on or off. If continuous
mode is on, running animations automatically restart at the beginning instead of stopping
at the end. The default mode is off.

• Unit cube reference to display a unit cube with corners at {0,0,0} and {1,1,1} for refer-
ence.

• Axis reference to display axes, where the x-axis is red, the y-axis is green, and the z-axis
is blue. Remember xyz = rgb.

• View visual reference for cylinders to make cylinders to be drawn with a black reference
line on the side in order to make it easier to see if the cylinders are rotating.

• Highlight selected object colors the selected object red.

• Grid reference to display reference grids in X-Y, X-Z or Y-Z plane.

• Perspective view to toggle between perspective view and orthographic projection. The
default is orthographic projection.

SIMULATING A MODEL 171

• Anti-alias to obtain smoother edges. However, it may make the animation much slower.

• Trace selected object to trace the selected object, i.e. to show the path of its origin.

• Trace all to trace all objects, i.e. to show the path of their origin.

• Follow selected object enables the view to dynamically change to follow the animated
object. This can be done conditionally in different directions by enabling/disabling

• Follow object in X, Y, or Z-direction or Follow rotations of object. The Follow feature
is useful for animating mechanisms that move in the global coordinate system, such as,
vehicles.

Frames tab sets a number of attributes related to history frames. History frames gradually
fade to the grey color of the background.

Animation frames tab.

• Number of history frames introduces motion blurr showing several frames. Zero will
turn off all history frames. A large number of history frames may slow down the anima-
tion considerably. If the number of history frames times the interval between history
frames is greater than the total number of frames, all frames are displayed and there is no
performance penalty.

• Interval between history frames. With the default frame interval (1), frames 1, 2, ..., n
older than the leading edge frame are shown. With a frame interval of m, frames m, 2m,
..., 2mn are shown. It is sometimes necessary to increase the frame interval to get a suit-
able visual separation between the history frames.

History frames for the

Furuta pendulum.

Vector tab is for controlling the scaling of vector visualizers (found in ModelicaAddi-
tions.MultiBody.Visualiers). The units indicate that if you for example set the scale factor
for forces to 1e-3 a force of 100N will be represented by an arrow 0.1m (=1e-3 m/N*100N)
long in scale of the the diagram.

172

Vector scaling setup.

Animation/3D View Control…

Creates a window with controls for 3D viewing. The view controls act on an imaginary
camera; panning the camera left moves the subject closer to the right edge of the window.

3D view control.

SIMULATING A MODEL 173

Scripting language

There is a script facility that makes it possible to load model libraries, set parameters, set
start values, simulate and plot variables by executing scripts. This is how the demo exam-
ples are setup. The script facility is useful when running a series of simulations as for exam-
ple a parameter study.

Basic operations

It is possible to set and get model parameters, initial values and translator switches. Compu-
tations using all Modelica functions and array operations are allowed. It is possible to call
translated functions, thus gaining access to external functions. Interactive variables are au-
tomatically created. Set and get of both arrays as a whole and of individual elements.
Named arguments allowed to functions like simulateModel with default values. Modelica
expressions can be stored in script files or as Modelica functions.

Interaction

By typing a Modelica expression at the command prompt, the result is output:

Modelica.Math.sin(5)

 = (-0.958924274663138)

Modelica.Math.sin(0:0.5:1.5)

 = {0, 0.479425538604203, 0.841470984807897,

 0.997494986604054}

{{1,2},{3,4}}*{{1,2},{3,4}}

 =

[7, 10;

15, 22]

i.e. the tool completes the equation with an equal sign and the result. The semicolon at the
end may be omitted. The character - denotes a prompt.

It is possible to continue a statement on several input lines

{{1,2},{3,4}}*{{1,2},{3,4}}*

Continue line:

transpose({{1,2},{3,4}}*{{1,2},{3,4}})*

Continue line:

Modelica.Math.sin({{1,2},{3,4}}*{{1,2},{3,4}})

 =

[309.234551260163, (-83.9358210418974);

674.574723255002, (-183.082439325942)]

by ending a line before a complete assignment or expression has been entered. This rule al-
lows omitting the semicolon at the end of a statement and/or using a continuation symbol. A
tool might enlarge input window to show all pending input lines.

Several expressions are also allowed if separated by semicolon:

174

2*3; 4*5

 = 6

 = 20

Diagnostics is given immediately when errors are encountered:

transpose({{1,2},{3,4,5}})

Error: The parts of

{{1, 2}, {3, 4, 5}}

 are not of equal sizes:

{2}

{3}

Assignments

It is possible to use a Modelica assignment. For convenience, the = operator is used below
to denote assignment. Comments can be written as usual using // or /* */.

model.p1 = 5 // update model.p1

model[3].q[model.p1] = Modelica.Math.sin(6)

Interactive variables

The result might be stored in a variable. The variable is declared with the type and size of
the expression on the right hand side of the assignment. Typing the expression consisting of
just the variable name, outputs the value.

i = zeros(3)

Declaring variable: Integer i [3];

i

 = {0, 0, 0}

r = 1:0.5:2

Declaring variable: Real r [3];

r

 = {1, 1.5, 2}

b={false, Modelica.Math.sin(5)<0}

Declaring variable: Boolean b [2];

b

 = {false, true}

s={"Modelica","script"}

Declaring variable: String s [2];

s

 = {"Modelica", "script"}

Such variables can be used in calculations.

r*r // scalar product

 = 7.25

r[2] = 7.5

SIMULATING A MODEL 175

s[2]

 = "script"

t = s[1] + " " + s[2] + "ing: r[2] = " + realString(r[2],1,

1)

Declaring variable: String t ;

t

 = "Modelica scipting: r[2] = 7.5"

A list of the interactive variables and their values can be obtained by the command list():

list()

 Integer i[3] = {0, 0, 0};

 Real r[3] = {1, 7.5, 2};

 Boolean b[2] = {false, true};

 String s[2] = {"Modelica", "script"};

 String t = "Modelica scipting: r[2] = 7.5";

Predefined variables

We might want to introduce several variable categories like system variables, interactive
variables, model variables, etc. System variables might involve pragmas to the translator
about preferred handling.

Evaluate = true

// utilize parameter values in manipulation

These settings are also available in the Setup menu, where e.g. Evaluate corresponds to se-
lecting Evaluate parameters.

Functions for string manipulation

The string manipulation routines are constructed for formatting numerical results as strings.
The routines are realString and integerString for converting numbers to strings and the
Modelica built-in operator + that concatenate strings.

They behave as Modelica functions declared as:

function realString

 input Real number;

 input Integer minimumWidth:=1;

 input Integer precision:=6;

 output String result;

end realString

function integerString

 input Integer number;

 input Integer minimumWidth:=1;

 input Integer precision:=1;

 output String result;

end integerString;

These functions are can be used for presenting results and for accessing a sequence of files:

176

r:=12.3;

"Modelica scipting: r = "+realString(number=r);

 ="Modelica scipting: r = 12.3"

sumA=0;

for i in 1:10 loop

 A=readMatrix("a"+integerString(precision=2,

 number=i)+".txt","A",2,2);

 sumA:=sumA+sum(A);

end for;

Script files

Script files can be automatically constructed. First, select File/Clear Log. Then perform in-
teractively the operations by using menu commands or by entering written commands.
When done select File/Save Log. For “Save as type” select “As script file (*.mos)” see
“File/Save Log...” on page 137. Dymola will record all written commands and also all
menu commands that have an equivalent Modelica script function.

Since the script files are readable text-files they can easily be cleaned up, parameter values
changed, and a simple interactive session can be changed to a parameter-sweep by adding
an enclosing for-loop.

The scripts can later by run by selecting Run script in the menus, and interactively by using
the @-command:

@ file_specification

The rest of the line following @ is treated as the file specification. The syntax of the file
specification is thus operating system dependent. The script feature is recursive, i.e. a script
file may run other other script files.

If an error is encountered in a command script, all script files are closed and interactive
command input is resumed.

Help commands

These routines all available for interactive help:

help

help()

Gives a short overview of these commands

listfunctions

listfunctions()

A one-line description of all builtin functions.

listfunctions()

function ndims "number of dimensions of array";

SIMULATING A MODEL 177

function size "size of array";

function scalar "convert an array to a scalar";

function vector "convert an array to a vector";

function matrix "convert an array to a matrix";

function transpose "transpose a matrix";

function outerproduct

 "compute the outer product of two vectors";

function identity "identity matrix";

function diagonal "construct a diagonal matrix";

function zeros "construct an array of zeros";

function ones "construct an array of ones";

function fill "fill an array";

function symmetric "make matrix symmetric";

function cross "cross-product of 3-vectors";

function skew "skew-matrix constructed from 3-vector";

function cat "concatenate arrays";

function array "construct array of arrays";

function max "computes max of an array";

function min "computes min of an array";

function sum "computes sum of an array";

function product "computes product of an array";

function readMatrix "read a matrix from a file";

function readMatrixSize "read size of a matrix from a file";

function writeMatrix "write a matrix to a file";

function interpolateTrajectory

 "interpolates a trajectory on a file";

function readTrajectory

 "return all output points of trajectory";

function readTrajectorySize

 "return number of output points of trajectory";

function linspace "vector of linearly spaced values";

function assert "assert that a condition is true";

function terminate "terminate simulation";

function help "List help commands";

function list "list variables on screen";

function listfunctions "list builtin functions on screen";

function document "write calling syntax for named function";

function realString "Convert a real to a string.";

function integerString "Convert an integer to a string.";

function cardinality "cardinality of connector";

function direction "direction of connector";

function constrain

 "a special operator for kinematic loop constraints";

function initialized "start of result from initializer";

function cos;

function sin;

function tan;

function exp;

function ln;

function sqrt;

178

function arcsin;

function arccos;

function arctan;

function arctan2;

function sinh;

function cosh;

function tanh;

function ceil;

function floor;

function integer;

function sign;

function simplesign;

function div;

function rem;

function abs;

function delay;

function openModel "open a Modelica-file";

function instantiateModel "instantiate a model";

function translateModel "translate a model";

function checkModel "check a model";

function closeModel;

function simulateModel "simulate a Modelica model";

function linearizeModel "linearize a Modelica model";

function plot "plot given variables";

function printPlot "plot and print given variables";

function plotArray "plot given data";

function printPlotArray "plot and print given data";

document

document("func")

Write the Modelica declaration of the given builtin function, and describe the function.

document("document")

function document "write calling syntax for named function"

 input String _function "name of builtin function";

 output Boolean _result "true if successful(i.e. function

existed)";

end document;

 = true

Simulator API

These routines all return a Boolean status to indicate the success (true) or failure (false).

openModel

openModel("file.mo")

Reads the specified file and displays its window. This corresponds to File/Open in the
menus. Note: This will automatically cd to the right directory.

SIMULATING A MODEL 179

checkModel

checkModel(problem="model")

Check the model validity. This corresponds to Check Model in the menus.

translateModel

translateModel(problem="model")

Compile the model (with current settings). This corresponds to Translate Model in the
menus

simulateModel

simulateModel(problem="model", startTime=0, stopTime=1,

 numberOfIntervals=0, outputInterval=0, method="dassl",

 tolerance=1e-4, resultFile="model")

Simulate the model for the given time. Method is a string with the name of the integration
method; the names correspond to the ones found in the popup-menu and the string is case
insensitive. Note that file extension is automatically added to resultFile (normally ".mat").
For backwards compatibility the default for resultFile is "dsres".

The entire command corresponds to Simulate in the menus.

closeModel

closeModel()

Erases all model variables from the work-space. You have to call closeModel() and reset all
parameters and starting values to simulate the same model with different parameters and/or
start values.

importInitial

importInitial(dsName="dsfinal.txt")

Sets up integration or linearization to start from the initial conditions given in the file (in-
cluding start and stop-time and choice of integration method). The default is “dsfinal.txt”
which in combination with simulate corresponds to continue.

After calling importInitial it is possible to override specific parameters or start-values be-
fore simulating.

Note: Basically importInitial() corresponds to copying dsfinal.txt to dsin.txt.

exportInitial

exportInitial(dsName="....txt", scriptName="....mos")

Generates a Modelica script, such that running the script re-creates the simulation setup. Af-
ter running the generated script it is possible to override specific parameters or start-values
before simulating.

180

By genererating a script from a “steady-state” dsfinal.txt it is possible to perform parameter
studies from that point.

Note: This cannot be combined with non-standard setting of fixed for variables if
dsName=”dsin.txt”. All other cases work fine.

plot

plot({"plot1","plot2","plot3"...})

Plot the given variables in the plot window. It is currently not possible to set ranges or inde-
pendent variable.

Note: the argument is a vector of strings; the names correspond to the names when selecting
variables in the plot window. Subcomponents are accessed by dot-notation.

plotArray

plotArray(x=1:10,y=sin(1:10))

X-y plot for given values.

printPlot

printPlot({"plot1","plot2","plot3"...})

Plot the variables and furthermore prints the resulting plot on the default printer.

list

list()

Lists the variables in the variable workspace with their type and value. Predefined variables
are also described by a comment.

The command Clear All also clears the variable workspace.

eraseClasses

eraseClasses({"model1","PackageA.model2", ...})

Erases the given models. It requires that no models outside of this list depend on them. This
is not primarily an interactive function, but designed to be called by other programs con-
structing and changing models. Corresponds to 'Delete' in package windows.

Note: translateModel and simulateModel have named arguments (as is indicated above) and
the default for problem is "" corresponding to the most recently used model. Thus simulate-
Model(stopTime=10,method="Euler") corresponds to simulateModel("", 0, 10, 0, 0, "Eul-
er", 1e-4);

Note: If you give the name of the model you can skip translateModel and go directly to sim-
ulateModel.

Note: The current version does not allow you to first compile the model and then change
translator switches (or parameters if you have Evaluate=true), and then simulate the model.

SIMULATING A MODEL 181

You must call closeModel and translateModel if you have compiled the model and wants to
change them.

Script functions

The Modelica based scripting language is extensible since functions written in Modelica
can be called in the same way as the predefined functions. Thus the functions in the Model-
ica standard library can be used directly from the scripting language, allowing e.g. table in-
terpolation.

As an example consider a function for reading the A-matrix of a linearization using read-
Matrix. The function can be written as follows:

function ReadA

 input String linfile:="dslin.mat";

 input String abcdname:="ABCD";

 input String nxname:="nx";

protected

 Integer ABCDsizes[2]:=readMatrixSize(linfile, abcdname);

 Real ABCD[ABCDsizes[1], ABCDsizes[2]];

 Integer nx:=

 integer(scalar(readMatrix(linfile, nxname, 1, 1)));

public

 output Real A[nx, nx];

algorithm

 ABCD := readMatrix(linfile, abcdname,

 size(ABCD, 1), size(ABCD, 2));

 A := ABCD[1:nx, 1:nx];

end ReadA;

Because of the default values the function can be called as ReadA() without giving any ar-
guments.

This can easily lead to a large number of top-level functions, and in order to avoid this it is
advisable to create a Modelica package, e.g. myFunctions and place ReadA inside this
package. The myFunctions package must be stored in the MODELICAPATH.

Provided this is done it then possible to call myFunctions.ReadA() from the command line
or inside models without having to load any files first.

It is also possible construct pre-compiled functions by selecting 'Translate' in the menu of
the function. This constructs an executable, and it is possible to call exactly as the non-com-
piled function. When calling functions from the command pre-compilation automatically
occurs for external functions.

Note: The executable must be in the path for the command to be interactively callable. It is
not checked that the executable is up to date.

182

Debugging models

Over specified initialization problems

At translation Dymola analyses the initialization problem to check if it is well posed by
splitting the problem into four equation types with respect to the basic scalar types Real, In-
teger, Boolean and String and decides whether each of them are well-posed. If such a prob-
lem is over specified, Dymola outputs an error message indicating a set of initial equations
or fixed start values from which initial equations must be removed or start values inactivat-
ed by setting fixed=false.

Dymola stops translation when an overspecified problem is found. It may be the case that
this subproblem also has under specified parts, i.e., variables that cannot be uniquely deter-
mined. Moreover, the subproblems for the other data types may also be ill posed. To find
this out, try to correct the reported problems by removing initial conditions and retranslate
to check for additional diagnostics.

Basic steps in debugging models

When constructing models they sometimes generate incorrect results, fail to simulate, fail to
start, fail to translate or simply take too long to simulate. The ideal situation would be to
avoid this problem altogether. The ideal is not achievable, but some simple rules that reduce
the possibility of errors are:

• Use tested libraries, Modelica Standard Library, and available libraries for Hydraulics,
PowerTrain, Sampled systems, MultiBody, etc.

• Construct test examples for each model in isolation.

• Design models for testing, e.g. introduce variables for quantities that are easy to interpret,
use 3D animation for 3D mechanics, and add assert statements for model assumptions.

• Use types and descriptions to document all variables.

• Use standard notation and types.

• Regularly check models and components to detect errors, see “File/Exit” on page 138.

• Have connectors of different types, e.g. Rotational, Translational, Electrical, since it al-
lows early detection of mismatched connectors.

• Design packages along the lines of the Modelica Standard Library.

• Never ignore warnings and errors detected by the translator.

• Do not overuse advanced features of Modelica, such as replaceable classes, inner/outer.

• Use SaveAs or Duplicate to move a class or package in package hierarchies.

SIMULATING A MODEL 183

• Examine the start-values (x0) and parameters to see that the start values are correct, see
“Basic steps” on page 147.

• Avoid algorithms in non-functions.

• Beware of graphical lines that look like connections. Connections are created directly by
drawing from a connector, see “Creating a connection” on page 121.

Several of these steps are common with normal object-oriented development.

Finding errors in models

We will in this section assume that the model runs, at least for a short while, but that the re-
sults are incorrect. Before the simulation is complete or after a failed simulation one can ex-
amine the result by explicitly loading the result file dsres.mat (see “Plot/Open Result...” on
page 160), and then plot and/or animate variables. This makes it possible to determine if the
result is correct or not.

We will assume that you have followed the steps above, in particular that you have not ig-
nored any warnings and errors detected by the translator, and have tested each submodel in
isolation.

Event logging

In order to determine if there is a problem with the discrete events one can turn on logging
of events during a simulation. By activating “Event Logging” one will see a log where each
expression causing an event is logged, see “Debug tab” on page 153. This makes it possible
to track down errors in the discrete part of a hybrid system.

Model instability

The result file can be

loaded even if the sim-

ulation fails.

Instabilities often cause the simulation to stop with unphysical values after some simulated
time. In this case it is advisable to load the simulation result even if the simulation failed,
and also to store all simulated points by de-activating “Equidistant time grid”, see “Output
tab” on page 152, since the integrator will store its steps and it generally uses more steps in
problematic regions.

The first task is to determine which variable/subsystem becomes unstable first, since an in-
stability in one part can then spread to the entire system.

In almost all cases instabilities are found among the states of the system and can be more
easily found by only storing the states of the system and plotting them. It is also possible to
linearize around various operating points in order to determine the stability of the linearized
system. By examining the eigenvalues it is in general possible to track down the instability
to some state.

Thus the problem is localized to one part of the model, and the next step is to correct that
submodel. In many cases the cause of the problem is a simple sign-error in one equation, ei-
ther in a user-written equation or in a connection equation (due to not using the flow at-
tribute correctly in the connectors of that model).

184

Improving simulation efficiency

We will in this section assume that the model runs, generates the correct results, but runs too
slowly. Before the simulation is complete one can examine the result by explicitly loading
the result file, dsres.mat, and then plot and/or animate variables. This makes it possible to
determine if the result is correct or not.

A slow simulation can be caused by either to too much work spent on each time-step, each
step is too short (and thus too many steps are taken), or because of the overhead with storing
the result to a file.

A first step is plotting the CPU-time to determine if the problem occurs at some particular
time, due to the model behavior at that point.

Time of storing result

Storing the result

takes time.

One important aspect of a simulation in Dymola is to generate results in a file. In some cas-
es the storing of the result and not the integration is the cause of the “slow simulation”.

For large systems the actual writing of the file can take substantial time, this can be checked
by deselecting storing of ‘States’, ‘Derivatives’, ‘Outputs’, and ‘Auxiliary Variables’, see
“Output tab” on page 152, and then re-running the simulation. In this case no result file will
be generated. By looking at the logfile it is possible to compare the time to normal simula-
tions.

For very nice problems the interpolation of the solution in order to generate the result file
can also take substantial time. This can be reduced by decreasing the number of output
points or the increasing the interval length, see “Simulation/Setup” on page 150. If using an
integrator with fixed step-size it is necessary to enter a non-zero value for the ‘Fixed Inte-
grator Step’ in this case.

Events and chattering

The first step to ensure that events are efficient is to examine the number of events in the log
of the simulation. If the number of events is small compared to the number of steps, the
simulation is not slow because of events.

A large number of state events can be caused by chattering, e.g. solving the model

model Chattering;

 Real x(start=0.3);

equation

 der(x) = -sign(x-0.2*time);

end Chattering;

After 0.25 seconds the sign-function will switch back and forth between positive and nega-
tive. Activating ‘Output Debug Information’, see “Output tab” on page 152, will generate a
log where the expression x-0.2*time>0 switches between true and false.

Expression x-0.2*time > 0 became true ((x-0.2*time)-(0) =

0.0016)

Iterating to find consistent restart conditions.

SIMULATING A MODEL 185

 during event at Time : 0.252

Expression x-0.2*time > 0 became false ((x-0.2*time)-(0) = -

0.0008)

Iterating to find consistent restart conditions.

 during event at Time : 0.254

Expression x-0.2*time > 0 became true ((x-0.2*time)-(0) =

0.0008)

Iterating to find consistent restart conditions.

 during event at Time : 0.256

Expression x-0.2*time > 0 became false ((x-0.2*time)-(0) = -

0.0016)

Iterating to find consistent restart conditions.

 during event at Time : 0.258

In this case a fixed step-size solver was used, an adaptive integrator would normally have
had the events at almost identical times.

The solution may be to

rewrite the model.

The result is a clear indication of chattering and the solution is to rewrite the model. Exactly
how depends on the physical system, e.g. friction models usually have a stuck state in order
to avoid similar problems, and bouncing balls can be modeled by an elastic impact zone.

If the events are time events it is not chattering, and only indicate fast sampling.

In order to reduce the simulation time if there are many step one can select an explicit solv-
er, see “Specify simulation run” on page 148.

In some cases it is possible to replace a detailed model generating many events by an aver-
aging modes with a smaller number of events, e.g. a fast sampled controlled system can be
replaced by an equivalent continuous-time controller, and a pulse-width modulated control
signal by an average signal.

Debug facilities when running a simulation

When a simulation is running it is possible to open the result file to plot and animate the re-
sult in order to see that the simulation is progressing correctly.

It is also possible to activate these using from these individually before the simulation is
started using the “Debug tab” on page 153, or by using the debug monitor when the simula-
tiong is running.

Debug monitor. In order to determine the roots of some problems it is possible to enter a simple debug mon-
itor for the simulation in order to determine how the simulation is progressing and to deter-
mine which variable is slowing down the simulation.

This requires that Microsoft Visual C++ compiler with DDE-support is not selected as
compiler since the commands are entered in the DOS-window created when using the other
compilers. See also “Compiler tab” on page 154.

Restore the DOS-window and press Ctrl-C to get the end-of-simulation statistics (where the
simulation is, number of steps, number of function evaluations, etc.) Since parts of this in-

186

formation is stored internally by the integrators the information might underestimate some
of the statistics.

Debug commands. By pressing Ctrl-C twice in rapid succession you will enter a debug monitor (pressing Ctrl-
C once more will terminate the simulation). The following commands are available:

Of the log-commands ‘log event true’ and ‘log norm true’ are the most important. It is also
possible to use ‘log event false’ to turn it back off. Setting ‘log event true’ makes it possible
to activate logging of events at the right time and without seeing the log for non-linear sys-
tem of equations. It can be used to determine if there are any problems with chattering.

Integrator error statis-

tics.

Setting ‘log norm true’ makes it possible to determine which variable is causing an adaptive
integrator, e.g. Dassl, to be slow. In the end-of-simulation statistics it will include statistics
for each variable indicating:

Hopefully a few states will dominate this statistics, and this should have localized the prob-
lem to those few variables. By plotting those variables one can see if it is caused by un-
damped oscillations, in which case extra damping can is a solution, or merely due to highly
complex behavior, in which case a simplified model can be more appropriate.

Command name (abbreviation) Action

continue (c) continue simulation

qui t(q) stop simulation

log (l) give help for commands starting with l

log event true (le t) activate logging of events

log norm true (ln t) activate logging of dominating component

log singular true (ls t) log and continue if singular systems

Column Indicates

Limit stepsize How often has the error in the component ex-
ceeded the tolerance and forced the integra-
tor to reduce the stepsize

Dominate error How often has the component dominated the
error estimate

Exceeds 10% of error How often has the error contribution from
the component exceeded 10% of total error
estimate

Component Name of the state

(#number) State number

SIMULATING A MODEL 187

Profiling

The previous sections makes it possible to determine why the code is using too many steps,
in some cases the number of steps seems correct, but the cost per step is too large. If the
time per step is too large one must determine where the time is spent in evaluating the mod-
el equations.

This can be accomplished under Windows by first selecting the Microsoft Visual C++ com-
piler with DDE-support, since it has access to highly accurate timers (accuracy in micro-
seconds or nano-seconds), see “Compiler tab” on page 154. Selecting other compilers will
only generate timers with milli-second resolution, which often is too inaccurate.

Basic profiling

To turn on profiling write the following at Dymola’s command input

Advanced.GenerateBlockTimers=true

Then translate the model, and run the simulation. At the end of the log file a table contains
the profiling information. Note that it might be necessary to open the log file (dslog.txt) in
an editor to view the entire table.

By running e.g. ‘Kinematic loop of an engine’ demo (which takes about 5 seconds without
profiling) one gets results such as

Profiling information for the blocks.

Estimated overhead per call 4[us] total 0.939[s]

the estimated overhead has been subtracted below.

Block, Total CPU[s], Mean[us] (Min[us] to Max[us]), Called

 0, 5.002, 252 (38 to 30434), 22058

 1, 0.047, 329 (237 to 9271), 149

 2, 0.030, 2 (0 to 8632), 22058

 3, 0.933, 47 (11 to 45327), 22057

 4, 0.000, 15 (3 to 40), 4

 5, 0.000, 30 (8 to 61), 4

 6, 0.000, 1 (3 to 1), 1

 7, 0.067, 3 (3 to 5045), 21812

 8, 0.562, 29 (21 to 8675), 21812

 9, 0.036, 2 (1 to 5117), 21812

 10, 0.063, 3 (2 to 8843), 21812

 11, 0.178, 9 (4 to 25083), 21812

 12, 0.154, 8 (6 to 9243), 21812

 13, 1.774, 90 (76 to 30257), 21812

 14, 0.015, 1 (0 to 246), 7346

 15, 0.069, 9 (8 to 179), 7346

The first lines state that we have estimated the overhead of the timers to 4 microseconds and
subtracted them from all timing estimates, thus making it easier to find the problematic
block. The total overhead is also included for comparison.

188

It is then necessary to examine the file dsmodel.c in order to determine what block number
corresponds to what variable(s). The start of block 6 is marked by DymolaStartTimer(6)
and the end by DymolaEndTimer(6). The first blocks are special:

For these blocks we have only subtracted the overhead for their own timers and not for ad-
ditional timer calls that occur during their call. Thus the total time all model evaluations
should more accurately be around 5s-0.9s (total overhead)=4.1s. We can also estimate this
by first measuring the total CPU time before including profiling, in this case 5s, and sub-
tracting the time outside of the model evaluation, (block 3), we get 5s-0.933s=4.1s.

In this example the event iterations are insignificant compared to the rest, even though there
are 72 event iterations.

The remaining blocks are code-blocks, either system of equations (including a trailing part
of torn equations) or blocks of non-equations.

Among these blocks the major costs are block 8, which is a non-linear equation for solving
the angle of the cylinder, and block 13, which is the linear system for the loop (three un-
knowns). Together they account for about 2.3s (out of the models total of about 4.1s). Thus
these two blocks explain more than half of the time spent evaluating the model. Since the
model contains a kinematic loop this was as expected.

Note that block 5 has the largest average time of the normal blocks, but no influence on the
total CPU-time. This block consists of variables that are parameter-dependent and thus are
constant during continuous integration, and is thus evaluated only four times.

One should remember to reset the switch

Advanced.GenerateBlockTimers=false

in order to avoid the overhead for the next model. This switch is not cleared by ‘clear’ or
‘Clear All’ commands.

The timer overhead also affects the total simulation time as well, and that the accurate tim-
ers measure wall-clock time and not CPU-time in the simulation process. Thus simple state-
ments can have large maximum times if some other process interrupts them between the
start of the timer and the stop of the timer. This should not affect the average and minimum
times.

Block # Task

0 Is the total time for all model evaluations

1 Is the total time for model evaluations during
event handling

2 Is an empty block, included just for compari-
son.

3 Is the total time spent between model evalua-
tions.

SIMULATING A MODEL 189

Fine grained profiling

In some cases the profiling indicates that one non-equation block is the cause of the prob-
lem. In order to determine what is the cause within that block. In that case it is possible to
turn on a more fine grained profiling by writing the following at Dymola’s command input

Advanced.GenerateTimers=true

Then translate the model, and run the simulation. At the end of the log file a large table con-
tains the profiling information. Note that it might be necessary to open the log file
(dslog.txt) in an editor to view the entire table.

By running e.g. ‘Kinematic loop of an engine’ demo (takes about 5s without profiling) one
gets results such as

Profiling information for the blocks.

Estimated overhead per call 4[us] total 9.930[s]

the estimated overhead has been subtracted below.

Block, Total CPU[s], Mean[us] (Min[us] to Max[us]), Called

 0, 28.284, 1425 (465 to 51172), 22058

 1, 0.315, 2191 (1930 to 10815), 149

 2, 0.020, 1 (0 to 5621), 22058

 3, 1.024, 52 (12 to 41656), 22057

 4, 0.000, 17 (4 to 50), 4

 280, 0.022, 1 (0 to 8116), 21812

 281, 0.611, 31 (22 to 9959), 21812

 282, 0.014, 1 (0 to 99), 21812

 301, 0.028, 1 (0 to 8533), 21812

 302, 0.132, 7 (4 to 8530), 21812

 303, 0.032, 2 (0 to 8680), 21812

 348, 0.019, 1 (0 to 464), 21813

 349, 1.835, 94 (80 to 50319), 21813

 350, 0.024, 1 (0 to 8747), 21813

The two dominating blocks, 281 and 349, are the equation blocks found with the more
coarse grained profiling.

However, note that block 302 is a complex equation giving the gas force of the engine.
Since the equation has event generating ‘>’ and ‘<‘ one might try to use the noEvent opera-
tor. When using noEvent one must first check that the equation is sufficiently smooth.
Since part of the equation is a piece-wise polynomial, one evaluates both pieces at the
switch and observe that they give the same result.

There is also an outer if v_rel<0, which is not continuous. However, for this complete
model ‘v_rel’ changes sign when ‘x’ is a the minimum (0) and thus for this specific model

190

that expression is in fact continuous. Using such global information breaks the idea of ob-
ject-oriented models and is thus not a good idea in modeling.

Turning events off may

increase simulation

time.

When using noEvent for performance reasons one should always measure the total CPU
time since turning off events can cause a drastic increase in the number of steps. This did
not occur for this example, but no substantial improvements were found and there is no rea-
son to introduce noEvent.

Examining the average time for block 302 after the change one observes that it is not influ-
enced by this change. Thus the overhead for generating events for ‘>’ and ’<‘ is only mar-
ginal, and no reason for using noEvent.

On the other hand, rewriting the polynomials with Horner’s rule decreased the average from
7 to 3 microseconds. Even that had marginal influence on the total CPU-time in this exam-
ple.

One should remember to reset the switch

Advanced.GenerateTimers=false

in order to avoid the overhead for the next model. Note that this switch is not cleared by
‘clear’ or ‘Clear All’ commands.

Inline integration

Inline integration re-

quires the Realtime op-

tion.

In order to increase the simulation speed, in particular for real-time simulation, Dymola
provides inline integration. Inline integration is a combined symbolic and numeric approach
to solving differential-algebraic equations systems. Discretization expressions representing
the numerical integration algorithm are symbolically inserted into the differential algebraic
equation model. The symbolic power of the Dymola translator is then exploited to trans-
form the equations into a representation that is efficient for numeric simulation. The method
of inline integration was presented in Elmqvist et al. (1995).

Inline integration

Consider an ordinary differential equation on explicit state space form

;

where x is the vector of state variables and t denotes time. It is straightforward to solve this
problem by using an explicit integration method. In the most simple case, using the Euler
forward method, the derivative of the state vector is approximated by a forward difference
formula:

x· f x t,()= x t0() xo=

x· tn() x·n

xn 1+ xn–

h
-----------------------≈=

SIMULATING A MODEL 191

where is the unknown value of at the new time instant

, is the known value of at the previous time instant ,

and is the chosen step size. Inserting the discretization expression into the model equa-
tions leads to the recursion formula:

; is known

which is used to “solve” the ODE.

Unfortunately, explicit integration methods are not well suited if systems are stiff. These are
systems with dynamically fast and highly damped components. If an explicit method is
used to integrate such systems, the step size is limited due to stability problems of the inte-
gration method. If the step size is too large, then the computed trajectory starts to oscillate
and diverge. The standard cure is to use implicit methods. However, this leads to a non-lin-
ear equation system that has to be solved at each step. The simplest example of an implicit
method is Euler backward. The derivative of the state vector is approximated by a backward
difference formula:

leading to the discretized problem

which at each time-step this has to be solved for .

The idea of inline integration is to let the Dymola translator manipulate the discretized
problem to reduce and simplify the problem that has to be solved numerically at each step.
A set of differential-algebraic equations can be written as

where is the vector of variables appearing differentiated and is the vector of unknown

algebraic variables. Normally, Dymola manipulates this problem to solve for and , and
a numerical integration algorithm is used to integrate for . When inline integration is used
the Dymola translator first reduces the DAE index to one and then adds the discretization
equations. Assume that the original problem is index one, then using Euler backward turns
the problem into

with , and being the unknowns to be solved for. The Dymola translator manipu-

lates the problem to facilitate the numerical solution work.

xn 1+ x tn 1+()= x

tn 1+ tn h+= xn x tn()= x tn
h

xn 1+ xn h f xn t,()⋅+= x0

x· tn() x·n

xn xn 1––

h
-----------------------≈=

xn 1+ xn h f xn 1+ tn 1+,()⋅+=

xn 1+

0 g t x x· v,,,()=

x v
v x·

x

0 f tn xn x·n vn,,,()=

xn xn 1– h x·n⋅+=

xn x·n vn

192

Inline integration in Dymola

Inline integration is turned on by issuing the command

Advanced.InlineIntegration = true

on the command line before translating the model.

Euler forward is the default method. To select Euler backward issue the command

Advanced.InlineIntegrationExplicit = false

Translate the model. Click the Specify simulation run button and select Euler as the integra-
tion method. You will get an error message if improper algorithm is selected. Step size can
be implicitly defined as output interval or explicitly set by specifying “Fixed integrator
Step”.

References

Elmqvist, H., M. Otter, and F. E. Cellier (1995): “Inline Integration: A New Mixed Symbol-
ic/Numeric Approach for Solving Differential-Algebraic Equation Systems”, In Proceed-
ings of ESM'95, SCS European Simulation MultiConference, Prague, Czech Republic, pp.
xxiii-xxxiv.

Mode handling

Mode handling re-

quires the Realtime op-

tion.

In many systems the structure of the system depends on discrete states such that there is a
linear system with a Jacobian that can only have a number of discrete values during a simu-
lation. Normally we factorize the Jacobian at every step, but during continuous integration
the matrix is not re-factorized, and thus the solution of the linear system contributes little to
the overall time.

However, for real-time simulation we have a dead-line for each step and do thus want to de-
crease the maximum time for each step. Mode-handling does this by pre-compiling all
modes (i.e. all possible Jacobians) used in the simulation. This avoids the costly re-factor-
izations, allows further symbolic manipulation for each mode, and by only performing it for
the modes that actually occur it avoids an exponential explosion in code size.

Collecting modes

In order to collect modes one must first decide which variables determine the modes (this is
done automatically by Dymola) and then which modes are interesting (automatically col-
lected from simulations).

The following describes the preparatory steps during off-line simulation, and the result of
these steps is a new model that with mode variables and modes.

1. open ${model} (to show it)

SIMULATING A MODEL 193

2. set Hidden.GetModeVariables=true

3. translate ${model} (this automatically detects mode variables and outputs code for find-
ing new modes in dsmodel.c)
If the manual selection of mode variables fails it possible to manually set BigModeVari-
ables in the model.

4. simulate to collect mode values in ${model}Modes.mat and output new model with mode
values in ${model}ModeValues.mo

5. repeat the last step under various conditions to get additional modes (automatically
merged)

Using mode information in real-time simulation

The above describes how to obtain the modes during off-line simulation, and we are now
ready to use them during real-time simulation

6. (not necessary: set Hidden.GetModeVariables=false)

7. translate ${model}ModeValues using mode values (no new mode variables should be
found) and simulate it (no new mode values should be found)

One potential problem is that intermediate modes (found during event iterations) can vary
between off-line and real-time simulation. The only guard is to perform several simulations
with different values. To debug this procedure a number of output variables are automatical-
ly generated to indicate which mode we are in and the size of the system of equations.
These are outputs and can thus be accessed even on real-time hardware such as dSPACE.

Known Limitations

• The automatically collected modes are limited to 100 in numbers.

• There should be some possibility to automatically generate code for all modes.

• The switches should have names starting with Advanced instead of Hidden.

• The original model cannot appear inside a package (create a new model).

• If the mode variables are changed, but their number is constant you must remove the mat-
file in order to avoid additional modes (with extra code).

• erasing ${model}Modes.mat and only redoing Table 7 on page 193 gives a new ${mod-
el}ModeValues that does not contain modes present in the model.

References

Mattsson, S. E., M. Otter, H. Elmqvist (1999) “Modelica Hybrid Modeling and Efficient
Simulation”, in Proceedings of 38th IEEE Conference on Decision and Control, Phoenix,
Arizona. Also available as http://www.modelica.org/papers/ModelicaCDC99.pdf.

194

DYNAMIC MODEL

SIMULATOR

DYNAMIC MODEL SIMULATOR 197

Dynamic Model Simulator

Overview

What is Dymosim?

Dymosim stands for Dynamic model simulator and is the executable generated by Dymola
in order to simulate the model, and then used to perform simulations and initial value com-
putations. Dymosim contains the code necessary for continuous simulating, and event han-
dling. Three types of events are supported: time-, state- and step-events. Model descriptions
are compiled to machine code such that maximum execution speed is reached during simu-
lation; no interpretation of model equations takes place.

Dymosim is a stand-alone program which can be used in several different environments. It
is especially suited to be used in conjunction Dymola. Dymola transforms such a definition
into a state space description which in turn is solved by the Dymosim integrators. The re-
sults of a Dymosim simulation can be plotted or animated by Dymoview.

Dymosim can be used in other environments too. Special support is given for Matlab1 and

for ANDECS2. However, it can also be used as a stand-alone program or can be called di-
rectly from a user-program as a C-function.

198

Who wrote Dymosim?

The first version of Dymosim was called DSSIM and was written by Norbert Gaus and
Martin Otter as part of the ANDECS project in 1991 (Gaus91,Otter91). The DSSIM inte-
grators are mainly based on high quality public domain software which was selected and
enhanced by Claus Führer, Tuan van Tran and Martin Otter. In 1992-1993, major enhance-
ments to DSSIM have been realized by Martin Otter (user interface, improved event han-
dling), Reinhard Finsterwalder (off-line and on-line plotting features) and Alexander
Lewald (parameterized input signals, especially suited for trajectory optimization).

In 1994, Dymosim, version 4.0, was realized by Martin Otter. Dymosim is essentially the
kernel of DSSIM, version 3.3, which was separated from ANDECS and transformed from
Fortran to C using the public domain f2c compiler of the Bell Laboratories. The file inter-
face was newly written in C, replacing the previous interface of DSSIM to the RSYST data-
base system.

Dynasim has then interfaced Dymola to this kernel and enhanched both the integrators and
the interfaces between integrators and models.

Running Dymosim

When translating a model in Dymola an executable, Dymosim, is generated, and later when
selecting Perform simulation or similar commands this program computes the solution. A
statistics of the simulation run is always stored in file dslog.txt,which can be displayed
by the menu command Simulation, Show Log. By setting Experiment, Preferences, Output
Debug information additional Debug information will be written to the log file.

By default, Dymosim stores the results of a simulation run in (Matlab) binary format on file
(dsres.mat). The data can be plotted by clicking on the Plot Window icon of the work-
space and selecting the variables to be plotted by Variables. Additional plot windows can be
opened by clicking on the Dymoview icon in the workspace and by selecting View, Plot Win-
dow. Results from other files can be plotted within Dymoview by selecting the appropriate
file via menu File, Open Result. As explained in the next section, the results can also be di-
rectly loaded into Matlab and plotted with the Matlab plot functions.

The translate commands generates the file dsmodel.c, compiles and links this to the gen-
erate the executable dymosim.exe, and then runs dymosim -i to generate default initial
values. Compiling and linking uses a scrip dsbuild provided by Dymola in directory $DY-
MOLA/bin. If necessary, you can adapt this script to your needs, e.g. to choose different

1. Matlab stands for Mathematical laboratory and is a registered trademark of The Math-
Works Inc.
2. ANDECS stands for Analysis and Design of Controlled Systems and is a registered
trademark of DLR.

DYNAMIC MODEL SIMULATOR 199

compiler options.

Dymosim as a stand-alone program

Dymosim is essentially a stand-alone program without any graphical user interface which
reads the experiment description from an input file, performs one simulation run, stores the
result on an output file and terminates. Instead of controlling this action via Dymolas graph-
ical user interface, Dymosim can also be called directly by the user.

A default input file for a simulation run, named dsin.txt, is generated by command “dy-
mosim -i” in the shell (to get all possible command line arguments, use “dymosim -h”).
The file contains the complete information about a simulation run, especially the stop time,
the initial values for the state variables and the actual values of the model constants (= Dy-
mola parameters). Use a text editor to overwrite the default values provided in the file. The
complete structure of the (self explanatory) input file is described on page Dymosim input
file “dsin.txt”.

A simulation run is executed by command “dymosim” or by “dymosim dsin.txt

dsres.mat”. In both cases the simulation run is performed by reading the input file
dsin.txt and by storing the simulation result on the binary file dsres.mat. The data on
this file can be plotted by Dymoview. Alternatively, the result file can be imported into Mat-

lab1 by executing command “[s,n] = tload” in the Matlab environment. The signal
names are stored in text matrix “n”, whereas the simulation results are stored in the numeric
matrix “s”. The first column of “s” is the time vector, whereas a subsequent column “i”
corresponds to signal “i”. Signal indices and corresponding names are printed by the pro-
vided Matlab m-function “tnlist(n)”. Signal “i” can be plotted by Matlab command
“plot(s(:,1),s(:,i))”. Alternatively, the provided Matlab m-function
“tplot(s,[i1,i2,i3],n)” plots columns i1,i2,i3 of “s” with respect to “s(:,1)”,
using the corresponding signal names stored in text matrix “n” as a legend.

In the subdirectory dymtools another set of routines can be found that perform a similar task
as tload, use help dymtools in Matlab for more information. The function dymbrowse al-
lows you to select and plot signals directly in Matlab, and dymload and dymget allows you
to extract signals from a result file. They use substantially less memory than tload by not
storing the result in a simple matrix.

Another alternative for using less memory is to ensure that only the necessary signals are
stored in the result file. This can be accomplished by plotting the appropriate signals and
then selecting “Save As...” from the context menu of the result-file in the plot selector, and
selecting the file type “Matlab file - only plotted”.

If the file dsu.txt is present when Dymosim is started, Dymosim reads the trajectories of
input signals from this file. The file can either be in ASCII format or can be a Matlab mat-
file in the format of the result file dsres.mat, i.e., the result file can be at once used as in-

1. Matlab is a product of MathWorks Inc

200

put file of another model. It is convenient to generate an input function within Matlab, and

save the data on file, e.g.:

Here, “control” and “dist” are names of variables which are declared as “input” at the
highest hierarchical level in the Dymola model.

Dymosim and Matlab

Dymosim can be directly called as an m-function from Matlab. The power of Matlab can
be used to perform parameter studies or optimization runs such that every “function evalua-
tion” requires one simulation experiment. When called from Matlab, Dymosim runs as a
separate process. The Dymosim executable has to be built in the same way as in the previ-

ous section. Dymosim is executed by the command

where the three input arguments correspond to the three matrices of the Dymosim input file
(see a more detailed description by command “help dymosim” within Matlab). The results
of a simulation run are stored in matrix “s”. Every column of “s” contains the result data
for one signal; column 1 is the time vector. The signal name of column “i”. is stored as
string in row “i”. of character matrix “n”. A simulation of the Van der Pol equation, togeth-
er with a plot of the result signals, can therefore be performed by the following commands:

Often it is convenient to use the default input file dsindef.txt of Dymosim to define in-
put parameters which do not change between simulation runs. The format of this file is
identical to the Dymosim input file dsin.txt. If dsindef.txt is present, the data stored
in this file are used as default values. The default values are overwritten by the data given as
arguments to the dymosim m-file function.

t = (0:100)’/20;

s = [t, t*t, sin(t)];

n = ['time '

 'control '

 'dist '];

tsave('dsu.txt',s,n);

[s,n] = dymosim(experiment,x0,param);

[s,n] = dymosim([0,50,0.1,0,1.E-4,1],[0.5;0],0.2);

tplot(s,2:size(s,2),n) % plot all result signals

DYNAMIC MODEL SIMULATOR 201

Selecting the integration method

Dymosim provides a number of different integration methods for the simulation of dynamic
systems. In this section the major characteristics of these methods are discussed, and rules
of thumb are given which method should be selected for a problem at hand. Note however,
that one should not rely on just one integration method for simulation experiments. Instead,
some selected results should be checked by two or three other (different) integration meth-
ods.

First of all some important issues of integrators are explained, in order to classify the avail-
able integration methods in Dymosim. If you are familiar with these issues, just skip the
next section.

Integrator properties

Relative and absolute error tolerances

Relative tolerances have to be assigned to tell the integration methods how accurately the
solution x(t) should be computed. The tolerance must be greater than zero and is used in a

local error test for each component1 of the state vector xi, roughly requiring at each step that

| local error | < tolrel * |xi| + tolabs

The relative tolerance tolrel approximately defines the number of expected true digits in

the solution. That is, if 3-4 true digits are required in the solution, the default value of 10-4

should be used. If an element of x is exactly zero or near to zero, the relative tolerance is
without meaning and the absolute tolerance tolabs approximately defines an upper (abso-
lute) limit on the local error. Since user's often have difficulties to see the difference be-
tween the relative and the absolute tolerance, in Dymosim tolabs = tolrel. This is not
a good choice, if signals are permanently very small.

In the Dymosim input file it is possible to define a scaling value for every component of the
state vector. The integrators effectively solve for the scaled state variables x(i)/xs-
cale(i). If some state variables are very small or if there are big differences in the magni-
tudes of elements of x, the scaling vector should be assigned appropriate elements. E.g., if

x(1) is always near 10-5 and x(2) is always near 105, the scales xscale(1) = 10-5,

xscale(2) = 105 should be used. For the scaled equations it makes again sense to use the
relative tolerance as an absolute tolerance, too.

Global error

The global error is the difference between the true solution of the initial value problem and
the computed approximation. Practically, all present-day codes, including the ones used in

1. More specifically, a root-mean-square norm is used to measure the size of vectors, and
the error test uses the magnitude of the solution at the beginning of a step.

202

Dymosim, control the local error at each step and do not even attempt to control the global
error directly. Usually, but not always, the accuracy of the computed state variables x is
comparable to the relative error tolerances. The methods will usually, but not always, deliv-
er a more accurate solution if the tolerances are reduced. By comparing two solutions with
different tolerances, one can get a fairly good idea of the true error at the bigger tolerances.

Variable step-size, dense output

Most integration methods available in Dymosim have a variable step-size algorithm. At ev-
ery step, a method estimates the local error. The integration step-size is chosen in such a
way, that the local error is smaller than the desired maximum local error, defined via the rel-
ative and absolute tolerances. This implies, that usually smaller step-sizes are used, if small-
er tolerances are defined.

There is one important difference between integrators with respect to the step-size algo-
rithm: The step-sizes of some integrators are not only influenced by the required tolerances
but also by the communication time grid. The communication time grid is defined by the
StartTime, the StopTime and a communication grid size and determines the points, at
which results must be stored. The mentioned integrators just proceed from one grid point to
the next one, i.e. the maximum possible step-size of these integrators is limited by the dis-
tance of two successive communication points. The step-size is always chosen in such a
way, that the integrator meets the grid points exactly. For such methods, the communication
grid must be defined carefully. In order to handle stability problems it is possible to define a
smaller fixed step-size, and in this case the communication step-size should be a multiple of
this smaller fixed step-size.

On the other hand there are integration methods, called dense output methods, which treat
communication points differently. The step-size of such integrators is not influenced by the
communication grid. The step-size is only chosen according to the required tolerances and
the estimated local error. Such methods integrate past the desired communication points and
determine the values of the state variables x at the communication points by interpolation,
which involves no evaluation of the differential equation. This is advantageous, since the
choice of the communication grid, even if a dense grid is used, has nearly no influence on
the efficiency of the integration. In Dymosim, the maximum allowed step-size for dense
output integrators can be explicitly restricted by parameter method(hmax) in the input file,
additionally it is possible to turn off dense output.

Variable order

Integration methods approximate the solution x(t) internally by a polynomial of order kord.

Some methods use a fixed order, other methods vary the order during the simulation. The
integration step-size can be usually chosen larger (for the same maximum local error), if the
order is bigger, which in turn implies a greater efficiency. The step-size and error control of
the integrators are based on the assumption, that the solution x(t) can be differentiated at
least kord+1 times. Therefore if it is known for example that the result of a system is not

very smooth, a low order method should be chosen. In Dymosim, the maximum order of a
variable order method can be explicitly set in the input file via method(ordmax). If the

DYNAMIC MODEL SIMULATOR 203

maximum order is set to one, the variable order integration methods reduce to the simple
(explicit or implicit) Euler formula.

Stiff systems

“Usual” integrators get in trouble, if “fast” and “slow” signals are present in the solution
x(t). For linear differential equations this corresponds to problems where the system matrix
has eigenvalues whose real part is negative and large in magnitude, compared to the recip-
rocal of the time span of interest. Such systems are called stiff. There exist different algo-
rithms for the integration of stiff and non-stiff systems. However note, that problems with
(undamped) highly oscillating signals are not called stiff here. At present there exists no
production code to cope with this problem satisfactorily (the step-size is limited by the fre-
quency of the highly oscillating components and therefore the simulation is slow).

The step-size of an integration method is always limited by a method specific stability
boundary. The integration only remains stable and produces reliable results, if the step-size
is lower than this boundary. If a system is integrated with a non-stiff integration method,
and the integrator step-size is limited by the stability boundary and not by the maximum lo-
cal error, the system is stiff. This usually means, that the step-size chosen from the non-stiff
method becomes very small and the efficiency of the integration degrades considerably.
However note, that the stiffness depends on the chosen error tolerances. If the error toler-
ances are decreased, the system may become non-stiff, since the step-size is now limited by
the maximum local error and no longer by the stability boundary.

Dymosim integrators

At present, Dymosim provides ten different variable step-size integration methods. The
most important characteristics of these methods are given in the following table:

There are also four different fixed step-size integration methods, intended for real-time sim-

alg. method model

type

order stiff dense

output

root

finder

author(s)

1 DEABM ODE 1-12 no yes no Shampine, Gordon, Watts

(Sham75,Sham80)

2 LSODE1 ODE 1-12 no yes no Hindmarsh (Hind80)

3 LSODE2 ODE 1-5 yes yes no Hindmarsh (Hind80)

4 LSODAR ODE 1-12,

1-5

both yes yes Petzold, Hindmarsh (Hind83)

5 DOPRI5 ODE 5 no no no Kraft (Hair87)

6 DOPRI8 ODE 8 no no no Kraft (Hair87)

7 GRK4T ODE 4 no no no Arnold (Kaps79)

8 DASSL DAE 1-5 yes yes yes Petzold (Petz82,Bren89

9 ODASSL ODAE 1-5 yes yes yes Führer (Fueh88)

10 MEXX ODAE 2-24 no yes no Lubich (Lubi91)

204

ulations:

The three supported model types are abbreviated as:

ODE Ordinary Differential Equations.
DAE Differential Algebraic Equations (of perturbation index 1).
ODAE Overdetermined Differential Algebraic Equations.

In the following table, some hints are given when to use a specific integration method:

alg. method model

type

order stiff dense

output

root

finder

author(s)

11 Euler ODE 1 no no yes Dynasim

12 Rkfix2 ODE 2 no no no -

13 Rkfix3 ODE 3 no no no -

14 Rkfix4 ODE 4 no no no -

DEABM If you don’t know much about your problem or you don't want to think much about it, use method
DEABM. DEABM is a robust code with conservative heuristics. Other codes like LSODE1 may
be faster in some situations, however DEABM will often be more reliable. Furthermore DEABM
is the only code in Dymosim, which will give you a warning if your problem appears to be stiff.

If the calculation of the right hand side of the differential equation is relatively expensive and your
problem is non-stiff or moderately stiff and/or you want a great many output points, use DEABM
or LSODE1.

LSODE1 LSODE1 is similar to DEABM. It is also a multi-step method using the Adams/Bashforth/Moulton
formula. However some important details are realized differently. You can use LSODE1 in the
same situations as DEABM.

LSODE2 If your system is stiff, use method LSODE2. This integrator uses a multi-step method with the
BDF-formula, the so-called Gear method.

LSODAR If you need a root finder to handle state events or if your system is stiff on some time intervals and
non-stiff on other time intervals, use method LSODAR. LSODAR is a combination of LSODE1
and LSODE2. It starts with the algorithm of LSODE1 and switches between the algorithms of
LSODE1 and LSODE2 depending on the stiffness of the system. If your system is non-stiff over
the integration period you should get nearly the same results with respect to the number of function
evaluations and computing time as with method LSODE1.

DOPRI5 If the calculation of the right hand side of the differential equation is relatively cheap and your
problem is non-stiff, use method DOPRI5. This method works well for moderate relative error tol-

erance requirements of about tolrel=10-4. For higher precision computations a higher order
method like DOPRI8 might be more effective with respect to computing time. If you need a great
many output points, DOPRI5 and DOPRI8 are not well suited. Use instead a dense output integra-
tor, for example DEABM.

Integrator DOPRI5 uses a Runge-Kutta method with the order-comparing step-size formulae of
Prince and Dormand.

DYNAMIC MODEL SIMULATOR 205

Dymosim reference

Model functions for Dymosim

When user defined C-functions are called from model equations a reference to the source
code file for these functions needs to be put in a file userfunc.c in the working directory.

#include "myfunc.c"

In addition to the Modelica functions, the functions min(,), max(,) are supported. Pack-
Shape and PackMaterial are two functions provided to support visual objects. The follow-
ing functions are also provided for inclusion in Dymola models when Dymosim is used as
simulator.

status = LogVariable(x)

LogVariable is a function for helping tracking run-time problems in models. An equation
like

status = LogVariable(x)

It will give a message in the event log of the form

DOPRI8 Method DOPRI8 is similar to DOPRI5. The main difference lies in the different orders of the
methods. DOPRI8 uses a Runge-Kutta method of order 8. DOPRI8 may be used in the same situa-

tions as DOPRI5 if a higher precision is required (say tolrel=10-8).
GRK4T If the calculation of the right hand side of the differential equation is relatively cheap and your

problem is stiff and/or contains highly oscillating solution components, use method GRK4T.
GRK4T is a A(89.3)-stable linearly-implicit Rosenbrock type method of order four, i.e, the stabili-
ty region of the integrator is nearly the whole left half plane. GRK4T can be also used for non-stiff
problems without any problems (but with a higher amount of computing time than a non-stiff solv-
er as DOPRI5 or DOPRI8).

DASSL If you have differential algebraic equations (DAE), you have to use DASSL, since this is the only
DAE-solver available in Dymosim. DASSL is designed to integrate stiff systems using a BDF-
method. Method DASSL calls integrator DASSL, if no indicator functions are defined (no step
events can appear) and calls integrator DASSLRT otherwise. DASSLRT is a modified version of
DASSL for which a root finder was added. Method DASSL may also be used to integrate (stiff)
ordinary differential equations. Dymosim makes the necessary conversions of the right hand side.

ODASSL ODASSL solves higher index differential algebraic equations or overdetermined differential alge-
braic equations. It is a modified version of DASSL. Therefore if you integrate an ODE system with
ODASSL you will get nearly the same results with respect to the number of function evaluations
and computing time as with method DASSL.

MEXX MEXX is a variant of the MEXX family of codes to solve special index-2 differential algebraic
equations with an optional integral invariant. It uses a half-explicit extrapolation algorithm of or-
ders 2 through 24 and is designed to integrate non-stiff systems. Presently, it is not possible to use
MEXX for the integration of ordinary differential equations.

206

x = 5.5

status = ReadMatrix("name", M)

Read matrix with name “name” from data file “dsdata.mat” into parameter matrix M.

status = WriteMatrix("name", M)

Write matrix M into matrix with name “name” in a new data file with name “name”.mat.

The following random generator functions should only be used within instantaneous equa-
tions. The integration routines do not support stochastic differential equations.

RandomUniform(Time)

Uniformly distributed random number, range [0, 1].

RandomNormal(Time)

Normally distrubuted random number with mean 0 and variance 1.

status = RandomSeed(seed)

Initializes the random number generator with another seed.

Dymosim m-files

Together with Dymosim, some Matlab m-files are shipped to ease the usage of Dymosim
within Matlab. In order to use the m-files, the Matlab path has to be extended by directory
$DYMOLA/mfiles/traj on Unix machines and by directory %DYMOLA%\mfiles\traj

on PC/Windows. The Dymosim m-files are based on a trajectory datastructure:

A trajectory is defined by two matrices:
s A numeric matrix where column 1 is the time vector (= monotonically increasing

values) and the other columns are the corresponding signal values. Intermediate
values are obtained by linear interpolation. If a trajectory is discontinuous, two suc-
cessive time instants are identical. Example:

 s = [0 0 0

 1 1 2

 2 4 4

 3 9 6];

n A string matrix, where row “j” of “n” is the name of the signal of column “j” of “s”.
Example:

 n = ['time'

 't*t '

 '2*t ']

DYNAMIC MODEL SIMULATOR 207

The following m-functions are provided (as usual, you get detailed help for an m-file com-
mand within Matlab by command “help <name>”):

Dymosim command line arguments

Dymosim is a stand alone program which accepts command line arguments with the follow-
ing syntax:

Functions on trajectories (data + names):
Dymosim perform time simulation of a Dymola model.
tcomp compress trajectory data.
tcut extract signals and corresponding names from a trajectory.
tder calculate first derivative of trajectory numerically.
tdiff determine absolute difference of two trajectories.
tinteg calculate integral of trajectory numerically.
tplot plot trajectories and use signal names as legend.
tplotm plot trajectories in multiple diagrams and use signal names as legend.
trange find trajectory index range of a given time range.
tsame make same time-axis for 2 trajectory matrices.
tzoom cut out a trajectory of a given time range.

Functions on trajectoy name matrix:
tnhead add the same string to all signal names of a trajectory-name matrix.
tnindex get row-index of string in trajectory-name matrix.
tnlist list trajectory-names with preceding row numbers.

Other functions:
tload load trajectory (e.g. dymosim simulation) into Matlab work space.
tsave save trajectory on mat-file (e.g. to be used as input signals for dymosim).
tfigure set meaningful default values for figures

(e.g. white background and same colors on screen and printer,)

Usage: dymosim [options] [file_in [file_out]]
simulate a DSblock-model with dymosim.

Options: -s simulate (default).
-h list command summary.
-d file use input defaults from „file“, i.e., read first all input data from

„file“ and afterwards read a subset of the input data from the
Dymosim input file „dsin.txt“ or from „[file_in]“.

-i generate Dymosim input file (containing e.g. the names and
default /initial values of all parameters and state variables).

-ib generate Dymosim input file in (Matlab) binary format (mat-file).
-it generate Dymosim input file using timer defaults (for realtime

Dymosim).
-p precede Dymosim output lines by program name (for realtime

Dymosim, in order to identify the process which prints the line).

208

Basic file format

The input file as well as the result file of Dymosim have the same format. The data may be
given in ASCII (human readable) or binary format. The binary format is identical to the
Matlab binary format, i.e., the Dymosim input file can be generated by the Matlab “save”
command, whereas the Dymosim result file can be loaded into Matlab by the Matlab
“load” command.

The contents of a file consists of a set of named matrices of type char, int, float, or
double. In ASCII-format, a matrix has the following structure:

<type> <name> (<row-dimension>, <column-dimension>) <row_1>

elements separated by blanks; may span several

lines<row_2>

....

<last row>

Blank lines are ignored, as well as all characters which are present after the comment char-
acter “#”. The first matrix on every file is a “char” matrix with name “class”. The first
row of this matrix contains the class-name of the data on file. This name allows the identifi-
cation of the type of data stored in the file. The second row contains a class-specific version
number. Finally the third row contains a description text of the data, which is an arbitrary
string provided by the program which generated the file.

If desired, the ASCII form of files can be directly generated by hand. With the provided
program “alist” the ASCII and binary form can be transformed into each other. E.g. “al-
ist file” lists file “file” on standard output in ASCII format, independent of the previ-
ous format of the file. Command “alist -h” produces the following short description:

-v verify input, i.e., store complete input in file „dsinver.txt“.
-c cmd execute command cmd after simulation end. This can be useful

if dymosim is started as a separate process in the background.

Usage: alist [options] files
transform Dymosim files and write them to standard output.

Options: -a write in ASCII format (default).
-b write in Matlab binary format.
-h help (list this description).
-d transform single precision matrices into double precision.
-s transform double precision matrices into single precision.

Example: alist -as dsres.mat > dsres.txt
transform file „dsres.mat from binary into ASCII format, change the precision
to float and store the result on file „dsres.txt“.

DYNAMIC MODEL SIMULATOR 209

Dymosim input file “dsin.txt”

A default version of the Dymosim input file is generated by command “dymosim -i” in
ASCII format. The Dymosim input file currently have the following structure (input file of
a simple circuit model). The dymosim program is also able to read old versions of this for-
mat, and the file format is continuously extended with additional settings. Since the files are
self-documenting the best documentation can be found by generating it by “dymosim -i”
and reading the comments:

#1

char Aclass(3,24)

Adymosim

1.4

Modelica experiment file

Experiment parameters

double experiment(7,1)

 0 # StartTime Time at which integration starts

 # (and linearization and trimming time)

 1 # StopTime Time at which integration stops

 0 # Increment Communication step size, if > 0

 500 # nInterval Number of communication intervals, if > 0

 1.000000000000000E-004 # Tolerance Relative precision of signals for

 # simulation, linearization and trimming

 0 # MaxFixedStep Maximum step size of fixed step size

 # integrators, if > 0.0

 8 # Algorithm Integration algorithm as integer (1...14)

 #

 # | model| | | dense | state |

 # Algorithm | typ | stiff | order | output| event |

 # ------------+------+-------+--------+-------+-------+

 # 1 | deabm | ode | no | 1-12 | yes | no |

 # 2 | lsode1 | ode | no | 1-12 | yes | no |

 # 3 | lsode2 | ode | yes | 1-5 | yes | no |

 # 4 | lsodar | ode | both |1-12,1-5| yes | yes |

 # 5 | dopri5 | ode | no | 5 | no | no |

 # 6 | dopri8 | ode | no | 8 | no | no |

 # 7 | grk4t | ode | yes | 4 | no | no |

 # 8 | dassl | dae | yes | 1-5 | yes | yes |

 # 9 | odassl | hdae | yes | 1-5 | yes | yes |

 # 10 | mexx | hdae | no | 2-24 | no | no |

 # 11 | euler | ode | no | 1 | no | yes |

 # 12 | rkfix2 | ode | no | 2 | no | yes |

 # 13 | rkfix3 | ode | no | 3 | no | yes |

 # 14 | rkfix4 | ode | no | 4 | no | yes |

 # ---+--------+------+-------+--------+-------+-------+

 # euler and rkfix have fixed stepsize.

Method tuning parameters

double method(27,1)

 1 # grid type of communication time grid, defined by

210

 # = 1: equidistant points ("Increment/nInterval")

 # = 2: vector of grid points ("tgrid")

 # = 3: variable step integrator (automatically)

 # = 4: model (call of "increment" in Dymola, e.g.

 # incr=Time > 2 then 0 else 0.1

 # dummy=increment(incr))

 # = 5: hardware clock (functions "udstimerXXX")

 # grid = 1,3 is stopped by "StopTime"

 # grid = 2 is stopped by "tgrid(last)"

 # grid = 4 runs forever (stopped by model)

 # grid = 5 runs forever (stopped by udstimer-

Run)

 1 # nt Use every NT time instant, if grid = 3

 3 # dense 1/2/3 restart/step/interpolate GRID points

 0 # evgrid 0/1 do not/save event points in comm. time grid

 1 # evu 0/1 U-discontinuity does not/trigger events

 0 # evuord U-discontinuity order to consider (0,1,...)

 0 # error 0/1/2 One message/warning/error messages

 0 # jac 0/1 Compute jacobian numerically/by BLOCKJ

 0 # xd0c 0/1 Compute/set XD0

 0 # f3 0/1 Ignore/use F3 of HDAE (= index 1)

 0 # f4 0/1 Ignore/use F4 of HDAE (= index 2)

 0 # f5 0/1 Ignore/use F5 of HDAE (= invar.)

 0 # debug 0/1 do not/print debug information

 100 # pdebug priority of debug information (1...100)

 0 # fmax Maximum number of evaluations of BLOCKF, if > 0

 0 # ordmax Maximum allowed integration order, if > 0

 0 # hmax Maximum absolute stepsize, if > 0

 0 # hmin Minimum absolute stepsize, if > 0 (use with

care!)

 0 # h0 Stepsize to be attempted on first step, if > 0

 1.0e-014 # teps Bound to check, if 2 equal time instants

 1.00e-10 # eveps Hysteresis epsilon at event points

 20 # eviter Maximum number of event iterations

 1.000000000000000E-006 # delaym Minimum time increment in delay buffers

 1 # fexcep 0/1 floating exception crashes/stops dymosim

 1 # tscale clock-time = tscale*simulation-time,if grid = 5

 # > 1: simulation too slow

 # = 1: simulation-time = real-time

 # < 1: simulation too fast

 1 # shared type of process communication, if grid = 5

 # = 0: no communication,(single process without clock)

 # = 1: no communication (single process with clock)

 # = 2: shared memory (multiple processes with clock)

 2473 # memkey key to be used for shared memory, if shared = 2

Output parameters

int settings(13,1)

 0 # lprec 0/1 do not/store result data in double

 1 # lx 0/1 do not/store x (state variables)

 1 # lxd 0/1 do not/store xd (derivative of states)

 0 # lu 0/1 do not/store u (input signals)

 1 # ly 0/1 do not/store y (output signals)

 0 # lz 0/1 do not/store z (indicator signals)

DYNAMIC MODEL SIMULATOR 211

 1 # lw 0/1 do not/store w (auxiliary signals)

 1 # la 0/1 do not/store a (alias signals)

 0 # lperf 0/1 do not/store performance indicators

 0 # levent 0/1 do not/store event point

 1 # lres 0/1 do not/store results on result file

 0 # lshare 0/1 do not/store info data for

shared memory on dsshare.txt

 1 # lform 0/1 ASCII/Matlab-binary storage format of

 results

 # (for simulation/linearization; not for trimming)

Names of initial variables

char initialName(9,8)

C.C

R.R

C.v

C.der(v)

G.p.v

G.p.i

C.n.v

C.n.i

R.p.v

double initialValue(9,6)

 -1 1 0 0 1 0 # C.C

 -1 1 0 0 1 0 # R.R

 -1 1 0 0 2 0 # C.v

 0 0 0 0 3 0 # C.der(v)

 0 0 0 0 6 0 # G.p.v

 0 0 0 0 6 0 # G.p.i

 0 0 0 0 6 0 # C.n.v

 0 0 0 0 6 0 # C.n.i

 0 0 0 0 6 0 # R.p.v

Matrix with 6 columns defining the initial value calculation

(columns 5 and 6 are not utilized for the calculation but are

reported by dymosim via dymosim -i for user convenience):

#

column 1: Type of initial value

= -2: special case: for continuing simulation (column 2 = value)

= -1: fixed value (column 2 = fixed value)

= 0: free value, i.e., no restriction (column 2 = initial value)

> 0: desired value (column 1 = weight for optimization

column 2 = desired value)

use weight=1, since automatic scaling usually

leads to equally weighted terms

column 2: fixed, free or desired value according to column 1.

column 3: Minimum value (ignored, if Minimum >= Maximum).

column 4: Maximum value (ignored, if Minimum >= Maximum).

Minimum and maximum values are used for scaling purposes

both in the simulator and for the initial value calculation.

Furthermore, they restrict the search range in initial

value calculation.

212

column 5: Category of variable.

= 1: parameter.

= 2: state.

= 3: state derivative.

= 4: output.

= 5: input.

= 6: auxiliary variable.

column 6: Data type of variable.

= 0: real.

= 1: boolean.

= 2: integer.

#

Initial values are calculated according to the following procedure:

#

- If parameters, states and inputs are FIXED, and other variables

are FREE, no special action takes place (default setting).

#

- If there are only FIXED and FREE variables and the number of

FREE parameters, states and inputs is IDENTICAL to the number of

FIXED state derivatives, outputs and auxiliary variables, a non-linear

equation is solved to determine a consistent set of initial conditions.

#

- In all other cases the following optimization problem is solved:

min(sum(weight(i)*((value(i) - DESIRED(i))/scale(i))^2))

under the constraint that the differential equation is fulfilled

at the initial time. In most cases weight(i)=1 is sufficient, due

to the automatic scaling (if DESIRED(i) is not close to zero,

scale(i) = DESIRED(i). Otherwise, the scaling is based on the

minimum and maximum values given in column 3 and 4. If these values

are zero, scale(i)=1 is used).

#

char initialDescription(9,53)

Capacitance [F]

Resistance [Ohm]

Voltage drop between the two pins (= p.v - n.v) [V]

Voltage drop between the two pins (= p.v - n.v) [V/s]

Potential at the pin [V]

Current flowing into the pin [A]

Potential at the pin [V]

Current flowing into the pin [A]

Potential at the pin [V]

The matrices may be in any order on the file. If a matrix is missing, a default matrix is used.
If a matrix has dimension “(0,0)”, the matrix is just ignored. It is allowed to supply only a
subset of the parameters or initial values of state variables. If a parameter or state variable
name is provided which is not present in the model, Dymosim prints a warning message and
ignores this variable. This feature is useful, e.g., when a simulation run should be performed
with an input file from a previous run of a slightly different model.

DYNAMIC MODEL SIMULATOR 213

Simulation result file “dsres.mat”

On the Dymosim result file the results of a simulation are stored, as well as the correspond-
ing signal names. The amount of output on the result file is defined by matrix “settings” in
the input file. An example of the result file in ASCII format is given in the following table.
The file format is also self-describining, explaining how aliases and constant variables are
stored compactly

#1

char Aclass(3,11)

Atrajectory

1.1

char name(16,8)

Time

C.v

G.p.v

G.p.i

C.n.v

C.n.i

R.p.v

C.der(v)

C.i

C.p.v

C.p.i

R.v

R.i

R.p.i

R.n.v

R.n.i

char description(16,53)

Time in [s]

Voltage drop between the two pins (= p.v - n.v) [V]

Potential at the pin [V]

Current flowing into the pin [A]

Potential at the pin [V]

Current flowing into the pin [A]

Potential at the pin [V]

Voltage drop between the two pins (= p.v - n.v) [V/s]

Current flowing from pin p to pin n [A]

Potential at the pin [V]

Current flowing into the pin [A]

Voltage drop between the two pins (= p.v - n.v) [V]

Current flowing from pin p to pin n [A]

Current flowing into the pin [A]

Potential at the pin [V]

Current flowing into the pin [A]

Matrix with 4 columns defining the data of the signals:

#

214

dataInfo(i,1)= j: name i data is stored in matrix "data_j".

(1,1)=0, means that name(1) is used as abscissa

for ALL data matrices!

#

dataInfo(i,2)= k: name i data is stored in column abs(k) of matrix

data_j with sign(k) used as sign.

#

dataInfo(i,3)= 0: Linear interpolation of the column data

= 1..4: Piecewise convex hermite spline interpolation

of the column data. Curve is differentiable upto

order 1..4. The spline is defined by a polygon.

It touches the polygon in the middle of every segment

and at the beginning and final point. Between such

points the spline is convex. The polygon is also the

convex envelope of the spline.

#

dataInfo(i,4)= -1: name i is not defined outside of the defined time range

= 0: Keep first/last value outside of time range

= 1: Linear interpolation through first/last two points outside

of time range.

#

int dataInfo(16,4)

 0 1 0 -1 # Time

 2 2 0 -1 # C.v

 1 2 0 0 # G.p.v

 2 3 0 -1 # G.p.i

 1 3 0 0 # C.n.v

 2 4 0 -1 # C.n.i

 1 4 0 0 # R.p.v

 2 5 0 -1 # C.der(v)

 2 -4 0 -1 # C.i

 2 2 0 -1 # C.p.v

 2 -4 0 -1 # C.p.i

 2 -2 0 -1 # R.v

 2 -4 0 -1 # R.i

 2 -4 0 -1 # R.p.i

 2 2 0 -1 # R.n.v

 2 4 0 -1 # R.n.i

float data_1(2,4)

 0 0 0 0

 1 0 0 0

float data_2(6,5)

 0.0000000E+000 1.0000000E+000 0.0000000E+000 1.0000000E+000 -1.0000000E+000

 2.0000000E-001 8.1863302E-001 0.0000000E+000 8.1863302E-001 -8.1882674E-001

 4.0000001E-001 6.7018896E-001 0.0000000E+000 6.7018896E-001 -6.6999793E-001

 6.0000002E-001 5.4872990E-001 0.0000000E+000 5.4872990E-001 -5.4875731E-001

 8.0000001E-001 4.4920427E-001 0.0000000E+000 4.4920427E-001 -4.4958425E-001

 1.0000000E+000 3.6774468E-001 0.0000000E+000 3.6774468E-001 -3.6768275E-001

DYNAMIC MODEL SIMULATOR 215

Bibliography

[Bren89] Brenan K.E., Campbell S.L. and Petzold L.R.: Numerical Solution of Initial--Value
Problems in Differential--Algebraic Equations. Elsevier Science Publishers, 1989

[Fueh88] Führer C.: Differential-algebraische Gleichungssysteme in mechanischen Me-
hrkörpersystemen. Ph.D. dissertation, Mathematisches Institut, Technische Univer-
sität München, 1988.

[Gaus91] Gaus N. and Otter M.: Dynamic Simulation in Concurrent Control Engineering.
IFAC Symposium on Computer Aided Design in Control Systems, Swansea, UK,
Preprints pp. 123-126, July 15-17, 1991.

[Gay93] Gay D., Feldman S., Maimone M. and Schryer N.: A Fortran-to-C Converter. Com-
puting Science Technical Report No. 149, AT&T Bell Laboratories, Murray Hill N.J.
07974. The f2c compiler and the documentation is available via anonymous ftp from
netlib.att.com, cd netlib/f2c.

[Hind80] Hindmarsh A.C.: LSODE and LSODI, Two New Initial Value Ordinary Differential
Equation Solvers. ACM-Signum Newsletter, vol. 15, no. 4, pp. 10-11, 1980.

[Hind83] Hindmarsh, A.C.: ODEPACK, a systematized collection of ODE solvers. Scientific
Computing, edited by R.S. Stepleman et. al., North-Holland, Amsterdam, 1983.

[Hair87] Hairer E., Norsett S.P. and Wanner G.: Solving Ordinary Differential Equations.
Nonstiff Problems. Springer-Verlag, Berlin, 1987.

[Lubi91] Lubich C.: Extrapolation integrators for constrained multibody systems. IMPACT
Comp. Sci. Eng., No. 3, pp. 213-234, 1991.

[Kaps79] Kaps P. and Rentrop P.: Generalized Runge-Kutta Methods of Order Four with Step-
size Control for Stiff Ordinary Differential Equations. Numer. Math. 33, pp. 55-68,
1979.

[Otte91] Otter M. and Gaus N. ANDECS-DSSIM: Modular Dynamic Simulation with Data-
base Integration. User's Guide, Version 2.1. Technical Report TR R51--91, DLR, In-
stitut für Robotik und Systemdynamik, June 1991.

[Petz82] Petzold L.R.: A description of DASSL: A differential/algebraic system solver. Proc.
10th IMACS World Congress, Montreal, August 8-13, 1982.

[Sham75] Shampine L.F. and Gordon M.K.: Computer Solution of Ordinary Differential Equa-
tions. Freeman, San Francisco, 1975.

[Sham80] Shampine L.F. and Watts H.A.: DEPAC -- Design of a User Oriented Package of
ODE Solvers. Sandia National Laboratories, Albuquerque, New Mexiko,
SAND79--2374, 1980.

216

OTHER SIMULATION

ENVIRONMENTS

OTHER SIMULATION ENVIRONMENTS 219

Other simulation environments

Using the Dymola-Simulink interface

Before starting make sure to have a working Matlab/mex configuration by trying to compile
and link an example Mex file, e.g.: matlab\extern\examples\mex\yprime.c

Please include

• dymola\mfiles

• dymola\mfiles\traj

in the Matlab path. These must be present every time you want to use blocks constructed
with Dymola, a good idea is to do it once and then store the path in Matlab.

Graphical interface between Simulink and Dymola

Dymola has a new interface to Simulink. You find it in Simulink's library browser as Dy-
mola Block/DymolaBlock (if it does not appear you have probably not included dymo-
la\mfiles and dymola\mfiles\traj in your Matlab-path or is using a version prior to Matlab
5.3/Simulink 3). You click once to open the library and you then drag the DymolaBlock to
other models.

220

Dymola block before

compiling.

The DymolaBlock block, with the Dymola logo, represents the Modelica model. It can be
connected to other Simulink blocks, and also to other DymolaBlocks. The lines at the right
and left of the block will be replaced by ports after compiling the model.

The DymolaBlock is a shield around a S-function MEX block, i.e. the interface to the C-
code generated by Dymola for the Modelica model. Double-clicking on the DymolaBlock
open a form where you can set the name of the model and optionally the file name.

A simple way of setting the model name is to start Dymola and double-click on the correct
model and then press “Select from Dymola>”. This automatically gives the model-name.

Note that the model name may contain a dotted name, e.g. Modelica.Blocks.Sourc-
es.ExpSine and the file name is optional, but is used both to find the model and to ensure
that the Simulink model is up to date.

When associating a Modelica model the first time or when editing the Modelica model,
click on “Edit Model” (after selecting the correct current directory at the Matlab prompt).
This launches Dymola and cd's to the correct directory in Dymola and opens a window with
the model. Edit the model in Dymola and verify it by making a test simulation in Dymola.
After that click on “Compile Model”.

Ignore the check-boxes “Allow multiple copies of block” and “Hierarchical Connectors as
Buses” (only available in Matlab 6.1 and later), and the boxes for results for now.

The form is now rebuilt as shown with parameters and start values for states (depending on
the model). If the numbers of parameters or states if sufficiently large a scrollbar is added.

OTHER SIMULATION ENVIRONMENTS 221

Model dialog for a

Dymola model in

Simulink.

It is now possible to change parameters and initial values by entering their values in the new
fields. Note that for array variables it is not possible to change the size of the array.

The parameter settings are kept even if you press ‘Compile’ (assuming they match). To re-
set parameters and start-values to the default in Dymola press ‘Reset Parameters’.

In order to make the Dymola model useful as block in Simulink you need external inputs to
the Dymola block and external outputs from the Dymola block. You change this in your
model in Dymola, and it can in either be accomplished by declaring variables as input or
output in the top-level model or graphically by adding input (filled) and output (non-filled)
connectors, e.g. from Modelica.Blocks.Interfaces.

222

Dymola model for use

in Simulink with

external inputs and

outputs.

As an example consider a rewrite of the coupled clutches example where each source in
Modelica has been replaced by an input connector, and speed-sensors have been added and
connected to output connector.

You can then close this parameter screen and observe that input and output ports been added
to the DymolaBlock, corresponding to the inputs and outputs connectors in Dymola. The
name of the ports are the names of the Modelica input/output variables. The order of the
graphical inputs and outputs correspond to the order in which they were added to the model.

Simulation is made in the usual way after connecting the input and output ports to other
Simulink blocks, and setting suitable tolerances and integration algorithm in Simulink.

If you want to recreate the example above you should also be aware that the parametriza-
tions differ between Modelica standard library models and Simulink blocks, e.g. the fre-
quency of Simulink’s Sine-block is measured in rad/s, which is commonly known as
angular frequency and should thus be 2*pi times the frequency in the corresponding source
in Modelica.

If you have not compiled all Dymola models used in the model you will get an error mes-
sage. In that case, double click on those blocks to bring up the forms and click on “Compile
Model”.

OTHER SIMULATION ENVIRONMENTS 223

Dymola block after

compiling. With named

ports.

Hierarchical Connectors as Buses

Sometimes it is desirable to use buses for signals in Simulink. Provided you have Matlab
6.1 or later, it is possible to map hierarchical connectors in Modelica to buses in Simulink.
This is accomplished by checking “hierarchical Connectors as Buses” and recompiling.

In order to get an understanding of the structure an easy way is to construct hierarchical out-
put connectors in Modelica and examine the corresponding bus-signals in Simulink. The
rules for the buses are:

• All hierarchical input/outputs components are transformed into buses, except the signal-
element of block-connectors.

• Connector members of simple types (Real/Integer/Boolean) are mapped to real signals in
Simulink with the same name as in Dymola. Non-scalar elements are mapped into non-
scalar signals in Simulink.

• Connector members that are scalar records/connectors are mapped to buses in Simulink
with the same name as in Dymola.

• For connector members that are arrays of records/connectors, each element is mapped to
buses in Simulink with the same name as in Dymola (except that Simulink requires that
any “,” for matrix elements is replaced by “;”).

The mapping is fully hierarchical (i.e. connectors can contain sub-connectors that contain
sub-connectors etc), and applied to all input/outputs.

Result files

Sometimes it useful to generate result files in Dymola’s standard format when running in
Matlab/Simulink, e.g. to:

224

• Animate 3d-objects

• Investigate intermediate variables in the model

• Generate an input file for further simulation studies in Dymola (this requires an extra step:
save the generated result file (Context menu in plot-selector in Dymola) as ‘dsu.txt’).

All of this is accomplished by selecting “Generate Result”.

If you also want the result file to be automatically loaded in Dymola select “Auto-load”.

If the result files become very large it might be useful to reduce the size by introducing a
“Minimum Dt”, which is a minimal output interval length, e.g. 0.1 (similar, but not identical
to “Interval length” in Dymola). The choice “Minimum Dt” requires Matlab 6.1 or later.

Any modifications of these choices require a new compilation.

Implementation notes

The DymolaBlock only works from Matlab 5.3/Simulink 3.0.

Temporary files for compilation are created in \dymola\tmp and reused from one compila-
tion to the next. When changing mex-compiler in Matlab you have to remove the contents
of this directory.

The DymolaBlock rely on a number of callbacks and tags in order to allow copying, renam-
ing, etc. This allows us to store settings for model name, parameters and initial values in
Simulink’s mdl-format. However, manually editing mdl-files containing DymolaBlocks is
not supported, neither is changing the tag of the DymolaBlock or any of the callbacks asso-
ciated with the DymolaBlock.

If “Allow multiple copies of block” is unchecked you should not copy the block. Uncheck-
ing it should only be done if you have dSPACE multi-processor hardware, since its build
command internally makes copies of the model that should share the original dll-name.
Normally copying of DymolaBlock takes special care to create unique identifications for
the block such that the copies use different dll’s even if they are multiple copies of the same
Dymola model. This is necessary in order to allow you to connect two copies of the same
model to each other, but does not work together with dSPACE’s build command.

DymolaBlock is found in DymolaBlockMaster.mdl, and you can also get DymolaBlock by
running DymolaBlockMaster. In this case you must copy DymolaBlock to another model.

Simulation in Matlab

There is also a low level M-file, Dymsim.m allows you to use Modelica models from Dy-
mola as building blocks in Simulink, and simulate them from within Matlab and Simulink.

To use dymsim.m:

• Select File/Translate Model in the Modelica model's window.

• Start Matlab and change to the same directory.

OTHER SIMULATION ENVIRONMENTS 225

• Make sure that Dymola's mfiles are in the Matlab-path.

• Run the command 'dymsim' in Matlab; this compiles the model and simulates it.

• To simulate it again without recompiling use simulate on the Matlab command line.

In Matlab you can change parameters, p, and initial values, x0, as well as StartTime and
StopTime.

Real-time simulation

Dymola provides support for real-time simulation of DymolaBlock on several platforms:
dSPACE, Real-Time Workshop and RT-LAB.

dSPACE systems

The DymolaBlock allows you to run your Dymola models on dSPACE systems. The Sim-
ulink model is created as described in the dSPACE documentation. In many cases offline
simulation in Simulink can be used to verify correct operation.

The model configured

to simulate with RTI.

There can be only one DymolaBlock when generating code for a multi-processor dSPACE
system (RTI-MP). If you have checked “Allow multiple copies of block” you will get a
warning about the block not being up-to-date. In the DymolaBlock model dialog in Sim-
ulink uncheck “Allow multiple copies of block”. See “Implementation notes” on page 224
for reasons.

The appropriate target configuration must be selected in Tools/Real-Time Workshop/
Options.

226

Target configuration

for DS1005.

In order to compile the model for dSPACE you also have to modify the makefiles. The rec-
ommended practice for dSPACE is to change the <model>_usr.mk. The easiest way to cre-
ate a <model>_usr.mk is to build the application according to the instructions in the
dSPACE documentation, which will fail because additional files from the Dymola distribu-
tion are unavailable.

Initial failed build (to

create makefile).

After modifying the generated <model>_usr.mk, the build process should succeed. The vi-
tal settings are additional source files and directories. For a DS1005 system the changes are:

Additional C source files to be compiled.

USER_SRCS = dymc.c dymf.c amat.c usertab.c

Directories for C source files.

USER_SRCS_DIR = \dymola\source

Path names for user include files.

USER_INCLUDES_PATH = \dymola\source

OTHER SIMULATION ENVIRONMENTS 227

For dSPACE release 3.4 one more option must be set in the user makefile. For your conve-
nience $DYMOLA/mfiles/tmf/appl_usr.mk contains an example for dSPACE release 3.4.

Additional compiler definitions.

The MATLAB option defines "MATLAB 5.1 or later".

OPTS = -O5 -D_INLINE -DDYMOLA_DSPACE -DMatlab51

For dSPACE release 4.0 compiler options are set in the options dialog of Real-Time Work-
shop. The following definitions are needed to compile Dymola models on dSPACE.

Compiler options for

dSPACE RTI.

This completes the setup required to build for simulation on dSPACE. The remaining setup
issue is handling of overruns, see page 228.

Simulation

After completion of the build step, the model has been downloaded to the dSPACE hard-
ware. Starting the simulation runs in realtime, but signals are plotted in the Simulink
scopes.

A more extensive user interface can be built using dSPACE ControlDesk, which provides a
range of tools for both input and output. ControlDesk also allows plotting of important sys-
tem variables, such as, the models turnaround time (model calculation time plus overhead)
and the number of overruns.

228

Simulation using

dSPACE ControlDesk.

Overrun

An overrun situation may arise for several reasons, as documented in the dSPACE manual.
Two additional cases are worth pointing out:

• Event iteration in a model generated by Dymola may require additional CPU resources.

• When the model is downloaded to the dSPACE hardware, the first time step must also per-
form the initialization of global data and the C runtime library.

In these cases it is usually helpful to plot the turnaround time, a signal provided by the
dSPACE system. The turnaround time will show when additional resource are needed. In
many cases occasional overrun situations are harmless.

The RTI setup enables you to specify a number of instances of a task that may be queued
before the realtime kernel issues an overrun error. This is done in the Real-Time Workshop
options dialog by selecting the category “RTI simulation options” and then pressing “Task
Configuration”. The appropriate setting can be determined by trial-and-error.

RTI task configuration

(overrun strategy).

xPC and Real-Time Workshop

Using Real-Time Workshop, and in particular xPC, it is possible to use the DymolaBlock
for Hardware in the loop simulation (HILS). The setup is a bit different from dSPACE in or-
der to work-around some problems in the compilation procedures in Simulink. The positive
side is that is easy to handle, all you have to do is to append

OTHER SIMULATION ENVIRONMENTS 229

 "USER_INCLUDES=-Ic:\dymola\source"

to the make line in the real-time workshop build setup. Note the quotes and adapt the dymo-
la path as necessary.

This works well with e.g. xPC (both Watcom and Visual Studio compiler) under Matlab 6.
However, it has not been tested with all Real-Time Workshop targets, and thus there might
be some potential problems for some targets.

Real-time simulation using RT-LAB

The RT-LAB development environment is based on Simulink and Real-Time Workshop.
The generated code is executed on one or more target systems running the QNX real-time
operating system. Consequently, the Modelica model developed in Dymola is exported to
Simulink, using a pre-defined DymolaBlock (S-function block). When the model has been
translated by Dymola and compiled, the block is automatically customized according to the
model’s input, output and top-level parameters.

Model re-organization

The Simulink model must then be slightly modified to fit into the RT-LAB framework.
Blocks that should run in real-time must be grouped according to computational node, and
input and output blocks (e.g., scopes) are grouped into a “console” block. This procedure is
described in more detail in the RT-LAB documentation.

The figure below shows a “master” block, which is the primary block of the real-time com-
putation. In addition to the DymolaBlock, which contains the entire plant model, an OpSim-
ulationInfo block has been added to make signals for effective step size (computation time
+ communication time) and a counter of overruns. In this example all the signals are multi-
plexed into a single channel to the console.

230

An RT-LAB master

block.

In a cluster with several computational nodes, one node is designated as master, and other
real-time nodes are designated as slaves. Structurally the slave blocks are similar to the
master block.

The controlling workstation, which does not run in real-time, is represented by the console
block, shown below. In this case, several scopes are used to watch the output signals. Input
blocks could also have been used. A special OpComm block must be inserted as well,
which represents data communication from the real-time computers

Even after these manipulations, the Simulink model can be simulated in offline mode. This
helps verify that the model is correct before going to real-time simulation.

OTHER SIMULATION ENVIRONMENTS 231

An RT-LAB console

block.

RT-LAB setup

The model is now ready for processing by RT-LAB. Most of the work is done through the
RT-LAB Main Control window. The figure below shows the main control window after the
Simulink model has been opened.

The RT-LAB Main Con-

trol window.

The most important operations are located at the center of the RT-LAB Main Control. The
Edit button opens the model in Simulink, should any changes be required. The Compile
button processes the Simulink model and builds the target code with the help of Real-Time
Workshop. The Load button initializes the QNX target(s) with the executable code and es-
tablishes communication channels. The Execute button is used to run the model in real
time. As a side effect, the Execute button starts Simulink with the console block active and
receiving data from the real-time nodes.

232

During model separation, RT-LAB creates new MDL files with new names and in a new di-
rectory. These new files cannot be used to edit or compile the DymolaBlock; press the Edit
button in RT-LAB Main Control to edit the original model.

File transfer settings

Configuration settings are needed to set up processing and compilation of the model. One
important step is to setup the transfer of files from the console to the target compiling the
model. This is done by pressing the Configuration button and then selecting Advanced/
Files&Commands.

RT-LAB file transfer

settings.

The first two lines describe required files from the Dymola distribution; note the use of
wildcards. Also, compilation of the DymolaBlock creates a model source file with a ma-
chine-generated name (this file can be found using Windows Explorer, in this case it was
vehicledynamics_dy9501guppd.c) and the filename must be recorded.

Compilation options

Experiments have shown that for large models moderate optimization (-O1) yields faster
codes than maximum optimization (-O2) on the QNX platform. Under the “Compilation
options” tab, the field for “User compiler option” should contain the optimization option
-O1.

OTHER SIMULATION ENVIRONMENTS 233

DDE communication

Dymola DDE commands

Dymola accepts commands through a Windows DDE connection. The DDE connection
should be opened with an application name of "dymola"; the topic name is not used.

The following commands are recognized:

• All Dymola commands as entered in the command input or read from a script file.

• These commands in the graphical editor:

All Modelica script features are also supported.

Explorer file type associations

It is possible to associate new commands with the ".mo" file type. These commands are ac-
cessible through the right-mouse button menu in Explorer. We suggest this setup:

1. Start Windows Explorer and select View/Options. Select the File Type tab.

2. Click on "New Type" to create a new association. Enter the following general informa-
tion:

a. Change icon: browse for the Dymola program, typically C:\Dymola\bin\dymola.exe.

b. Description of type: Modelica model

c. Associated extension: .mo

d. Content type (MIME): text/plain

e. Default extension for content type: .txt

3. Associate new menu commands with the file type. Click on "New...", then enter:

a.Action: Open

b. Application used to perform action: browse for the Dymola program, typically C:\Dy-
mola\bin\dymola.exe.

c. Use DDE: check

d. DDE message: open %1

e. Application: dymola

DDE Command Corresponding command in graphical editor

open filename File/Open
clear File/Clear All

234

Leave the remaining fields empty.

In a similar way you can associate several commands with the extensions .mo and .mos:

Dymosim Windows application

Dymosim can be compiled as a Windows application using an additional library with Win-
dows interface routines. The advantage of running Dymosim as Windows application (in-
stead of a console application) is that Dymosim can act as a realtime DDE server.

Without any action from the user, Dymosim will be built and executed in the usual way, i.e.,
without realtime synchronization. The noticeable differences are that the current simulation
time is shown in the minimized Dymosim window, and that the dymosim application has a
Stop command.

Realtime simulation

If the environment variable DYMOSIMREALTIME is defined, Dymosim will start in real-
time mode, where the simulation time is synchronized with real (or wall-clock) time. The
time display will also include the time the simulation is delayed at each accepted output
point, in order to keep synchronized with real time. A negative value indicates that the sim-
ulation is faster than real time, i.e., that there is spare time for additional computations.

Dymosim DDE server

Dymosim compiled as a Windows application will act as a DDE server, allowing some oth-
er application to retrieve data values or set parameters. Dymosim must be started before it
can accept DDE operations; MATLAB's ddeinit will not start Dymosim automatically, for
example.

A DDE connection is established by sending a WM_DDE_INITIATE messages with the
application name "dymosim" (any topic can be used).

MATLAB example: channel=ddeinit('dymosim','xxx')

After a Stop command or at the end of simulation, Dymosim will send a
WM_DDE_TERMINATE message.

MATLAB example: ddeterm(channel)

Note that all transactions between the Dymosim DDE server and the DDE client are logged
in the Dymosim window. They can also be logged on file.

Action Application to perform action DDE message File extension

Edit C:\windows\notepad.exe %1
or
C:\winnt\notepad.exe %1

all

Open C:\Dymola\bin\dymola.exe open %1 *.mo
Run C:\Dymola\bin\dymola.exe @%1 *.mos

OTHER SIMULATION ENVIRONMENTS 235

Simulator commands

The following commands can be sent to Dymosim using WM_DDE_EXECUTE messages:

MATLAB example: ddeexec(channel,'run')

If the environment variable DYMOSIMLOGDDE is defined, a file logging all DDE com-
munication to/from the simulator is created when the program starts.

Setting parameters

Parameters may be set by sending a WM_DDE_POKE message with the name of the pa-
rameter and its new value (the string representation of a number).

There are four special variables:

MATLAB example: ddepoke(channel,'tscale_',2.0)

Requesting variables

The value of variables at the last accepted output point are available by sending a
WM_DDE_REQUEST message with the name of the variable. Dymosim will then return a
message with a current value of the variable (the string representation of the number), or
zero if no such variable exists.

It is also possible to request the value of the following special variables:

"run" Start simulation (if simulation is not started automatically), or resume simula-
tion after a pause command.

"stop" Stop simulation.
"pause" Pause simulation. The simulation is temporarily halted until a "run" com-

mand is given. Note that DDE requests are handled while pausing.
"logon" Enables logging to file, if logging is off.
"logoff" Disables logging to file, if logging is on.

realtime_ Set to "1" to enable realtime mode, or to "0" to disable realtime mode.
tscale_ The scale factor between simulated time and real time. In realtime mode the

simulator will maintain the relationship
 real-time = tscale_ * simulated-time

abstol_ Absolute tolerance for hot linked variables (default 0).
reltol_ Relative tolerance for hot linked variables (default 0).

delayed_ Returns the time the simulation was delayed at the last accepted output point.
status_ Returns the state of the DDE server. The state is composed of the following

parts:
1 Simulation started (running).
10 Simulation paused.
100 Current simulation time 0.

time_ Returns the current simulation time.
tscale_ Returns the current simulation time scale factor.

236

MATLAB example: ddereq(channel, 'time_')

Hot linking variables

Variables can be "hot linked" using message WM_DDE_ADVISE. The linked variables
will be sent to the client at output points when a significant change has occurred.

A significant change of a variable is determined from absolute and relative tolerances (set-
table by the DDE client) as follows (x0 = value last sent to client, x = current value):

absmax = max(abs(x0), abs(x));

absdiff = abs(x - x0);

changed = absmax < 1 ? absdiff > abstol_

 : absdiff/absmax > reltol_;

The variable is sent to the client when "changed" is true. The variable is also sent at the first
output point following the hot-link operation.

MATLAB example: ddeadv(channel, 'time_', 't=[t x];', 'x')

Dymosim counts the number of links to a variable, and any corresponding "unlink" messag-
es. Updates for the variable are sent while the link count is greater than zero.

Extended graphical user interface

If the environment variable DYMOSIMGUI is defined, Dymosim will start with a slightly
extended user interface. The Operations menu then also contains commands to manually
Run/Pause the simulation or toggle realtime mode. The Toggle Log command enables log-
ging of all DDE communication on the file ddelog.txt.

Another difference is that simulation does not start automatically when the program is exe-
cuted; instead the user must give a Run command.

abstol_ Absolute tolerance for hot linked variables.
reltol_ Relative tolerance for hot linked variables.

APPENDIX — MODELICA

APPENDIX — MODELICA 239

Appendix — Modelica

Modelica syntax specification

The Modelica syntax specification is taken from the Modelica Language Specification.

Lexical conventions

The following syntactic meta symbols are used (extended BNF):

[] optional

{ } repeat zero or more times

The following lexical units are defined:

IDENT = NONDIGIT { DIGIT | NONDIGIT }

NONDIGIT = "_" | letters "a" to "z" | letters "A" to "Z"

STRING = """ { S-CHAR | S-ESCAPE } """

S-CHAR = any member of the source character set except double-quote """, and

backslash "\"

S-ESCAPE = "\’" | "\"" | "\?" | "\\" |

 "\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v"

DIGIT = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

UNSIGNED_INTEGER = DIGIT { DIGIT }

240

UNSIGNED_NUMBER = UNSIGNED_INTEGER ["." [

UNSIGNED_INTEGER]]

[(e | E) ["+" | "-"] UNSIGNED_INTEGER]

Note: string constant concatenation "a" "b" becoming "ab" (as in C) is replaced by the
"+" operator in Modelica.

Modelica uses the same comment syntax as C++ and Java. Inside a comment, the sequence
<HTML> </HTML> indicates HTML code which may be used by tools to facilitate
model documentation.

Keywords and built-in operators of the Modelica language are written in bold face. Key-
words are reserved words and may not be used as identifiers.

Grammar

Model definition
model_definition:

 { [final] class_definition ";" }

Class definition
class_definition :

 [partial]

 (class | model | record | block | connector | type |

 package | function)

 IDENT class_specifier

class_specifier :

 string_comment composition end IDENT

| "=" name [array_subscripts] [class_modification] comment

composition :

 element_list

 { public element_list |

 protected element_list |

 equation_clause |

 algorithm_clause

 }

 [external [language_specification]

 [external_function_call] ";" [annotation ";"]]

language_specification :

 STRING

external_function_call :

 [component_reference "="]

 IDENT "(" [expression { "," expression }] ")"

APPENDIX — MODELICA 241

element_list :

 { element ";" | annotation ";" }

element :

 [inner | outer]

 ([replaceable] class_definition | extends_clause

| [replaceable] component_clause)

Extends
extends_clause :

 extends name [class_modification]

Component clause
component_clause:

 type_prefix type_specifier [array_subscripts] component_list

type_prefix :

 [flow]

 [discrete | nondiscrete | parameter | constant] [input | output]

type_specifier :

 name

component_list :

 component_declaration { "," component_declaration }

component_declaration :

 declaration comment

declaration :

 IDENT [array_subscripts] [modification]

Modification

modification :

 class_modification ["=" expression]

| "=" expression

 | ":=" expression

class_modification :

 "(" { argument_list } ")"

argument_list :

 argument { "," argument }

242

argument :

 element_modification

| element_redeclaration

element_modification :

 [final] component_reference modification

element_redeclaration :

 redeclare

 ([replaceable] class_definition | extends_clause |

[replaceable] component_clause1)

component_clause1 :

 type_prefix type_specifier component_declaration

Equations
equation_clause :

 equation { equation ";" | annotation ";" }

algorithm_clause :

 algorithm { algorithm ";" | annotation ";" }

equation :

 (simple_expression "=" expression

 | conditional_equation_e

 | for_clause_e

 | when_clause_e

 | connect_clause

 | assert_clause)

 comment

algorithm :

 (component_reference (":=" expression | function_call)

 | "(" expression_list ")" ":=" function_call

 | conditional_equation_a

 | for_clause_a

 | while_clause

 | when_clause_a

 | assert_clause)

 comment

conditional_equation_e :

 if expression then

 { equation ";" }

APPENDIX — MODELICA 243

 { elseif expression then

 { equation ";" }

 }

 [else

 { equation ";" }

]

 end if

conditional_equation_a :

 if expression then

 { algorithm ";" }

 { elseif expression then

 { algorithm ";" }

 }

 [else

 { algorithm ";" }

]

 end if

for_clause_e :

 for IDENT in expression loop

 { equation ";" }

 end for

for_clause_a :

 for IDENT in expression loop

 { algorithm ";" }

 end for

while_clause :

 while expression loop

 { algorithm ";" }

 end while

when_clause_e :

 when expression then

 { equation ";" }

 end when

when_clause_a :

 when expression then

 { algorithm ";" }

 end when

connect_clause :

244

 connect "(" connector_ref "," connector_ref ")"

connector_ref :

 IDENT [array_subscripts] ["." IDENT [array_subscripts]]

assert_clause :

 assert "(" expression "," STRING { "+" STRING } ")"

 terminate "(" STRING { "+" STRING } ")"

Expressions
expression :

 simple_expression

| if expression then expression else expression

simple_expression :

 logical_expression [":" logical_expression [":"

logical_expression]]

logical_expression :

 logical_term { or logical_term }

logical_term :

 logical_factor { and logical_factor }

logical_factor :

 [not] relation

relation :

 arithmetic_expression [rel_op arithmetic_expression]

rel_op :

 "<" | "<=" | ">" | ">=" | "==" | "<>"

arithmetic_expression :

 [add_op] term { add_op term }

add_op :

 "+" | "-"

term :

 factor { mul_op factor }

mul_op :

 "*" | "/"

APPENDIX — MODELICA 245

factor :

 primary ["^" primary]

primary :

 UNSIGNED_NUMBER

| STRING

| false

| true

| component_reference [function_call]

| "(" expression_list ")"

| "[" expression_list { ";" expression_list } "]"

 | "{" expression_list "}"

name :

 IDENT ["." name]

component_reference :

 IDENT [array_subscripts] ["." component_reference]

function_call :

 "(" function_arguments ")"

function_arguments :

 expression_list

| named_arguments

named_arguments: [named_argument { "," named_argument }]

named_argument: IDENT "=" expression

expression_list :

 expression { "," expression }

array_subscripts :

 "[" subscript { "," subscript } "]"

subscript :

 ":" | expression

comment :

 string_comment [annotation]

string_comment :

 [STRING { "+" STRING }]

246

annotation :

 annotation class_modification

APPENDIX —

ADVANCED MODELICA

APPENDIX — ADVANCED MODELICA 249

Appendix — Advanced Modelica

Declaring functions

In Modelica it is possible to define and use functions, and the functions be used in equations
of a model, in defining parameters, and called interactively from the command line.

Functions inherently reduce the possibility for symbolic manipulations, and should thus not
be used unless necessary. In particular index-reduction requires that all functions are differ-
entiated, which cannot be done in a straightforward way without help. This “help” is pro-
vided in form of an annotation giving the derivative of the function.

The functions themselves can either be written in Modelica or as external functions in C or
FORTRAN 77. In most cases the external function is provided in a binary library with a
corresponding header defining the function.

User-defined derivatives

In order to reduce the index it is necessary to differentiate arbitrary expressions with respect
to time. This derivative must be very accurate in order to not introduce unnecessary numer-
ical errors. The functions are seldom simple scalar functions from one scalar input, but in-

250

stead have vectors and/or records as input and several inputs and/or outputs. Often second
order differentials are also needed.

For solving non-linear system of equations derivatives can also increase performance, by
allowing us to compute an analytical Jacobian.

To allow this we have an annotation that defines the derivative of a one function, and Dy-
mola can use this both to reduce the index and to compute Jacobians for non-linear system
of equations.

This is defined as an annotation declaring the derivative-function for the given function,
and it can be given both for functions written in Modelica as well as for external functions.

How to declare a derivative

The following define how to declaring the derivative to a function, and finally how to verify
that the derivative is consistent with the function. It is strongly influenced by forward mode
automatic differentation and well-suited for differentation with respect to one variable, as in
index-reduction.

It can furthermore be used to efficiently compute all interesting derivatives in a straightfor-
ward way as will be explained later.

A function declaration can have an annotation derivative specifying the derivative function
with an optional order-attribute indicating the order of the derivative (default 1), e.g.:

function f0 annotation(derivative=f1); end f0;

function f1 annotation(derivative(order=2)=f2); end f1;

function f2 end f2;

It is also necessary how to write the derivative function for a given function, this is de-
scribed in a procedural form below, and with examples that make it more clear.

The lookup for the derivative annotation follow the normal lookup rules of Modelica.

First order derivative

The inputs to the derivative function of order 1 are constructed as follows:

• First are all inputs to the original function, and after all them we will in order append one
derivative for each input containing reals.

• The outputs are constructed by starting with an empty list and then in order appending one
derivative for each output containing reals.

As an example consider the following:

function foo0

 input Real x;

 input Boolean linear;

 input Real z;

 output Real y;

algorithm

APPENDIX — ADVANCED MODELICA 251

 if linear then

 y:=z+x;

 else

 y:=z+sin(x);

 end if;

 annotation(derivative=foo1);

end foo0;

function foo1

 input Real x;

 input Boolean linear;

 input Real z;

 input Real der_x;

 input Real der_z;

 output Real der_y;

 annotation(derivative(order=2)=foo2);

algorithm

 der_y:=der_z+(if linear then der_x else cos(x)*der_x);

end foo1;

This implies that given the following equation

we know that

A more complex example involving records and matrices is

record R

 Real M[2,2];

 Real x[2];

end R;

function recordFunction

 input R x;

 output Real y[2];

algorithm

 y:=x.M*x.x;

 annotation(derivative=recordFunction_d);

end recordFunction;

function recordFunction_d

 input R x;

 input R der_x;

 output Real der_y[2];

algorithm

 der_y:=x.M*der_x.x+der_x.M*x.x;

 // Since (A*B)'=A'*B+A*B' for matrices.

end recordFunction_d;

Thus if

y t() foo0 x t() b z t(), ,()=

y· t() foo1 x t() b z t() x· t() z· t(), , , ,()=

252

y(t)=recordFunction(x(t));

we have

der(y(t))=recordFunction_d(x(t),der(x(t)));

Second and higher order derivatives

If the Modelica function is a nth derivative (n>=1) the derivative annotation indicates the
(n+1)th derivative, and order=n+1.

The input arguments are amended by the (n+1)th derivatives, which are constructed in order
from the nth order derivatives.

The output arguments are similar to the output argument for the nth derivative, but each out-
put is one higher in derivative order.

Continue the example above with:

function foo1

 ...

 annotation(derivative(order=2)=foo2);

 ...

end foo1;

function foo2

 input Real x;

 input Boolean linear;

 input Real z;

 input Real der_x;

 input Real der_z;

 input Real der_2_x;

 input Real der_2_z;

 output Real der_2_y;

algorithm

 der_2_y:=der_2_z+(if linear then der_2_x else

 cos(x)*der_2_x-sin(x)*der_x^2);

end foo1;

This allows us to conclude that

Restrictions

An input or output to the function may be any predefined type (Real,Boolean,Integer and
String) or a record, provided the record does not contain both reals and non-reals predefined
types. Allowing mixed records would require that we automatically constructed a new
record from the parts containing reals, which would be difficult to describe.

The function must have at least one input containing reals, since we must have something to
take the derivative with respect to.

y·· t() foo2 x t() b z t() x· t() z· t() x·· t() z·· t(), , , , , ,()=

APPENDIX — ADVANCED MODELICA 253

The output list of the derivative function may not be empty, since we otherwise have no de-
rivative. This can occur if the function e.g. returns a boolean value.

Verifying Derivatives

In order to veriy that a derivative is consistent with the function it is recommended to fol-
low the following test-procedure. The basic idea is to compare the integral of the derivative
with the original function.

Assume one has a model using foo0:

model B

 Real x;

equation

 x=foo0(time, false, -0.1*time);

end B;

and we want to verify that the derivative of foo0 is correct. We do that by extending B as
follows:

model VerifyFirstDerivative

 extends B;

 Real y;

equation

 der(y)=der(x);

initial equation

 y=x;

end VerifyFirstDerivative;

That the derivative is correct can be verified by comparing x (which is computed directly)
and y (which is computed as an integral of the derivate). By setting second derivatives equal
one can verify the second derivative as well. Note that this procedure does not modify the
original model and can therefore be used even when the input arguments to the function are
given internally.

External functions

In addition to functions written in Modelica, Dymola also allows external functions written
in ANSI/ISO C. For each external function it is necessary to declare a Modelica interface.
This declaration provides the required information needed to call the function from a Mod-
elica model, and in some simple cases provide argument conversion.

Existing libraries may

require wrapper func-

tions.

External functions are declared as Modelica functions, but with a body that defined the in-
terface. The Modelica specification defines the details of how function arguments in Mod-
elica are mapped to similar data types in C, and how values returned from the functions are
mapped back to Modelica types. When the interface of the external function does not match
the Modelica specification, a wrapper function must be written in C to perform the required
conversions.

254

In most cases the external function is provided in a binary library with a corresponding
header file declaring the function. In order to support this one can specify a header, overrid-
ing the usual definition of the function, and a library that will automatically be linked with.

Including external functions

In simple cases it is possible to translate the C code of the function with the model itself.
The main advantage of this approach is that it does not require any additional effort to build
a library. The disadvantage is that definitions in the implementation of the C function may
interfere with the generated model code and cause the compilation to fail.

As an example we will use the following trivial function that returns the sum of two real
numbers. Its implementation in ANSI/ISO C is called add2.c.

#ifndef ADD2_C

#define ADD2_C

double add2(double x, double y)

{

 return x + y;

}

#endif

This function requires a declaration that provides a mapping between Modelica and C, and
also specifies the name of the file containing the implementation.

function add2 "Sum of two numbers"

 input Real x, y;

 output Real sum;

 external "C";

 annotation(Include="#include <add2.c>");

end add2;

The first two declarations define the input and output arguments and their types in the Mod-
elica context. The external declaration identifies this as an external function. The types of
the parameters in the external function must be compatible with the Modelica specification.

The Include annotation is a string which in this case includes the implementation of the
function. The contents of the Include string is inserted into the generated C code, hence it
should contain valid C code. It can even contain eader line-breaks in order to include sever-
al files or even preprocessor macros. There is no guarantee that the header will only be in-
cluded once, and thus necessary to guard against multiple inclusion with #ifndef and
#endif wrapping.

The code (add2.c) should be located either in the current directory, in a relative location
(#include <../source/add2.c>), or in directory dymola/source.

Linking to external library
This section refers only

to the Windows version

of Dymola.

For most application it is best to build a library with function definitions using software de-
velopment tools outside of the Dymola environment, and then link the library to the model.
In this way libraries are easily shared between a variety of applications.

APPENDIX — ADVANCED MODELICA 255

A major benefit compared to including function definitions is that the risk of interference
between the code generated by Dymola and the code of the external functions is greatly re-
duced. The only parts included in the compilation of the model are header files declaring
the external functions in C, and the implementation is compiled separately.

Dynamic libraries are

not supported.

It is currently only possible to link static libraries, not DLLs.

Building an external library

Using an external library the C code consists of two parts: a header file declaring the func-
tion, and an implementation. It is common to use a single header file to declare a group of
related functions. The header file for the example above would be:

#ifndef ADD2_H

#define ADD2_H

extern double add2(double x, double y);

#endif

The implementation is very similar to the code used for inclusion in the model code, but the
header file should be included to ensure compatibility in the event of changes in the inter-
face. The #ifndef and #endif wrappers are not needed.

#include <add2.h>

double add2(double x, double y)

{

 return x + y;

}

Using the default compiler (GCC), the function is compiled and included in the library with
these DOS commands. On Windows, the directory of the GCC compiler (dymola/egcs/
bin) must have been added to the PATH environment variable.

set PATH=c:\dymola\egcs\bin;%PATH%

The compile and link commands are:

gcc -c add2.c

ar rv libext.a add2.o

ranlib libext.a

The name of the library shall start with lib and the extension (for GCC) is .a. These con-
ventions are assumed when the model is linked.

Library annotation

The Modelica interface uses two special annotations, Include and Library, to specify the
header file and the name of the library:

function add2 "Sum of two numbers"

 input Real x, y;

 output Real sum;

 external "C";

 annotation(Include="#include <add2.h>", Library="ext");

end add2;

256

Prefix and extension

are not given.

Note that the library name is “ext”; the “lib” prefix is added by the linker, and the extension
depends on the used compiler (.a for GCC and .lib for Microsoft C). This ensures porta-
bility of the Modelica interface to different platforms and compilers.

As a more complex example consider an interface to National Instruments AI_VRead in its
Ni-Daq library. A protected variable is used to pick up the status code returned from the
function.

function AI_VRead "Analog in"

 annotation (

 Include="#include <nidaqex.h>",

 Library={"nidaq32"});

 input Integer iDevice=1;

 input Integer iChannel=1;

 input Integer iGain=1;

 output Real dVoltage;

protected

 Integer iStatus;

 external "C" iStatus = AI_VRead(iDevice, iChannel, iGain,

 dVoltage);

end AI_VRead;

The Library annotation is either a single string or a vector or strings that name several bina-
ry libraries, and the compiler will link with all listed libraries.

Note that for this example to work the header and library files must be in the search path of
the compiler. This could be accomplished by placing the header in %DYMOLA%/source and
the library in the correct sub-directory of %DYMOLA%/bin or by placing both of them in the
current directory.

Other languages

Functions written in C++ or FORTRAN 77 are supported provided the C compiler supports
cross-linkage with C++ or FORTRAN. When using languages other than C, provisions
must be made to ensure that the required runtime libraries are linked.

C++

Functions written in C++ must declared as extern "C" to be linkage-compatible with C.
Wrapper functions are needed for example to use virtual functions or other C++ features
that are not present in C.

FORTRAN

FORTRAN code can be linked in two ways. Perhaps the most straight-forward approach is
to convert the FORTRAN code to C using a tool called f2c. This tool translates the code
into portable C code, and also includes libraries for common FORTRAN runtime routines.
The alternative is to use a link-compatible FORTRAN compiler.

In either case, wrapper functions are most likely required to map argument types.

APPENDIX — ADVANCED MODELICA 257

Means to control the selection of states

Dymola supports automatic state selection according to the specification of Modelica.

Variables being subtypes of Real has an attribute, stateSelect, to give hints or even impera-
tively control the selection of variables to use as continuous time state variables.

Note that, the state selection is separated from the specification of initial conditions. The
fixed attribute should exclusively be used for specifying start conditions and it should not
influence the selection of states at all.

Motivation

The general view is that selection of states ought to be done automatically. This is also pos-
sible and unproblematic in most models, and we thus clearly understand that manual state
selection can easily be overused. However, there are several reasons for allowing model li-
brary developers as well as users to influence or control the state selection:

• Accuracy: There are often many sets of state variables that will work from a pure math-
ematical point of view. However, they may have drastically different numerical proper-
ties. For mechanical systems it is favourable to use relative positions as state variables. If
absolute coordinates are used then accuracy is lost when taking differences to calculate
relative positions. The effect is drastic in rotating machinery systems and power systems
where angular positions are increasing with time, but relative positions are rather con-
stant, at least in normal operation. Say that two rotating bodies are connected by a spring
such that the relative distance between them are 1 and that their angular speed is 1000. If
the positions are calculated with a relative accuracy of 0.001, after one second there is
hardly any accuracy in calculating the distance by taking the difference. The difference
behaves irregularly and gives an irregular torque. The simulation stops. It is very difficult
for a tool to find this out without actually doing simulation runs. Model developers for
mechanical systems and power systems know it very well. It would be easy for them to
indicate that absolute positions are bad choices when selecting states.

• Efficiency by avoiding inverting functions: The relations between possible sets of state
variables may be non-linear. For some choices it may be necessary to invert non-linear
functions, while for another set it is straightforward to calculate others. A typical example
is thermodynamic problems, where you have property functions. They often assume two
variables to be inputs (for example pressure and enthalpy) and calculate other properties
(such as temperature, density etc). Thus, if such variables are selected as state variables it
is “simply” calling property functions to calculate other need variables. If not it is neces-
sary to solve equation systems to calculate the input variables. A model library developer
knows this and it is straightforward to him to indicate good choices when selecting dy-
namic states.

• Selecting a less nonlinear representation: Different sets, x, of states gives an ODE,
der(x) = f(x) where the right hand side f have different properties. In general, the problem
is simpler to solve if f is a less nonlinear problem. The Park transformation for three-phase

258

power systems is a classical way of transforming a nonlinear time-varying ODE into a
time-invariant linear ODE. For control design it is very favourable to have linear time-
invariant models, because there are lot of analysis and design methods and tools for such
models. When using linearized versions of Modelica models it is important that the set of
state variables is insensitive to minor changes in the model.

• Avoiding dynamic state selection: When selecting states the problem consists of a set of
algebraic state constraints that relate dynamic variables. It may be remarked that these
constraints are equations that are differentiated by Pantelides's algorithm. The task when
selecting states is actually to use the algebraic constraints to solve for some of the vari-
ables, which thus are deselected as states and the remaining dynamic variables become
state variables. A subset of dynamic variables can be deselected locally if its Jacobian is
non-singular. In the general case the state selection must be made dynamic, but in many
real applications it is possible to make a static selection of states. If the Jacobian has con-
stant elements it is straightforward to make it automatically. However, for non-linear
problems such as closed kinematics loops it is difficult to establish that a time-varying Ja-
cobian always is non-singular. For reasons of efficiency it would be favourable to avoid
the overhead of dynamic state selection and allow a user to inform that a certain selection
of states will always work. Tools can support such an explicit control. Using dynamic
state selection and making off-line simulations one can find a fixed choice that will work
for real-time simulation, where efficiency is really needed.

• The reinit construct: The construct reinit(x) requires that x is state.

• Use auxiliary variables as states: To avoid unnecessary differentiation, it is useful to
consider only variables appearing differentiated in a model as candidates when selecting
states. It means that if a user would like to see an auxiliary variable, v, as a state variable,
he has today to introduce another variable, say derv and an equation derv = der(v) to make
the derivative der(v) appear in the model. It would be convenient to have a simpler way
to introduce a variable as a state candidate.

• Sensors: A sensor for measuring speed, v, makes a variable differentiated, v = der(r) and
in most cases it is not desirable to have the variable of the sensor model as a state variable.
Introduction of variable for just plotting should not influence the state selection.

The state select attribute

A variable being subtype of Real variable has an attribute stateSelect to indicate its possible
use as state variable. Its value can be

• never: Do not use as a state at all.

• avoid:Avoid it as state in favour of those having the default value

• default: If the variable does not appear differentiated in the model this means no.

• prefer: Prefer it as state over those having the default value.

• always: Do use it as a state.

APPENDIX — ADVANCED MODELICA 259

The values of the stateSelect attribute are to given as

Real y(stateSelect = StateSelect.never);

Real y(stateSelect = StateSelect.avoid);

Real y(stateSelect = StateSelect.default);

Real y(stateSelect = StateSelect.prefer);

Real y(stateSelect = StateSelect.always);

The two extreme values never and always have clear and context independent meanings. If
stateSelect is always, the variable will be a state. If such a variable does not appear differen-
tiated in the model, the index reduction procedure will differentiate equations in order to be
able to calculate the derivative. A model with two variables, x and y, with attribute stateSe-
lect being always and being algebraically constrained, is thus erroneous. It is compulsory
for variables appearing as arguments in reinit expressions. It supports explicit control of the
selection of states and gives the user full control. It eliminates use of dynamic state selec-
tion. A dynamic state selection problem should only include variables having stateSelect
being prefer, default or avoid.

The value never forbids the variable to be used as a state and it solves the sensor problem:

Real r(stateSelect = StateStateSelect.never);

Real v = der(r);

The value prefer indicates that the variable should be used as a state when possible. The am-
biguity lies in that there may be several candidates with prefer when selecting states. It
solves the problem of giving preference to relative positions in mechanical problems. It is
also useful for thermodynamic problems to avoid nonlinear equation systems. However,
here the value never may be useful to rule out other candidates as well.

The value default means never for algebraic variables of the model. The index reduction
procedure may introduce derivatives of algebraic variables when differentiating equations.
However, this should not make them candidates for being state variables. Neither should
higher order derivatives make derivatives candidates for being state variables. For example
in mechanics we have

der(r) = v;

m*der(v) = F;

The index procedure may introduce the second order derivative of r, but we should then not
consider der(r) as candidate for being state variable.

The priorities for state selection are thus always, prefer, default and avoid for variables ap-
pearing differentiated.

Using noEvent

Note that this is an advanced section, and in most cases one should not use noEvent. This
section describes the exceptions, and how to correctly use noEvent.

260

Background: How events are generated

By default Dymola generates events for the relational operators (>,>=,<,<=) and certain
built-in functions: abs, sign, ceil, floor, div, mod, and rem. A simple optimization ensures
that events are only generated if the arguments are varying continuously. Events are gener-
ated after the boolean expression have changed value, and it is thus necessary that expres-
sions involving relations are valid and smooth a certain amount past the actual event.

Events are generated for code for equations and algorithms outside of functions. For algo-
rithms there are currently some minor limitations for events in for-loops and severe limita-
tions inside while-loops.

The problem of using events for all relations is that one cannot use an expression to guard
against errors, e.g. square-root of a negative number, since the boolean guard would keep
the value from the previous event. Furthermore, the events can lead to undesirable degration
of performance, if the derivatives are sufficiently smooth. On the other hand, if the deriva-
tives are not smooth removing events would degrade performance even more.

Guarding expressions against evaluation

Certain numerical operations have a limited range of allowed input values, e.g. one cannot
divide by zero and one cannot take the square root of a negative number. To guard against
this one must use noEvent sorrounding the guard condition.

As an example consider guarding against taking the square root of a negative number. An
idealized model of a tank that is emptied through a hole in the bottom is:

The model is best written as

 Real h "Height of water in tank";
equation

 der(h)=if noEvent(h>=0) then -c*sqrt(h) else 0;

As an alternative we could in this particular case rewrite it using the max-function resulting
in equations that are more compact, but less readabe.

 Real h "Height of water in tank";
equation

 der(h)=-c*sqrt(max({0,h}));

Note that we guard against h being negative even if the exact solution to the differential
equation has h(t)>=0. The reason is that the numerical solution generates an approximate
h(t) which will be slightly negative. In general one must not only guard against the possible
values for the exact solution, but also for all nearby approximate values.

Another example concern guarding against division by zero.

 Real x;

 Real sinc_x;

h
· c h,– if h 0≥

0, otherwise



=

APPENDIX — ADVANCED MODELICA 261

equation

 sinc_x=

 if noEvent(abs(x)<=Modelica.Constants.eps) then

 1

 else

 sin(x)/x;

In these two examples the noEvent is necessary in order to make it possible to evaluate the
model for all values. Note that in the second example we do not compare abs(x) with 0 but
with the slightly larger Modelica.Constants.eps. This provides a guard against roundoff er-
rors. The extra error is insignificant since the error in the sinc-approximation it is propor-
tional to the square of x, and thus lost in round-off.

How to use noEvent to improve performance

In some cases the derivatives are sufficiently smooth that events need not be generated, as
an example we have piece-wise interpolation polynomials.

 parameter Real cpos,cneg;

 Real x,y;

equation

 der(x)=noEvent(if x>0 then cpos*x else cneg*x)

 +if time>=1 then y else 0;

For this to be useful the right hand side must be a sufficiently smooth function of x. In this
case we note that the switch between the branches occurs for x=0 in which case both
branches are zero. Note that as for all performance optimizations one should measure the
performance to verify that the optimization is beneficial.

Additionally noEvent only surrounds the expression involving x and not the second term,
which will generate a time event exactly at the time 1.

A note on style

When using the noEvent-operator to improve performance we are implicitly stating that the
expression is sufficiently ‘smooth’. Dynasim has initiated work in the Modelica design pro-
cess to introduce an operator ‘smooth’ for this purpose, and this thinking explains why no-
Event is used surrounding the entire expression in the examples above and not only the
actual relational operator. When viewing it as smooth it only makes sense to view a real-
valued expression as smooth. This also guards against accidentally introducing events in
one of the sub-expressions.

Combined example for noEvent

A more subtle example is if the noEvent is necessary in order to guarantee that we can solve
for all algebraic variables. This is more complex than merely being able to evaluate the
model. A simple example occurs for the turbulent flow equation

 Real mdot,Ploss;

∆Ploss cm· m·=

262

 parameter Real c;

equation

 Ploss = c* mdot*noEvent(abs(mdot));

Remember that abs(mdot) is expanded into an if-expression, in this case leading to:

 Ploss = c* mdot*noEvent(if mdot>=0 then mdot else -mdot);

The noEvent allows us to use this equation to implicitly solve mdot from Ploss. Without the
noEvent it would not be possible to solve the equation past the point where mdot changes
sign (since it would be tantamount to taking the square root of a negative number).

We can also manually solve this equation for Ploss resulting in

 Real mdot,Ploss;

 parameter Real c;

equation

 mdot = noEvent(if Ploss/c>=0 then sqrt(Ploss/c) else -

sqrt(-Ploss/c));

// Or: mdot = noEvent(sign(Ploss/c)*sqrt(abs(Ploss/c)));

We have here not considered the possibility that c might be zero.

The right hand side is here continuous when Ploss passes through zero, and thus noEvent
can be seen as a performance improvement. Additionally we guard against taking the
square of a negative number by using noEvent.

An additional note on style

In this example we note an additional reason for using noEvent around the entire expres-
sion: if one of the branches of the if-expression contain any relations these relations should
also be inside noEvent.

As an example consider the out-commented part of the previous example where we use abs
and sign for Ploss/c. When using that form it is easy to forget that not only abs but also sign
generates events and only have noEvent surrounding sqrt. Although it does generate errors,
we unnecessarily lose performance due to the sign-events. By having noEvent around the
entire expression this is automatically handled.

Mixing noEvent and events in one equation

There are no restrictions on using variables computed using noEvent to trigger events in
other equations, or to applying noEvent to expressions involving variables computed using
events. This allows a modeler to combine models independently of whether they internally
use events or have turned them off using noEvent.

Sometimes it makes sense to mix noEvent and events in one equation. This is, however,
only allowed under certain restrictions since the number of active relations generating
events can only change at events. We would otherwise not be able to determine if the ex-
pression had changed value or not, and thus would be unable to correctly determine when to
trigger the event.

APPENDIX — ADVANCED MODELICA 263

Thus if the condition of an if-expression, if-clause, while-clause, or the indices of a for-loop
is a relation where events have been turned off by using noEvent the bodies should not con-
tain relations generating events. They can, of course, depend on variables that are computed
using events. As a concrete example consider the following:

Assuming that we do not want events when x passes through 1 an illegal example would be:

model ILLEGAL

 Real x(start=2);

equation

 der(x)=

 if noEvent(x<1) then

 if x>0 then -x else 2*x

 else -1;

end ILLEGAL;

In order to explain why this is illegal consider what happens after one second when x be-
comes less than one and x>0 is evaluated for the first time (without triggering an event be-
cause of the noEvent). The next if-expression should trigger an event if x>0 does not have
the value from the last event. However, we did not evaluate it at the previous event and thus
we do not know if it has changed value or not and thus we do not know when to trigger an
event.

We are not allowed to evaluate the relations inside the wrong branch of the if-expression
since that might involve unsafe operations, such as square roots of negative number, index-
ing outside of bounds, etc.

To solve this problem we can either surround the entire right-hand side by noEvent or intro-
duce an auxiliary variable for ‘if x>0 then -x else 2*x’.

Conditional use of events

An extreme example of mixing noEvent and events is to have one variable control whether
events should be generated or not. This is only applicable if noEvent is introduced for per-
formance reasons.

We revisit the interpolation example from “How to use noEvent to improve performance”
on page 261, and let a boolean parameter control whether we generate events or not.

 Real x;

 parameter Boolean generateEvents;

 parameter Real cpos,cneg;

equation

 der(x)=

 (if (if generateEvents then x>0 else noEvent(x>0))

 then cpos*x

x·
1,– if x 1≥
x,– if x 0 x 1≤∧≥

2x, if x 0≤





=

264

 else cneg*x)

 +if time>=1 then y else 0;

If generateEvents is not a boolean parameter, but changes continuously we have to be more
careful.

 Real x;

 Real level;

 parameter Real eventLimit;

 parameter Real cpos,cneg;

equation

 level=noEvent(abs(der(x-time))*2+abs(x-time));

 der(x)=

 (if (if level>eventLimit then x>0 else noEvent(x>0))

 then cpos*x

 else cneg*x)

 +if time>=1 then y else 0;

Here level must be computed using noEvent since we do not want to introduce extra events
every time der(x) or x changes sign, but level is used without any noEvent in the if-expres-
sion since the number of relations generating events would otherwise change between
events.

It is not possible to store the expression in parenthesis in the if-expression in a boolean vari-
able, since it can change its value between events. To re-use it introduce an extra Real vari-
able as follows.

 Real x;

 Real level;

 parameter Real eventLimit;

 Real xIsPositive;

 parameter Real cpos,cneg;

equation

 level=noEvent(abs(der(x-time))*2+abs(x-time));

 xIsPositive=if

 (if level>eventLimit then x>0 else noEvent(x>0)) then

 1

 else

 -1;

 der(x)=(if noEvent(xIsPositive>0) then cpos*x else cneg*x)

 +if time>=1 then y else 0;

Note the noEvent on the last line. Without it we would always have an event when x
changed sign. If level>eventLimit the expression x>0 will introduce events and thus xIsPos-
itive need not introduce an additional event.

Constructing anti-symmetric expressions

Quite a few expressions are naturally anti-symmetric in some variable. In most cases this
requires no extra thought, and only requires one to write the expression in the natural form,
and it will be anti-symmetric.

APPENDIX — ADVANCED MODELICA 265

However, in some cases it is known that a formula is anti-symmetric, and it straightforward
to give a formula for positive values, but more difficult to give a simple formula valid for
both positive and negative values. The natural idea in these cases is to extend the expression
for positive values to an anti-symmetric formula valid for all values.

As a generic example consider

As a model this is written as:

 Real x;

 parameter Real p;

equation

 der(x)=noEvent(if x>=0 then g(x,p) else -g(-x,p));

 assert(noEvent(abs(g(0,p))<=1e-10),

 "Formula requires g(0,p)=0");

In most cases the assert-statement would be removed for efficiency reasons, and the func-
tion g replaced by an expression involving x, p, and perhaps other variables.

There are several details worth explaining in this example.

First and foremost neither abs nor sign are used; the reason is that by having only one test
for the sign of x we guarantee that Dymola can correctly differentiate the expression (pro-
vided g(0,p)=0), and use it to reduce the index and to compute Jacobians for non-linear sys-
tem of equations involving this equation. If we had used sign as defined in Modelica 1.4 the
Dymola program would be unable to correctly differentiate the expression.

Second noEvent is used. The reason is that we assumed that g(x,p) was not valid for nega-
tive x, either because it cannot be evaluated or because it generated incorrect results. Thus
using noEvent guarantees that g(x,p) is only evaluated for positive values of x.

Thirdly, the formula is only valid if g(0,p)=0. There are anti-symmetric expressions that do
not obey this, such as friction force depending on relative velocity. In those cases one
should introduce an extra locked state, as described in the friction logic models, and under
no circumstances use noEvent. Using the above formula without thinking would for friction
lead to a sliding mode, and many unnecessary events.

Although one has to be careful one can construct a variant of this model, where we intro-
duce an auxiliary variable for the sign. In this form it is also possible to have expressions
generating events in the expanded form of g(x,p), provided they do not depend on x.

 Real x,sign_x;

 parameter Real p;

equation

 sign_x=noEvent(if x>=0 then 1 else -1);

 der(x)=sign_x*g(sign_x*x,p);

 assert(noEvent(abs(g(0,p))<=1e-10),

 "Formula requires g(0,p)=0");

x· g x p,(), x 0≥
g x– p,(),– x 0≤




=

266

Similar remarks as for the first example apply to this example.

Equality comparison of real values

Following the Modelica specification Dymola does not allow you to compare two real val-
ues for equality. The reason is not that it would be difficult to allow it, but that the desired
result depends on circumstances and there is not one correct way of re-writing it as legal
code. Instead of automatically generating a result that would only work for some cases, you
are required to manually select the desired result.

Type of variables

In many cases it does not matter whether variables are declared as Integer or Real. Howev-
er, only integers may be used as indices and compared for equality. Thus some equality
comparisons between real expression can be removed by replacing Real variables by Inte-
ger variables (and perhaps a fixed scaling).

In some cases all variables and constants appearing in the expression are integers, but some
operations generates a real valued result, e.g. division. If the result is known to be an integer
one can replace these by integer division (div) or use integer to convert a real-valued ex-
pression to an integer-valued one.

Trigger events for equality

In some cases one want to perform some special action triggered when two real expressions
have the same value. This is not possible, but it is for continuous varying variables equiva-
lent to triggering the condition as follows, which is a part of car model where we want to
terminate the simulation when the velocity is equal to 100km/h.

 Modelica.SIunits.Velocity velocity;

 constant Modelica.SIunits.Velocity stopAt=100/3.6;

equation

 when {velocity>=stopAt,velocity<=stopAt} then

 if not initial() then

 terminate("Velocity is 100km/h");

 end if;

 end when;

Assuming this is a normal test of accelerating to 100km/h it is possible to remove the sec-
ond triggering condition velocity<=stopAt, because we know that the original velocity is
less than 100km/h. This also allows us to remove if-statement. Similar reasoning apply to
many similar cases.

APPENDIX — ADVANCED MODELICA 267

Locking when equal

In some models, e.g. bouncing balls it is natural to enter another state when the relative ve-
locity is zero in order to avoid chattering. By necessity this should not occur when the rela-
tive velocity is exactly zero, but when it is small enough. The first challenge is thus to
guarantee that the ball stops bouncing in this case, the second is that if we apply a relative
force it should start bouncing anew. A model demonstrating this is given below.

model BouncingBall

 import Modelica.SIunits;

 SIunits.Height x(start=1);

 SIunits.Velocity v;

 SIunits.Force f;

 parameter SIunits.Mass m=2;

 parameter Real ebounce=0.5;

 parameter SIunits.Velocity vsmall=1e-4;

 Real fext=if time<10 then 0 else 350*sin(time)/(1+time);

 Boolean locked(start=false);

equation

 der(x)=v;

 m*der(v)=if locked then 0 else f;

 f=-m*Modelica.Constants.g_n+fext;

 when {x<=0,locked} then

 reinit(x,0);

 reinit(v,if locked then 0 else -ebounce*v);

 end when;

 locked=if pre(locked) then f<=0 else x<=0 and

 abs(v)<=vsmall and f<=0;

end BouncingBall;

Note that the logic here is more complex due to the fact that we have an external force in
addition to the inherent bouncing of the ball. When writing such state machine logic it is vi-
tal that the expression used to enter the locked state is still true in the state (in order to avoid
chattering), and to be safer one can rewrite it as

locked = f<=0 and if pre(locked) then true else

 x<=0 and abs(v)<=vsmall;

A more advanced model would have these as relative quantities and allow both the ball and
the surface to move.

Guarding against division by zero

The sole exception where comparison of two real expressions would make sense is when it
is used to guard against a single exceptional value, e.g. division by zero. By careful analysis
it is general possible to show that the guard can and should be applied to slightly larger val-
ues, and use the technique in “Guarding expressions against evaluation” on page 260.

In some cases only one exact value is exceptional, and it is not possible to apply the guard
for other values. In those rare cases one can use the same technique without any extra epsi-
lon, i.e. ‘noEvent(abs(x)<=0)’.

268

APPENDIX — MIGRATION

APPENDIX — MIGRATION 271

Appendix — Migration

Migrating to newer libraries

Dymola supports migration of models using one set of model libraries to another set of
model libraries with model components of similar structure, but for example having other
class names or different connector names or parameter names. Dymola has commands to
build up internal translation tables which will take effect when a model library or a model
component is loaded. These commands can be collected in a script allowing all models that
use a specific library to upgrade to the new one.

How to migrate

Assume that we would like to migrate myModel that uses a package OldLibrary to exploit a
NewLibray. In many cases in particular when release a new version of a library, the library
developer will provide a convert script, which specifies the translation from the old version
to the new version of the library.

Assume that the model is stored in a file named myModel.mo. It is advisable to also have a
backup copy of the file. Assume also that a specification of the translation when migrating
from using OldLibrary to using NewLibrary is specified in the script file Convert.mos.

To migrate myModel proceed as follows.

1. Start with a fresh Dymola.

272

2. Load NewLibrary.

3. In the Dymola main window select File/Run File Script@ to run Convert.mos.

4. Load myModel.mo

5. In the model window “myModel” select File/Check.

6. Hopefully there is no error message and the model can be saved. The conversion is done.

7. In case of error message consult the next two subsections on specifying translation and
building a script file.

After a migration, the model shall of course be tested and it shall be checked that it gives the
same simulation result as the old one.

Basic commands to specify translation

The command to build the translation tables are

convertClass("oldClass", "newClass");

convertElement("oldClass", "oldElement", "newElement");

convertModifiers("oldClass", oldParameterBindings,

 newParameterBindings);

convertClear();

convertClass

The command

convertClass("oldClass", "newClass");

builds conversion tables to be applied on extends clauses and type declarations. As an ex-
ample consider:

convertClass("DriveTwoCut",

 "Modelica.Mechanics.Rotational.Interface.Compliant");

All components of type DriveTwoCut or classes that contain extends DriveTwoCut will be
converted such that they refer to class Modelica.Mechanics.Rotational.Interface.Compliant
instead.

Conversion is also applied on hierarchical names. For example

convertClass("Modelica.Rotational1D","Modelica.Rotational")

will take effect on Modelica.Rotational1D.Clutch and give Modelica.Rotational.Clutch.

Modelica’s normal vectorization applies for convertClass, which means that it is possible to
let the arguments be vectors of Strings. For example,

convertClass({"oldClass1", "oldClass2"},

 {"newClass1", "newClass2"});

is equivalent to

APPENDIX — MIGRATION 273

convertClass("oldClass1", "newClass1");

convertClass("oldClass2", "newClass2");

convertElement

The command

convertElement("oldClass", "oldElement", "newElement");

converts references to elements (connectors, parameters and local variables of classes) in
equations, connections, modifier lists etc. The class name of the component is still convert-
ed according to convertClass.

The conversion uses the model structure after conversion, thus it correctly detects base-
classes among the models you convert. However, only the new library is used, thus any in-
heritance used in the old library is lost. It means, for example, if a connector was renamed
in base-class conversion of that connector name must be specified for all models in the old
library extending from base-class. By using vector-arguments to the conversion functions it
is only necessary to list the classes once for each renamed element.

Let us illustrate by an example. Assume that we have a drive train library, where there is a
partial class DriveTwoCut specifying two connectors pDrive and nDrive. The new library
has a similar class TwoFlanges defining two connectors flange_a and flange_b. We thus
give the commands

convertClass("DriveTwoCut", "TwoFlanges");

convertElement("DriveTwoCut", "pDrive", "flange_a");

convertElement("DriveTwoCut", "nDrive", "flange_b");

Assume that the old library contains the models Shaft and Gear, which are to be converted
as Inertia respectively IdealGear:

convertClass("Shaft", "Inertia");

convertClass("Gear", "IdealGear");

Assume that Shaft and Gear extend from DriveTwoCut. Unfortunately, there will be no
translation of references in, for example, connect statements to their connectors pDrive and
nDrive, since the conversion uses the model structure after conversion. To have a proper
translation, we need also to specify

convertElement({"Shaft", "Gear"}, "pDrive", "flange_a");

convertElement({"Shaft", "Gear"}, "nDrive", "flange_b");

where the vectorization allows a compact definition.

The convertElement command can also be used when a parameter is renamed. For more
complex reparameterizations the command convertModifiers is useful.

convertModifiers

The command

convertModifiers("oldClass", oldParameterBindings,

 newParameterBindings);

274

specifies how parameter bindings given in modifiers are to be converted. The argument old-
ParameterBindings is a vector of strings of the form “oldParameter=defaultValue”, and the
argument newParameterBindings is a vector of strings of the type “newParameter=expres-
sion”. To use the value of an old parameter in the new expression use %oldParameter%

As an example, assume that in the old model Clutch that the viscous friction coefficient
mue is given as

mue = mueV0 + mueV1*abs(wrel)

where mueV0 and mueV1 are parameters declared in Clutch as

parameter Real mueV0 = 0.6;

parameter Real mueV1 = 0;

The model Clutch of the new model library uses linear interpolation with respect to the rel-
ative velocity, wrel, with a parameter mue_pos to define the interpolation table

parameter Real mue_pos[:, :] = [0, 0.5];

The original mue-equation is linear and one way of specifying a linear interpolation table is
to compute its value for two arbitrary velocities. The model requires that the first velocity is
zero, with mue=mueV, and for the other value velocity we use velocity one, with
mue=mueV0 + mueV1. Thus at translation we would like to obtain a new modifier

mue_pos = [0, value-of-mueV0;

 1, value-of-mueV0 + value-of-mueV1];

This is obtained by

convertModifiers("Clutch",{"mueV0=0.6","mueV1=0"},

 {"mue_pos=[0,%mueV0%;1,%mueV0%+%mueV1%]}");

Example, the declarations in the old model

Clutch c1(mueV0=0.4,mueV1=0.1)

Clutch c2(mueV0=2*p);

are converted to

Modelica.Mechanics.Rotational.Clutch

 c1(mue_pos = [0,(0.4); 1,(0.4)+(0.1)]);

Modelica.Mechanics.Rotational.Clutch

 c2(mue_pos=[0,(2*p); 1,(2*p)+(0)]);

Note that since c2 did not specify a value for mueV1 the conversion used the default value.
The substitution automatically adds parenthesis for the substituted arguments, thus avoiding
the need for parenthesis in macros that are familiar to a C-programmer. The parenthesis are
sometimes redundant and can be removed by going to the parameter dialogs of the corre-
sponding components.

Prefer convertElement over convertModifiers even for parameters, and only use convert-
Modifiers when there is a need for more than a one-to-one conversion of parameters.

APPENDIX — MIGRATION 275

convertClear

The command convertClear() clears the translation tables.

How to build a convert script

In order to convert a model using one library to another it is recommended to begin con-
struct a conversion script for the library. Even if the script is not complete after converting
one model it can be reused for the next model, and only amend it with additional lines for
the additional library components in that model. If a library developer restructures a Model-
ica library, it is recommendable to construct such a script.

Below it is explained how to construct a convert script and how to amend it for additional
models. For clarity assume that we would like to convert a drive train model, myOldModel,
that uses components in the model library "Drive Trains" to a model, myNewModel that in-
stead uses the components in the library Modelica.Mechanics.Rotational.

1. Copy myOldModel.mo to myNewModel.mo.

2. Make a local conversion script, say Convert.mos. Depending on what you are converting
start as follows:

a. If you have a script for converting similar models: Use that as starting point, and at the
end add the following lines (and remove similar ones):

openModel("myNewModel.mo");

checkModel("myModel");

b. If you are starting from scratch, use the following as a template:

clear

// Start

//

// End

openModel("myNewModel.mo");

checkModel("myModel");

3. Converting class names.

a. In the Dymola main window select File/Clear Log and select File/Run File Script@ to run
Convert.mos

b. There will be error messages such as

 Error: Component type specifier Shaft not found

 Go through all these message and list all model types that are missing.

c. For each missing type find the new one in Modelica.Mechanics.Rotational. You can do
that by opening both libraries and comparing icons and reading documentation. For com-
ponent Shaft, we select Modelica.Mechanics.Rotational.Inertia.

276

d. Use a text editor to edit Convert.mos with a contents as

clear

// Conversion of not found Component type specifiers

convertClass("Shaft",

 "Modelica.Mechanics.Rotational.Inertia");

 convertClass("Clutch",

 "Modelica.Mechanics.Rotational.Clutch");

convertClass("Gear",

 "Modelica.Mechanics.Rotational.IdealGear");

//

openModel("myNewModel.mo");

checkModel("myModel");

4. In the Dymola main window select File/Clear Log and select File/Run File Script@ to run
Convert.mos

5. Error messages saying
 Use of undeclared variable shaft1.pDrive
 Use of undeclared variable shaft1.nDrive
indicate that the connectors of typical components have changed name. To fix that we in-
clude in Convert.mos before openModel("myNewModel.mo");

convertElement({"Clutch", "Shaft", "Gear"},

 "pDrive", "flange_a");

convertElement({"Clutch", "Shaft","Gear"},

 "nDrive", "flange_b");

6. Error messages of the type
 Error: Modifier 'fnMax' not found in Clutch.
indicate that a parameter has changed name. In simple cases when a simple renaming
works use convertElement. Otherwise use convertModifiers.

7. Run the updated Convert.mos file (when asked if update myModel in the file myNew-
Model, answer No)

8. Keep a copy of the conversion script, Convert.mos, since it can be useful for converting
similar models.

9. Now save the model.

In some rare cases it might be necessary to edit the model by hand or it is necessary develop
model wrappers or a new model component.

Note, that default values for parameters are not translated. For example, if there is a model
component m1 that has a parameter p declared as

parameter Real p = 1.0;

and the new model component also has a parameter p declared as

parameter Real p = 0;

APPENDIX — MIGRATION 277

then the old default value of 1.0 is lost and the new one being zero is used. If it is important
to preserve the old parameter default values, this can be done by making a new model com-
ponent that extends the new “m1” and modifies its parameter values according to the old
m1.

278

APPENDIX — INSTALLATION

APPENDIX — INSTALLATION 281

Appendix — Installation

Installation on Windows

This section refers only

to the Windows version

of Dymola.

Following installation the user may do additional setup. The installation of updates and re-
moval of Dymola is also described below.

Holders of a floating Dymola license should install Dymola on the server first, and then
proceed with the installation of the license server. After that, Dymola can be installed on all
client computers, see “Installing on client computers” on page 290.

Installing Dymola

The installation normally starts when you insert the distribution CD. If autostart has been
disabled, please start D:\setup.exe (assuming your CD drive is labeled D) from Win-
dows Explorer or Start/Run.

The first choice in the installation procedure is the name of the Dymola distribution directo-
ry. The default is C:\Dymola.

The second choice is to select optional components of the distribution. By unselecting com-
ponents some space can be saved. The first three alternatives are related to compiler sup-
port, see below. Creating a desktop shortcut is a convenient way to access Dymola without
using the Start/Programs menu.

282

Component selection.

Japanese translation

requires special fonts.

The Japanese translation of menus and dialogs requires fonts that support all symbols. For
that reason, the installation program will ask for confirmation before installing Japanese
translations.

Multiple compiler support

Dymola uses a C compiler to translate the C code of the model into an executable simula-
tion program. During the installation of Dymola, the user is given the chance to install li-
braries that support several different compilers under Windows:

1. Default compiler shipped with Dymola (minimum distribution gcc)

2. Microsoft Visual C/C++

3. Microsoft Visual C/C++ with Dymosim DDE support

4. WATCOM C/C++ 10.5 or 11.0

Dymola will start using the default compiler even if support for other compilers has been
installed. The Microsoft compiler is faster and allows bigger models to be simulated. To

APPENDIX — INSTALLATION 283

change the compiler Dymola uses to translate the model, select “Simulation/Setup...” and
the “Compiler” tab, see page 154.

WATCOM C/C++ re-

quires an update.

Users of WATCOM C/C++ 11.0 should download an updated runtime library, the file you
need is called rtl_dll.zip. Please contact Dynasim if you have problems obtaining it.

The updated library is required if you use WATCOM C/C++ with MATLAB. Do not forget
to delete the files in Dymola\tmp before you recompile Mex-files, because various object
files are incompatible.

Microsoft compilers

Dymola supports several Microsoft compilers. The Dymola installation script tries to find
which Microsoft compilers are installed, and prefers the latest compiler. Supported are:

• Microsoft Visual Studio 6

• Microsoft Visual Studio .NET 2002 and 2003

• Microsoft Visual C++ Toolkit 2003. This is a free compiler for Windows 2000 and Win-
dows XP, which can be downloaded from

http://msdn.microsoft.com/visualc/vctoolkit2003

If additional compilers are installed after Dymola, or to use a different compiler, a setup file
must be edited by hand. Examples of typical installation paths are shown in the comments
in the file.

In file dymola\bin\setvcdir.bat modify the line set MSVCDir=... to the right path.
The environment variable MSVCDir should point to the compiler’s installation directory. To
find the right directory search for the file vcvars32.bat (e.g. C:\Program Files\Mi-
crosoft Visual Studio\VC98\Bin\vcvars32.bat for Visual Studio 6) and then
strip off the trailing \bin\vcvars32.bat to get the right directory. The directory structure
differs between compilers.

Optional libraries

Optional libraries (e.g. hydraulics) are distributed on separate CDs. They should be in-
stalled after installing Dymola as the files are installed in the Dymola distribution directory.

Dongle installation
This section applies

only if you received a

dongle with Dymola.

If your Dymola distribution contains a dongle (a small hardware device that attaches to the
parallel or USB port of your computer), the appropriate dongle driver software must also be
installed.

1. The driver installation file is stored on the Dymola distribution CD.

2. Double-click on flexid.exe to start the installation process. Please follow the instruc-
tions on the screen.

3. The dongle drivers are ready for use after the installation process reboots your computer.

284

4. Attach the dongle either to the parallel (printer) port or a USB port on your computer, de-
pending on the type of dongle.

Please note that the dongle must be present every time the Dymola program is executed. If
the dongle is not present, or the drivers have not been installed, Dymola will issue a mes-
sage and terminate.

Additional setup

Creating shortcuts to Dymola

Shortcuts start Dymola

in the right directory.

Sometimes it is convenient to create additional shortcuts to the Dymola program, typically
to make Dymola start in the appropriate working directory.

1. Click the right mouse button on the desktop.

1. Select New/Shortcut from the popup menu.

2. Browse for the Dymola program (C:\Dymola\bin\dymola5.exe by default).

3. Enter a suitable name and finish the creation of the shortcut.

4. Click the right mouse button on the newly created shortcut.

5. Select Properties from the popup menu.

6. Select the Shortcut tab of the dialog window.

7. Specify a working directory in the “Start in” field.

Shortcuts for Dymola language

Only for old models in

the Dymola language.

The Dymola 4 program supports both the Modelica language and the Dymola language.
The appropriate mode is chosen from the Start/Programs/Dymola menu under Microsoft
Windows. However, if you create your own shortcuts, the switch /Dymola must be speci-
fied to start Dymola 4 in Dymola language mode.

1. Click the right mouse button on the shortcut to Dymola 4.

2. Select Properties from the popup menu.

3. Select the Shortcut tab of the dialog window.

4. Add /Dymola to the Target field.

Adding libraries and demos to the File menu

You can add your own libraries (or demo examples) to the File/Libraries menu. This is done
by editing the file dymola\insert\dymodraw.ini, which contains further instructions.

APPENDIX — INSTALLATION 285

HTML viewer for online help

Some alternatives of the Help menu display information stored in HTML. Under some cir-
cumstances Dymola will not be able to find the right viewer program; if so the user can de-
fine environment variable

DYMOLAHTMLVIEWER

which should contain the path of the viewer program. Dymola must be restarted. The “In-
fo...” button (or menu choice) will also use HTML documentation if available, otherwise
plain text.

Installing updates

Updated versions of Dymola are either distributed on CD, or can be downloaded from

http://www.dynasim.se/update/

The old version of Dymola should be removed before installing an update; you cannot in-
stall into an existing Dymola directory.

The downloaded update does not contain any license file. During installation of the update
you are required to insert your original Dymola CD for authentication. You are also prompt-
ed for the license file, which typically is the license file on the CD (if you have obtained a
newer license file by e-mail you should specify this one instead).

Removing Dymola

Under Windows, you can remove Dymola by clicking on the Start button in the Taskbar, se-
lect Settings/Control Panel and start Add/Remove Programs. Select Dymola and click on
the Add/Remove button.

Note that files that you have created in the Dymola distribution directory, for example by
running the demo examples, are not deleted. If so the remaining files and directories may be
deleted through the Explorer.

Installation on UNIX

This section refers only

to the UNIX version of

Dymola.

Important information is available in dymola\readme\unix.txt. Please read this file for
new information on the installation of Dymola.

Installing Dymola

Dymola for UNIX is normally distributed as a compressed tar-file. Extracting the file with

tar xvzf dymola.tar.gz

will create a subdirectory “dymola” with the entire distribution. The license file is normally
copied from the distribution CD to dymola/insert/dymola.lic.

286

The Linux distribution of Dymola is configured for RedHat Linux 7.x; to run Dymola under
other versions of Linux with incompatible C compilers, another library is required to run
simulations. For example, to compile on RedHat 6.2 execute the following commands:

cd dymola/bin

rm libds.a

cp -p libds-rh62.a libds.a

To perform a simulation, Dymola will create temporary files in the directory of the model.
In order to test the examples shipped with Dymola, we strongly recommend that users copy
the examples directories to a private area. If there is only one user the Dymola distribution
directory can be made writable.

Environment variables and setup

The following environment variables must be defined in order to run Dymola:

DYMOLA Directory root of the distribution.

DYMOLAPATH Search path for additional Dymola libraries and the license file. The di-
rectories of the path may be separated by blanks or colon. DYMOLAPATH is optional if the li-
cense file is in $DYMOLA/insert.

PATH Search path for executable programs.

The file $DYMOLA/bin/dymola.setup contains C-shell commands to set these environ-
ment variables, but will need editing to match the installation directory (if other that the us-
er's login directory).

Note that dymola.setup must be read with the source command in C-shell, not executed as a
shell script, to be effective. We suggest that you put the command

source $HOME/dymola/bin/dymola.setup

in the .login file in your home directory. Users of sh, bash or ksh should use the following
syntax to set environment variables:

set DYMOLA=$HOME/dymola ; export DYMOLA

Alternatively, the setting of DYMOLA can be done when starting the program. A small
command script with this contents will usually do:

#!/bin/csh

setenv DYMOLA $HOME/dymola

$DYMOLA/bin/dymola5 $*

On some UNIX systems the default font is tiny and hard to read The dymola.setup file
can be modified to set up a reasonable font for Dymola.

Additional setup

Adding libraries and demos to the File menu

You can add your own libraries (or demo examples) to the File/Libraries menu. This is done
by editing the file dymola/insert/dymodraw.ini, which contains further instructions.

APPENDIX — INSTALLATION 287

Compilation of model code

Dymola produces C code which must be compiled in order to generate a simulation model.
On Windows we supply a free compiler as part of the distribution (GCC). On UNIX sys-
tems we rely on an ANSI/ISO C compiler already installed on the computer.

On UNIX systems the compilation is performed by a shell script, dymola/insert/ds-
build.sh. If necessary this script can be modified to provide special options to the compil-
er, add application-specific libraries etc. For example, to compile with Sun's “ucbcc” you
would have to add the -Xa flag to the compile command to specify the ANSI compatibility
option.

Removing Dymola

Remove the Dymola distribution directory and remove any settings in .login that you
have made.

Dymola License Server

Background

These are instructions for manually installing a FLEXlm license server for Dymola. They
only apply to users with a floating license. For non-floating licenses (the common case), in-
stallation of the license file is automatic.

Dymola is installed on all machines which will run the software. On the designated ma-
chine, the license server is then installed as described below.

The license server consists of two daemon processes:

• The vendor daemon (called dynasim.exe) dispenses licenses for the requested features
of Dymola (the ability to run Dymola and various options). This program is specific for
all software from Dynasim.

• The license daemon (called lmgrd.exe) sends requests from application programs to the
right vendor daemon on the right machine. The same license daemon can be used by all
applications from all vendors, as this daemon processes no requests on its own, but for-
wards these requests to the right vendor daemon.

If you are already running an application that uses FLEXlm, you most likely already have a
running license daemon. In this case only the vendor daemon (dynasim.exe) is required.

GLOBEtrotter recommends that you use the latest version of the FLEXlm lmgrd.exe at
all times as it includes bug fixes, enhancements, and assures the greatest level of compati-
bility with all of your FLEXlm licensed applications. GLOBEtrotter guarantees that it will
work correctly with all earlier versions of FLEXlm. The latest available license daemon can
be downloaded from the website of GLOBEtrotter:

288

http://www.globetrotter.com/flexlm/lmgrd.shtml

Old license daemons

cannot be used!

Dymola requires support of FLEXlm version 8.0d or later. A recent version of lmgrd.exe
is part of the Dymola distribution. Note that some older versions distributed with MATLAB
are not compatible.

Installing the license server

This section describes the simple case where we assume there are no other FLEXlm license
daemons.

Start the utility program dymola\bin\lmtools.exe.

In the “Service/License File” tab:

• Select the radiobutton “Configuration using Services”.

License server setup.

In the “Configure Services” tab:

• Enter a new service name, e.g. “Dynasim License Server”.

• Enter the path to the license daemon, dymola\bin\lmgrd.exe.

• Enter the path to you server license file, dymola\insert\dymola.lic.

• Enter the path to a debug log file (anywhere you want).

• Enable “Start Server at Power Up” and “Use Services”.

• Click on “Save Service”.

APPENDIX — INSTALLATION 289

Configuration of the li-

cense server.

In the “Start/Stop/Reread” tab:

• Select the Dynasim license server.

• Click on “Start Server”.

In the “Server Status” tab:

• Click on “Perform Server Enquiry” and check the output of the log window. You should
see lines identifying the server processes and what features are available (e.g. DymolaS-
tandard or DymolaLight).

Checking the operation

of the license server.

290

Also check the logfile to verify that the server has started and that Dymola features can be
checked out. The following is an example:

The FLEXlm logfile. 10:39:20 (lmgrd) Detecting other lmgrd processes...

10:39:35 (lmgrd) FLEXlm (v7.2c) started on x.x.x.x (3/27/2001)

10:39:35 (lmgrd) FLEXlm Copyright 1988-2000, Globetrotter Software

10:39:35 (lmgrd) US Patents 5,390,297 and 5,671,412.

10:39:35 (lmgrd) World Wide Web: http://www.globetrotter.com

10:39:35 (lmgrd) License file(s): C:\DAG\dymola.lic

10:39:35 (lmgrd) lmgrd tcp-port 27000

10:39:35 (lmgrd) Starting vendor daemons ...

10:39:35 (lmgrd) Started dynasim (pid 124)

10:39:36 (dynasim) Server started on x.x.x.x for:DymolaStandard

10:39:36 (dynasim) DymolaSampledLib DymolaLiveObjects DymolaRealtime

10:39:36 (dynasim) DymolaSimulinkDymolaAnimation DymolaSupport

10:39:36 (lmgrd) dynasim using TCP-port 1042

The license server should now be correctly configured. Please start Dymola to verify cor-
rect operation. The FLEXlm logfile (see above) should contain additional lines showing
what features were checked out. You can also do “Perform Status Enquiry” to check how
many license are currently checked out.

Installing on client computers
Installation without

CD.

After Dymola and all optional libraries have been installed on one computer, a simplified
process can be used to install Dymola on all client computers using the license server. The
following procedure should be performed on each client.

1. Open the Dymola distribution directory on a computer where Dymola has already been
installed (over the network).

2. Execute the installation program dymola\bin\Dymola5client.exe and follow the in-
structions. The installation will ask for a directory to install Dymola. The default is
C:\Dymola.

The installation program will then copy files from the server to the client computer and set
up the Start/Programs menu. No CD is required to install Dymola on the clients.

Troubleshooting

Occasionally the installation will not succeed, or the program will not operate as intended
after installation. This section will outline some of the problems that have been detected in
the past. In most cases, these problems are specific to the Windows environment.

APPENDIX — INSTALLATION 291

License file

License file is not authentic

The error message “License file not authentic” indicates either an error in the license file, or
a mismatch between your computer system and your license file.

• If your Dymola distribution included a dongle, drivers for the dongle must be installed and
the dongle must be present. See also “Dongle installation” on page 283.

• The license file is locked to your computer system, which means that you cannot execute
Dymola from another computer.

• You cannot copy the Dymola distribution directory from one computer to another; instal-
lation must be performed using the Dymola distribution CD or from the downloaded file.
To install Dymola on client computers when a license server is used, see “Installing on
client computers” on page 290.

• The license file on the Dymola CD for Windows is not complete. You cannot copy the
license file from the CD.

Additional information

If there is some error in the license file or with the license server, Dymola presents a short
error message by default. A more detailed description, including FLEXlm error codes, is
produced if Dymola is started with the command line option /FLEXlmDiag. Start a com-
mand (DOS) window and issue the following commands:

cd \dymola\bin

dymola5.exe /FLEXlmDiag

The additional information will in many cases be helpful in correspondence with support.

License server

Correct operation of the license server should be verified with lmtools.exe, see “Install-
ing the license server” on page 288. The FLEXlm logfile provides additional information
about the day-to-day operation of the server.

Always using the latest version of the FLEXlm license daemon lmgrd.exe is strongly rec-
ommended. It is guaranteed to be compatible with all earlier versions of FLEXlm.

Compiler problems

The compiler used to compile the C code generated by Dymola into executable code for
simulation is set in the Compiler tab, see “Simulation/Setup” on page 150.

Several potential problems can be found by pressing the “Verify compiler setup” button.
Any warning messages indicate problems that need to be resolved before translating a mod-
el.

292

If you have setup your system to use Microsoft Visual C++ you may get the following error
message:

Compiler not found.

This most likely reason is that the compiler is installed, but not in the location Dymola ex-
pects (this can happen if the compiler is installed after Dymola). You then have to manually
set the location, see “Microsoft compilers” on page 283.

Simulink

If the Dymola-Simulink interface does not work, please check the following (some of
which may sound elementary):

• You have a Dymola license that supports the Simulink interface. Note that Simulink sup-
port is a separate option (but included in the demo version).

• You have included the directories dymola\mfiles and dymola\mfiles\traj in the
Matlab path. These have to be included every time you want to use the Dymola-Simulink
interface and it is a good idea to store the included paths in Matlab.

• You can find the interface in Simulink's browser as Dymola Block/DymolaBlock (if
not, you have probably not included the directories, mentioned above, into the Matlab
path).

• Make sure you have a working Matlab/Mex configuration by trying to compile and link
an example Mex file, e.g. matlab\extern\examples\mex\yprime.c.

• You have created external inputs to the Dymola Block, and outputs from the Dymola
Block, in a correct way. See also “Graphical interface between Simulink and Dymola” on
page 219.

• You have compiled all Dymola models used in the model, otherwise you will get an error
message.

• If “Allow multiple copies of block” is unchecked you should not copy the block. Un-
checking it should only be done if you have a dSPACE system.

Also note that the parameterizations differ between blocks in the Modelica Standard Li-
brary and in Simulink. For example, the frequency of Simulink's Sine-block is measured in
rad/s, which is commonly known as angular frequency and should thus be times the fre-
quency in the corresponding source in Modelica).

2π

APPENDIX — INSTALLATION 293

The default compiler used by Matlab/Mex (called lcc) is very slow for large files. Models
generated by Dymola may compile slowly using lcc, and we suggest using Microsoft Visual
C/C++ instead (if available).

dSPACE systems

Older dSPACE systems (dSPACE release 2.0-3.3) may not support MAP files for Dymola
models. The error message displayed by ControlDesk is

Encountered an error in the MAP file.

This problem is fixed by upgrading to dSPACE release 3.4, or by requesting an updated
DLL from dSPACE.

Other Windows-related problems

Starting the installation

The installation normally starts automatically when you insert the distribution CD. If au-
tostart has been disabled, please start D:\setup.exe (assuming your CD drive is labeled
D) from Windows Explorer or Start/Run.

Application fails to initialize properly

This is most likely caused by incorrect system DLLs. Dymola uses two system DLLs for
OpenGL support. They are called opengl32.dll and glu32.dll. If these DLLs are incorrect,
e.g. do not recognize the graphics card or fail initialization in some other way, you get an er-
ror message like this.

Note that with Windows NT 4.0 you get a more specific error message that mentions a
problem with DLLs. In Windows 2000 it just says that the application failed.

Windows XP requires Service Pack 1 or later to run Dymola. Otherwise, XP displays the
message “Windows encountered a problem with Dymola5.exe” and suggests sending a
problem report.

Space characters in filenames

In some cases Dymola cannot handle filenames which contain space characters, notably the
directory “Program Files”. This bug will be fixed in a future release.

Deep directory hierarchies

Compilation and simulation of the model may fail in a very deep directory hierarchy, if the
length of the directory path exceeds 250 characters. This is caused by a bug in Microsoft
software, and we are investigating ways to work around it.

Writable root directory

Due to a bug in the Microsoft runtime library, the root directory C:\ should be writable in
order to store temporary files. If that is not the case, Dymola will create working files in the
current directory, which are not automatically deleted.

294

Windows environment space

Under Windows 95, 98 and ME, Dymola may under exceptional circumstances generate the
error message “Out of environment space” during compilation.

The remedy is to modify two system configuration files to increase environment space: sys-
tem.ini and config.sys.

1. Open \windows\system.ini with notepad. Search for a variable called CommandEn-
vSize. This variable should be set to at least 6000. If it does not exist in system.ini, add
the following two lines:

[NonWindowsApp]

CommandEnvSize=6000

2. On Windows 95 and 98, open \config.sys with notepad. The command environment
space must also be set to 6000. Locate the line defining SHELL. The /E switch is used to
define command environment space, for example:

SHELL=C:\COMMAND.COM C:\ /P /E:6000

Please keep other switches on the line unchanged. Windows must be restarted after these
changes.

295

Index

Symbols
=

· 174
@

· 149, 176

A
about

· 143
absolute tolerance

· 201
acausal modeling

· 76
algorithm

· 81
animated GIF

· 137
animation

· 166
menu

· 169
visual shapes

· 166
arrow keys

· 115, 143
assignment

· 81
interactive

· 174
automatic manhattanize

· 121, 143
AVI (Audio-Video Interleaved)

· 137

B
backstep animation

· 169
base class

· 110, 112, 113
BMP

graphical object

· 124
bound parameter

· 61
bring to front

· 139
browser

component

· 109
package

· 109

C
chattering

· 184
check

· 109, 139
checkModel

· 179
class

description

· 76, 113
documentation

· 112
parameter

· 79, 118
clear all

· 134

296

clear log

· 137
clipboard

· 136
closeModel

· 179
color

· 124
commands

convertClass

· 272
convertClear

· 275
convertElement

· 273
convertModifiers

· 273
comment

· 240
attribute see class description

· 76
initialization file

· 143
compiler

GNU C

· 154
Microsoft Visual C++

· 154, 283, 292
on UNIX

· 154
setup

· 154
troubleshooting

· 154, 291
WATCOM C/C++

· 154
component

· 17
attributes

· 120
browser

· 109
library

· 48
size

· 113, 115, 140
computer algebra

· 78
connection

· 75, 115, 138
creating

· 121
connector

· 75
nested

· 122
protected

· 111
visibility

· 111
context menu

· 47, 109, 113, 114, 116, 122
continue line

· 173
continue simulation

· 150
continuous run of animation

· 170
ControlDesk

· 227
coordinate system

· 113, 140
specification

· 113
copy

· 138
copy to clipboard

· 136
create script

· 137
creating a model

· 50
crossing function

· 85
current selection

· 114
cut

· 138

D
DAE

· 78, 204
high index

· 78
data flow modeling

· 77
DC motor

· 42
DDE

Dymola commands

· 233
Dymosim DDE server

· 234
extended gui

· 236
hot linking variables

· 236
requesting variables

· 235
setting parameters

· 235
simulator commands

· 235
debugging models

· 153, 182
declarations

· 35, 125
default graphics

· 124
delete

· 138
delete key

· 115, 143
deleting objects

· 115
demo

· 24, 134
dense output

· 202, 203, 204
der(...) operator

· 34
description

· 127
description of class

· 76, 113
diagram layer

· 111, 142
differential-algebraic equation

· 78
discrete equations

· 83
document

· 178
documentation

HTML

· 113
of class

· 112, 126
documentation layer

· 111, 142
dongle

· 283
double-clicking

· 114, 116, 121, 124
dragging

· 115
dsin.txt

· 207
dsmodel.c

· 198
dSPACE

· 225
ControlDesk

· 227
overrun situation

· 228
turnaround time

· 228
duplicate

class

· 110
duplicate objects

· 138
DXF-files

· 167
dymodraw.ini

· 143

297

DymolaBlock

· 220
DYMOLAGIFCON

· 137
DYMOLAPATH

· 143
Dymosim file

· 197
dsin.txt

· 199, 200, 209
dsindef.txt

· 200
dslog.txt

· 198
dsres.mat

· 198, 199, 213
dsu.txt

· 199, 200
dymtools

· 199

E
edit menu

change attributes

· 139
check

· 139
copy

· 138
cut

· 138
delete

· 138
draw shapes

· 139
duplicate

· 138
flip horizontal

· 139
flip vertical

· 139
manhattanize

· 139
options

· 141
order

· 139
paste

· 138
redo

· 138
rotate

· 139
select all

· 138
undo

· 138
edit window

· 108, 114
ellipses

· 123, 124
embedded HTML

· 128
encapsulated

· 127
Enhanced Metafile Format

· 136
environment space, Windows

· 294
environment variables

· 137, 286
equality comparison

· 266
equation

· 34
equations

· 125
eraseClasses

· 180
errors

· 182
event

· 85
logging

· 183
examples

ideal diode

· 87

motor drive

· 73, 77
motor model

· 74
polynomial multiplication

· 81
rectifier circuit

· 87
sampled data system

· 82
exit

· 138
experiment setup

· 37
export

animation

· 137
HTML

· 137
image

· 136, 160
to clipboard

· 136
expression

interactive

· 173
external function

· 253
annotations

· 255
including

· 254
linking to library

· 254

F
file menu

check

· 139
clear all

· 134
clear log

· 137
copy to clipboard

· 136
demos

· 134
duplicate class

· 133
exit

· 137, 138
export animation

· 137
export HTML

· 137
export image

· 136
export to clipboard

· 136
libraries

· 134
new

· 131, 132
open

· 133
print

· 136
recent files

· 137
save

· 134
save all

· 134
save as

· 134
save log

· 137
save total

· 134
search

· 134
setup HTML

· 137
file type associations

· 233
fill color

· 124

298

find
class or component

· 109, 134
text

· 126, 127, 129
FLEXlm

· 287
flow prefix

· 75
function

· 81
derivative

· 249
external

· 253
Furuta pendulum

· 65

G
gccbuild

· 198
GenerateBlockTimers

· 187
GenerateTimers

· 189
GIF

export of image

· 160
graphical object

· 124
GIF Construction Set

· 137
global error

· 201
GNU C Compiler

· 255
GNU C compiler

· 154
graphical attributes

· 124
graphical objects

· 123
default

· 124
grid

· 113, 115, 121, 123, 140
gridlines

· 115, 139

H
handles

· 114
hardware in the loop

· 225
help

· 176
help menu

about

· 143
documentation

· 142
Dymola support

· 143
Dynasim website

· 143
what’s this

· 142
high index DAE

· 78
HTML

· 137
documentation

· 113, 129
escape sequence

· 128
export

· 137
external references

· 129
hyperlinks

· 129
online documentation

· 130

options

· 130
setup

· 137
hybrid modeling

· 81
hybrid system

· 183

I
icon layer

· 111, 142
if-expression

· 85
information window

· 116
initialization of models

· 90
over specified

· 182
inline integration

· 190
InlineIntegration

· 192
InlineIntegrationExplicit

· 192
instability

· 183
installation

clients of server

· 290
dongle

· 283
environment variables

· 286
license daemon

· 287
license server

· 287
multiple compiler support

· 282
troubleshooting

· 290
UNIX

· 285
windows

· 281
integration method

· 148, 190
integrator

DASSL

· 203, 205
DEABM

· 203, 204
DOPRI5

· 203, 204
DOPRI8

· 203, 205
GRK4T

· 203, 205
LSODAR

· 203, 204
LSODE1

· 203, 204
LSODE2

· 203, 204
MEXX

· 203, 205
ODASSL

· 203, 205

J
JPEG

graphical object

· 124

K
keyboard commands

· 143

299

L
layer

· 108, 111
diagram

· 111
documentation

· 111
icon

· 111
Modelica text

· 111
library

· 48
documentation

· 113
shortcut to

· 134
library annotation

· 255
library menu

· 134
library migration

· 271
library window

· 110
license file

error message

· 291
license server

· 287
line

· 123
color

· 124
style

· 125
linearize

· 150
list

· 180
listfunctions

· 176
logging events

· 183
LogVariable

· 205

M
manhattanize

· 121, 139, 141
material

visual objects

· 167
Matlab

mex

· 219
path

· 219
using Dymola models

· 224
see also Simulink

matrix equations

· 79
menu

animation

· 169
diagram

· 160
m-file

· 205, 206
tcomp

· 207
tcut

· 207
tder

· 207
tdiff

· 207
tfigure

· 207
tinteg

· 207

tload

· 199, 207
tnhead

· 207
tnindex

· 207
tnlist

· 199, 207
tplot

· 199, 200, 207
tplotm

· 207
trajectory

· 206
trange

· 207
tsame

· 207
tsave

· 200, 207
tzoom

· 207
Microsoft Visual C++

· 154, 283, 292
migration to a new library

· 271
mixed-mode integration

· 190
mode

modeling

· 107
simulation

· 107
model

· 73
documentation

· 113, 126
replaceable

· 80
model debugging

· 182
model editor

· 73
Modelica

· 73
syntax

· 239
Modelica Standard Library

· 42, 43, 75, 100
Modelica text

· 111, 125, 142
modeling

· 73
hybrid

· 81
modeling mode

· 107
modifier window

· 110, 113, 116
modifiers

· 116, 117
mouse button

left

· 114
right

· 114
moving

class

· 110
objects

· 114

N
nested connectors

· 122
new

model, connector etc.

· 131
package

· 132
noEvent(...) operator

· 86, 190, 259

300

O
ODAE

· 204
ODE

· 78, 204
Open result

· 169
openModel

· 178
ordering of objects

· 139
output interval

· 148

P
package browser

· 109
parameter

· 118
class-

· 79, 118
declaration

· 76
propagation

· 61
partial models

· 75
paste

· 138
pause animation

· 169
pendulum

· 33
picking objects

· 114
plot

· 180
plot menu

delete diagram

· 160
new diagram

· 160
new plot window

· 160
open result

· 160
rescale

· 160
plot window

· 156
plotArray

· 180
PNG

graphical object

· 124
polygons

· 123
pre(...) operator

· 83
print

· 136
printPlot

· 180
profiling

· 187
propagation of parameters

· 61
protected

· 127

Q
quantity

· 74
quit

· 138

R
RandomNormal

· 206
RandomSeed

· 206

RandomUniform

· 206
ReadMatrix

· 206
real-time simulation

· 190, 225
Real-Time Workshop

· 228
recent files

· 137
recent models

· 141
rectangles

· 123
redeclare keyword

· 80
redo

· 138
relative tic mark

· 159
relative tolerance

· 201
rename

· 110
replaceable model

· 80
reshaping objects

· 113, 115
reverse animation

· 169
rewind animation

· 169
robot demo

· 24
root finder

· 203, 204
root model

· 109
rotate

· 139
RT-LAB

· 229
run animation

· 169
run script

· 32, 137, 149

S
save all

· 134
save as

· 134
results

· 199
save log

· 137
save model

· 138
save total

· 134
scaling

· 201
script

· 32
create

· 137
files

· 176
functions

· 181
run

· 149
search

class or component

· 109, 134
text

· 126, 127, 129
selecting objects

· 114, 138
send to back

· 139
setting parameters

· 40
S-function MEX block

· 220
shell command

alist

· 208

301

dymosim

· 200, 207
shift key

· 114, 143
shortcut to library

· 134
Show Log

· 155
simulate

· 150
simulateModel

· 179
simulation

· 32, 147
efficiency

· 184
time

· 148
simulation menu

continue

· 150
linearize

· 150
run script

· 149
setup

· 150
simulate

· 150
stop

· 150
translate

· 150
simulation mode

· 107
Simulink

DymolaBlock

· 220
external input and output

· 221
graphical interface

· 219
implementation notes

· 224
parameters and initial values

· 221
Real-Time Workshop

· 228
simulation

· 222
troubleshooting

· 292
xPC

· 228
special keyboard commands

· 143
stability boundary

· 203
starting Dymola

· 23
state event

· 85, 259
state selection

· 257
StateSelect

· 257
step animation

· 169
stiff

· 203, 204
stop

· 138, 150
store

as one file

· 127
in model

· 151, 152
string manipulation

· 175
syntax of Modelica

· 239

T
terminate

· 138
text editor

· 125, 126

text strings

· 124
toolbar

· 123, 124
tooltips

plot window

· 159
translate model

· 37, 148, 150
translateModel

· 179

U
undo

· 138
unit

display

· 74
of measure

· 74
Unix

compiler

· 154
installation

· 285

V
variable

in Modelica

· 74
interactive

· 174
predefined

· 175
variable order

· 202
variable step-size

· 202
variable structure systems

· 86
view menu

diagram layer

· 142
documentation layer

· 142
equation layer

· 142
icon layer

· 142
visual modeling

· 166
visual reference

· 170
VisualShape

· 166
VRML

· 137

W
WATCOM C/C++

· 154
what’s this

· 142
window

edit

· 108
grid

· 113
library

· 110
modifier

· 110, 113, 116
plot

· 156
window menu

diagram layer

· 142

302

documentation layer

· 142
icon layer

· 142
Modelica text

· 142
modeling

· 141
new Dymola window

· 142
new library window

· 142
next

· 142
previous

· 142
simulation

· 141
window types

· 107
Windows environment space

· 294
WriteMatrix

· 206

X
xPC

· 228
xscale

· 201

Z
zooming

· 142

	What is Dymola?
	Features of Dymola
	Architecture of Dymola
	Basic Operations
	Simulating an existing model
	Find the model
	Simulation Mode

	Building a model
	Find a component model

	Features of Modelica
	Background
	Equations and reuse
	Modelica history

	Getting started with Dymola
	Introduction
	Simulating a model — industrial robot
	Simulation
	Other demo examples

	Solving a non-linear differential equation
	Simulation
	Improving the model

	Using the Modelica Standard Library
	The Modelica Standard Library
	Creating a library for components
	Creating a model for an electric DC motor
	Testing the model
	Creating a model for the motor drive
	Parameter expressions

	Building a mechanical model

	Introduction to Modelica
	Modelica basics
	Variables
	Connectors and connections
	Partial models and inheritance

	Acausal modeling
	Background
	Differential-algebraic equations

	Advanced modeling features
	Vectors, matrices and arrays
	Class parameters
	Algorithms and functions

	Hybrid modeling in Modelica
	Synchronous equations
	Relation triggered events
	Variable structure systems
	Parametrized curve descriptions

	Initialization of models
	Basics
	Continuous time problems
	Initial equations and algorithms
	Initial equations and algorithms
	Steady state
	Mixed Conditions
	How many initial conditions?
	Interactive setting of start values
	Non-linear algebraic loops

	Parameter values
	Discrete and hybrid problems
	When clauses at initialization
	Non-unique initialization
	Well-posed initialization
	How many initial conditions?

	Example: Initialization of discrete controllers

	Standard libraries
	Summary
	References

	Developing a model
	General concepts
	Window types
	Window modes
	Edit window
	Package and component browsers
	Package browser context menu
	Library window
	Modifier window

	Class layers
	Class documentation
	Description and information
	HTML documentation

	Coordinate system
	Specification

	Model editing
	Basic operations
	Selecting objects
	Context menus
	Moving objects
	Reshaping objects
	Deleting objects

	Components and connectors
	Inserting a component or a connector
	Context menu for components
	Modifier window
	Component and connector modifiers
	Array and matrix editor
	Component attributes

	Connections
	Creating a connection
	Context menu while connecting
	Nested connectors

	Creating graphical objects
	Lines and polygons
	Rectangles and ellipses
	Text
	Bitmap
	Default graphics

	Changing graphical attributes
	Line style
	Fill style

	Modelica text
	Context menu

	Documentation
	Context menu when viewing
	Editing description
	Editing documentation text
	Context menu when editing

	HTML documentation
	External references
	Generate online documentation
	Generate HTML for referenced classes
	Generate links to online documentation
	Do not generate external links

	HTML options

	Editor command reference
	File menu
	Toolbar
	File/New.../Model etc.
	File/New.../Package
	File/New.../Duplicate Class
	File/Open...
	File/Libraries
	File/Demos
	File/Save
	File/Save As
	File/Save All...
	File/Save Total...
	File/Clear All
	File/Search...
	File/Change Directory...
	File/Print...
	File/Export/To Clipboard
	File/Export/Image...
	File/Export/Animation
	File/Export/Setup HTML…
	File/Export/HTML…
	File/Save Log...
	File/Clear Log
	File/Recent Files
	File/Exit

	Edit menu
	Toolbar
	Edit/Undo and Edit/Redo
	Edit/Cut
	Edit/Copy
	Edit/Paste
	Edit/Delete
	Edit/Duplicate
	Edit/Select All
	Edit/Order
	Edit/Manhattanize
	Edit/Rotate 90 and Edit/Rotate –90
	Edit/Flip Horizontal and Edit/Flip Vertical
	Edit/Check
	Edit/Draw
	Edit/Attributes...
	Edit/Options

	Window menu
	Toolbar
	Recent Models
	Window/Mode/Modeling (Ctrl+F1)
	Window/Mode/Simulation (Ctrl+F2)
	Window/View/Previous
	Window/View/Next
	Window/View/Icon
	Window/View/Diagram
	Window/View/Documentation
	Window/View/Modelica Text
	Window/New Library Window
	Window/New Dymola Window
	Zooming

	Help menu
	Help/What’s This
	Help/Contents
	Help/Documentation
	Help/Dymola support
	Help/Dynasim website
	Help/About

	Special keyboard commands
	Delete
	Shift
	Ctrl+F1 and Ctrl+F2
	Arrow keys

	Model editor initialization

	Simulating a model
	Basic steps
	Selecting model
	Translation
	Setting parameters and initial conditions
	Specify simulation run
	Perform simulation
	Plot results

	Simulation menu
	Simulation/Run Script...
	Simulation/Translate
	Simulation/Simulate
	Simulation/Continue
	Simulation/Stop
	Simulation/Linearize
	Simulation/Setup
	Simulation/Visualize
	Simulation/Show Log

	Plot window
	Variable selector
	Selecting plot variables
	Selecting independent variable
	Advanced mode
	Relative tic mark labels

	Plot window interaction
	Dynamic tooltips
	Zooming the plot window

	File menu
	File/Export Image...

	Plot menu
	Plot/Open Result...
	Plot/New Plot Window
	Plot/New Diagram
	Plot/Delete Diagram
	Plot/Rescale
	Plot/Erase Curves
	Plot/Toggle Grid
	Plot/Setup...

	Animation window
	Visual modeling
	Graphical objects
	Defining Graphical Objects
	File menu
	Animation menu
	Animation/Open Result...
	Animation/New Animation Window
	Animation/Run (function key F3)
	Animation/Pause (function key F4)
	Animation/Rewind (function key F7)
	Animation/Reverse (function key Shift+F6)
	Animation/Backstep (function key F6)
	Animation/Step Forward (function key F5)
	Animation/Forward (function key Shift+F5)
	Animation/Setup…
	Animation/3D View Control…

	Scripting language
	Basic operations
	Interaction
	Assignments
	Interactive variables
	Predefined variables
	Functions for string manipulation

	Script files
	Help commands
	help
	listfunctions
	document

	Simulator API
	openModel
	checkModel
	translateModel
	simulateModel
	closeModel
	importInitial
	exportInitial
	plot
	plotArray
	printPlot
	list
	eraseClasses

	Script functions

	Debugging models
	Over specified initialization problems
	Basic steps in debugging models
	Finding errors in models
	Event logging
	Model instability

	Improving simulation efficiency
	Time of storing result
	Events and chattering
	Debug facilities when running a simulation
	Profiling
	Basic profiling
	Fine grained profiling

	Inline integration
	Inline integration
	Inline integration in Dymola
	References

	Mode handling
	Collecting modes
	Using mode information in real-time simulation
	Known Limitations
	References

	Dynamic Model Simulator
	Overview
	What is Dymosim?
	Who wrote Dymosim?

	Running Dymosim
	Dymosim as a stand-alone program
	Dymosim and Matlab

	Selecting the integration method
	Integrator properties
	Relative and absolute error tolerances
	Global error
	Variable step-size, dense output
	Variable order
	Stiff systems

	Dymosim integrators

	Dymosim reference
	Model functions for Dymosim
	status = LogVariable(x)
	status = ReadMatrix("name", M)
	status = WriteMatrix("name", M)
	RandomUniform(Time)
	RandomNormal(Time)
	status = RandomSeed(seed)

	Dymosim m-files
	Dymosim command line arguments
	Basic file format
	Dymosim input file “dsin.txt”
	Simulation result file “dsres.mat”

	Bibliography

	Other simulation environments
	Using the Dymola-Simulink interface
	Graphical interface between Simulink and Dymola
	Hierarchical Connectors as Buses
	Result files
	Implementation notes

	Simulation in Matlab

	Real-time simulation
	dSPACE systems
	Simulation
	Overrun

	xPC and Real-Time Workshop
	Real-time simulation using RT-LAB
	Model re-organization
	RT-LAB setup
	File transfer settings
	Compilation options

	DDE communication
	Dymola DDE commands
	Explorer file type associations
	Dymosim Windows application
	Realtime simulation
	Dymosim DDE server
	Simulator commands
	Setting parameters
	Requesting variables
	Hot linking variables
	Extended graphical user interface

	Appendix — Modelica
	Modelica syntax specification
	Lexical conventions
	Grammar
	Model definition
	Class definition
	Extends
	Component clause
	Modification
	Equations
	Expressions

	Appendix — Advanced Modelica
	Declaring functions
	User-defined derivatives
	How to declare a derivative
	First order derivative
	Second and higher order derivatives
	Restrictions
	Verifying Derivatives

	External functions
	Including external functions
	Linking to external library
	Building an external library
	Library annotation

	Other languages
	C++
	FORTRAN

	Means to control the selection of states
	Motivation
	The state select attribute

	Using noEvent
	Background: How events are generated
	Guarding expressions against evaluation
	How to use noEvent to improve performance
	A note on style

	Combined example for noEvent
	An additional note on style

	Mixing noEvent and events in one equation
	Conditional use of events

	Constructing anti-symmetric expressions

	Equality comparison of real values
	Type of variables
	Trigger events for equality
	Locking when equal
	Guarding against division by zero

	Appendix — Migration
	Migrating to newer libraries
	How to migrate
	Basic commands to specify translation
	convertClass
	convertElement
	convertModifiers
	convertClear

	How to build a convert script

	Appendix — Installation
	Installation on Windows
	Installing Dymola
	Multiple compiler support
	Microsoft compilers
	Optional libraries

	Dongle installation
	Additional setup
	Creating shortcuts to Dymola
	Shortcuts for Dymola language
	Adding libraries and demos to the File menu
	HTML viewer for online help

	Installing updates
	Removing Dymola

	Installation on UNIX
	Installing Dymola
	Environment variables and setup

	Additional setup
	Adding libraries and demos to the File menu
	Compilation of model code

	Removing Dymola

	Dymola License Server
	Background
	Installing the license server
	Installing on client computers

	Troubleshooting
	License file
	License file is not authentic
	Additional information
	License server

	Compiler problems
	Simulink
	dSPACE systems
	Other Windows-related problems
	Starting the installation
	Application fails to initialize properly
	Space characters in filenames
	Deep directory hierarchies
	Writable root directory
	Windows environment space

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

