
CACSD’99, August 22.–26., Hawaii, USA, 1999. 1

Hybrid Modeling in Modelica
based on the Synchronous Data Flow Principle

Martin Otter Hilding Elmqvist Sven Erik Mattsson
DLR Oberpfaffenhofen Dynasim AB Dynasim AB

D-82230 Wessling, Germany Research Park Ideon Research Park Ideon
E-mail: Martin.Otter@DLR.de SE-22370 Lund, Sweden SE-22370 Lund, Sweden

E-mail: Elmqvist@Dynasim.se E-mail: SvenErik@Dynasim.se

Abstract

The unique features of the object-oriented modeling lan-
guage Modelica to model combined continuous time and
discrete event systems are discussed. A hybrid Model-
ica model is described by a set of synchronous differen-
tial, algebraic and discrete equations leading to determin-
istic behaviour and automatic synchronization of the con-
tinuous and discrete parts of a model. The consequences of
this view are discussed and demonstrated at hand of a new
method to model ideal switch elements such as ideal diodes
ideal thyristors or friction. At event instants this leads to
mixed continuous/discrete systems of equations that have
to be solved by appropriate algorithms.

1 Introduction

ModelicaTM is a uniform object-oriented language for mod-
eling of physical systems, designed by the developers of
the modeling languages Allan, Dymola, NMF, Object-
Math, Omola, SIDOPS+ and Smile, as well as a number
of modelling practioners. It is a modern language built
on non-causalmodeling withmathematical equationsand
object-orientedconstructs to facilitate reuse of modeling
knowledge in order to support effective library development
and model exchange. Modelica is primarily designed to
model and to simulate systems consisting of components
from different disciplines such as electrical circuits, drive
trains, multibody systems, hydraulical and thermodynam-
ical systems. For details about the Modelica project, see
http://www.Modelica.org/.

The unique features of Modelica to modelcontinu-
ous systems described by differential-algebraic equations
(DAEs for short) are discussed in [Elmq98, Elmq99]. Be-
low, an overview of the hybrid features of Modelica are
given to model discontinuous and variable structure sys-
tems, such as sampled data systems, limiters, ideal diodes,
Coulomb friction, backlash and impact.

For modeling of continuous (time) systems, object-
oriented modeling languages like Dymola, gPROMS, Mod-
elica and Omola, are based on the same principle: using
DAEs to mathematically describe model components. For
discrete event systems this is different, because there does
not exist a single widely accepted description form. Instead,
many formalisms are available, e.g., finite automata, Petri

nets, statecharts, sequential function charts, DEVS, logi-
cal circuits, difference equations, CSP, process-oriented lan-
guages that are all suited for particular application areas.

In Modelica the central property is the usage ofsyn-
chronousdifferential, algebraic and discrete equations. The
idea of using the well-known synchronous data flow prin-
ciple in the context of hybrid systems was introduced in
[Elmq93]. For purediscrete eventsystems, the same prin-
ciple is utilized in synchronous languages [Halb93] such as
SattLine [Elmq92], Lustre [Halb91] and Signal [Gaut94], in
order to arrive at save implementations of realtime systems
and for verification purposes.

2 Synchronous Equations
A hybrid Modelica model basically consists of differential,
algebraic and discrete equations. A typical example is given
in figure 1 where a continuous plant

ẋp = f (xp;u) (2.1a)

y = g(xp) (2.1b)

is controlled by a digital linear controller

xc(ti) = Axc(ti �Ts) + B (r(ti)�y(ti)) (2.2a)

u(ti) = Cxc(ti �Ts) + D(r(ti)�y(ti)) (2.2b)

using a zero-order hold to hold the control variableu bet-
ween sample instants (i.e.,u(t) = u(ti) for ti � t < ti +Ts),
whereTs is the sample interval,xp(t) is the state vector
of the continuousplant,y(t) is the vector of measurement
signals,xc(ti) is the state vector of the digital controller
andr(ti) is the reference input. In Modelica, the complete
system can be easily described by connecting appropriate
blocks. However, for simplicity of the following discussion,
an overall description of the system in one model is used:

yur
plantcontroller

Ts

Ts

-

Figure 1: Sampled data system.

CACSD’99, August 22.–26., Hawaii, USA, 1999. 2

model SampledSystem
parameter Real Ts=0.1 "sample interval";
parameter Real A[:, size (A,1)],

B[size (A,1), :],
C[:, size (A,2)],
D[size (C,1), size (B,2)];

constant Integer nx = 5;
input Real r [size (B,2)] "reference";
output Real y [size (B,2)] "measurement";

Real u [size (C,1)] "control";
Real xc[size (A,1)] "disc. state";
Real xp[nx] "plant state";

equation
der (xp) = f(xp, u); // plant

y = g(xp);
when sample (0,Ts) then // controller

xc = A* pre (xc) + B*(r-y);
u = C* pre (xc) + D*(r-y);

end when ;
end SampledSystem;

This Modelica model consists of the continuous equations
of the plant and of the discrete equations of the controller
within thewhen clause. Note, thatder(x) defines the time
derivative ofx. During continuous integration the equa-
tions within thewhen clause are de-activated. When the
condition of thewhen clausebecomestrue an event is trig-
gered, the integration is halted and the equations within the
when clause are active at this event instant. The operator
sample(: : :) triggers events at sample instants with sample
time Ts and returnstrue at these event instants. At other
time instants it returnsfalse. Note, that the values of vari-
ables are kept until they are explicitly changed. For exam-
ple,u is computed only at sample instants. Still,u is avail-
able at all time instants and consists of the value calculated
at the last event instant.

Within the controller, the discrete statesxc are needed
both at the actual sample instantxc(ti) and at the previous
sample instantxc(ti �Ts). The latter value is determined by
using thepre(: : :) operator. Formally, theleft limit x(t�) of
a variablex at a time instantt is characterized bypre(x),
whereasx itself characterices theright limit x(t+). Sincexc

is only discontinuous at sample instants, the left limitxc(t
�

i)
at sample instantti is identical to the right limitxc(t

+

i �Ts)
at the previous sample instant and thereforepre(xc) charac-
terices this value.

Thesynchronous principlebasically states that at every
time instant, theactiveequations expressrelationsbetween
variables which have to befulfilled concurrently. As a con-
sequence, during continuous integration the equations of the
plant have to be fulfilled, whereas at sample instants the
equations of the plant and of the digital controller holdcon-
currently. In order to efficiently solve such types of models,
all equations aresortedby block-lower-triangular partition-
ing, the standard algorithm of object-oriented modeling for
continuous systems (now applied to a mixture of continuous
and discrete equations), under the assumption that all equa-
tions are active. In other words, the order of the equations is
determined by data flow analysis resulting in an automatic

synchronization of continuous and discrete equations. For
the example above, sorting results in an ordered set of as-
signment statements:

// "known" variables: r, xp, pre (xc)
y := g(xp);
when sample (0,Ts) then

xc := A* pre (xc) + B*(r-y);
u := C* pre (xc) + D*(r-y);

end when ;
der (xp) := f(xp, u);

Note, that the evaluation order of the equations is correct
both when the controller equations are active (at sample in-
stants) and when they are not active.

The synchronous principle has several consequences:
First, the evaluation of the discrete equations is performed
in zero (simulated) time. In other words, time is ab-
stracted from the computations and communications, see
also [Gaut94]. Second, in order that the unknown variables
can beuniquelycomputed it is necessary that the number
of active equations and the number of unknown variables in
the active equations at every time instant are identical. This
requirement is violated in the following example:

equation // incorrect model fragment!
when h1 < 3 then

close = true ;
end when ;
when h2 > 1 then

close = false ;
end when ;

If by accident or by purpose the relationsh1 < 3 andh2
> 1 becometrue at the same event instant, we have two
conflicting equations forclose and it is not defined which
equation should be used. In general, it is not possible to de-
tect by source inspection whether conditions becometrue
at the same event instant or not. Therefore, in Modelica the
assumption is used thatall equationsin a model may poten-
tially be active at the same time instant during simulation.
Due to this assumption, the total number of (continuous and
discrete) equations shall be identical to the number of un-
known variables. It is possible to rewrite the model above
by placing the when clauses in analgorithm section and
changing the equations into assignment statements:

algorithm
when h1 < 3 then

close := true ;
end when ;
when h2 > 1 then

close := false ;
end when ;

In this case the twowhenclauses are evaluated in the order
of appearance and the second one gets higher priority. All
assignment statements within thesamealgorithm section
are treated as a set ofn equations, wheren is the number of
different left hand side variables (e.g., the model fragment
above corresponds to one equation). Analgorithm section
is sorted as a whole together with the rest of the system.

CACSD’99, August 22.–26., Hawaii, USA, 1999. 3

Note, that another assignment toclose somewhere else in
the model would still yield an error.

Handling hybrid systems in this way has the advantage
that thesynchronizationbetween the continuous time and
discrete event parts isautomaticand leads to a determinis-
tic behaviourwithout conflicts. Furthermore, some difficult
to detect errors of other approaches, such as deadlock, can
often be determined during translation already. Note, that
some discrete event formalisms, such as finite automata or
prioritized Petri nets, can be formulated in Modelica in a
component-oriented way, see [Most98].

The disadvantage is that the types of systems which
can be modeled is restricted. For example, general Petri
nets cannot be described because such systems have non-
deterministic behaviour. For some applications another type
of view, such as a process oriented type of view or CSP, may
be more appropriate or more convenient.

3 Relation triggered events
During continuous integration it is required that the model
equations remain continuous and differentiable, since the
numerical integration methods are based on this assump-
tion. This requirement is often violated byif clauses. For
example the simple block of figure 2 with inputu and output
y may be described by the following model:

model TwoPoint
parameter Real y0=1;
input Real u;
output Real y;

equation
y = if u > 0 then y0 else -y0;

end TwoPoint

At point u=0 this equation is discontinuous, if the if-
expression would be takenliterally. A discontinuity or
a non-differentiable point can occur if a relation, such as
x1 > x2 changes its value, because the branch of an if state-
ment may be changed. Such a situation can be handeled
in a numerical sound way by detecting the switching point
within a prescribed bound, halting the integration, select-
ing the corresponding new branch, and restarting the inte-
gration, i.e., by triggering astate event. This technique was
developed by Cellier [Cell79]. For details see also [Eich98].

In general, it is not possible to determine by source in-
spection whether a specific relation will lead to a discon-
tinuity or not. Therefore, by default it is assumed that ev-
ery relation potentially will introduce a discontinuity or a

u

y0

-y0

continuation of branch
for switching point detection

y

u y

Figure 2: Discontinuous component.

non-differentiable point in the model. Consequently, rela-
tions in Modelicaautomaticallytrigger state events (or time
events for relations depending only on time) at the time in-
stants where their value is changed. This means, e.g., that
modelTwoPoint is treated in a numerical sound way (the
if -expressionu> 0 is not taken literally but triggers a state
event).

In some situations, relations do not introduce disconti-
nuities or non-differentiable points. Even if such points are
present, their effect may be small, and it may not affect the
integration by just integrating over these points. Finally,
there may be situations where a literal evaluation of a rela-
tion is required, since otherwise an ”outside domain“ error
occurs, such as in the following example, where the argu-
ment of functionsqrt to compute the square root of its
argument is not allowed to be negative:

y = if u >= 0 then sqrt(u) else 0;

This equation will lead to a run time error, becauseu has to
become small and negative before thethen-branch can be
changed to theelse-branch and the square root of a nega-
tive real number has no real result value. In such situations,
the modeler may explicitly require aliteral evaluation of a
relation by using the operatornoEvent():

y = if noEvent (u>=0) then sqrt(u) else 0;

Modelica has a set of additional operators, such asinitial ()
and terminal () to detect the initial and final call of the
model equations, andreinit (: : :) to reinitialize a continuous
state with a new value at an event instant. For space reasons,
these language elements are not discussed. Instead, in the
next section some non-trivial applications of the discussed
language elements are explained.

4 Variable structure systems
4.1 Parametrized curve descriptions
If a physical component is modelled detailed enough, there
are usually no discontinuities in the system. When ne-
glecting some ”fast“ dynamics, in order to reduce simu-
lation time and identification effort, discontinuities appear
in a physical model. As a typical example, in figure 3 a
diode is shown, wherei is the current through the diode and
u is the voltage drop between the pins of the diode. The
diode characteristic is shown in the left part of figure 3. If
the detailed switching behaviour is neglectable with regards

i

u

i

u

i

u

real diode ideal diode

Figure 3: Real and ideal diode characteristic.

CACSD’99, August 22.–26., Hawaii, USA, 1999. 4

to other modeling effects, it is often sufficient to use the
ideal diode characteristic shown in the right part of figure 3,
which typically give a simulation speedup of 1 to 2 order of
magnitudes.

It is straightforward to model the real diode characteristic
in the left part of figure 3, because the currenti has just to be
given as (analytic or tabulated) function of the voltage drop
u. It is more difficult to model the ideal diode characteristic
in the right part of figure 3, because the current atu= 0 is
no longer a function ofu, i.e., a mathematical description in
the form i = i(u) is no longer possible. This problem can
be solved by recognizing that a curve can also be described
in a parameterized formi = i(s); u= u(s) by introducing
a curve parameters. This description form is more gen-
eral and allows us to describe an ideal diodeuniquelyin a
declarativeway, see first row in table 1.

In order to understand the consequences of parameter-
ized curve descriptions, the ideal diode is used in the simple
rectifier circuit of figure 4. Collecting the equations of all
components and connections, as well as sorting and sim-
plifying the set of equations under the assumption that the
input voltagev0(t) of the voltage source is a known time
function and that the states (here:v2) are assumed to be
known, leads to

off = s< 0
u = v1�v2

u = if off then selse0
i0 = if off then 0 elses

R1 � i0 = v0(t)�v1

i2 := v2=R2

i1 := i0� i2
dv2
dt := i1=C

(4.3)

The first 5 equations are coupled and build a system of
equations in the 5 unknowns off;s;u;v1; i0. The remaining
assignment statements are used to compute the state deriva-
tive v̇2. During continuous integration the Boolean vari-
ables, i.e., off, are fixed and the Boolean equations are not
evaluated. In this situation, the first equation is not touched
and the next 4 equations form alinear system of equations
in the 4 unknownss;u;v1; i0 which can be solved by Gaus-
sian elemination. An event occurs if one of the relations
(here:s< 0) changes its value.

At anevent instant, the first 5 equations are a mixed sys-
tem of discrete and continuous equations which cannot be
solved by, say, Gaussian elemination, since there are Real
andBooleanunknowns. However, appropriate algorithms
can be constructed: (1) Make anassumptionabout the val-
ues of therelationsin the system of equations. (2) Compute
the discrete variables. (3) Compute the continuous variables
by Gaussian elemination (discrete variables are fixed). (4)
Compute the relations based on the solution of (2) and (3).
If the relation values agree with the assumptions in (1), the
iteration is finished and the mixed set of equations is solved.
Otherwise, new assumptions on the relations are necessary,
and the iteration continues. Useful assumptions on relation

i1 i2

v1
v2

v0

v=0

R1

R2C

ideal diode

i0

Figure 4: Simple rectifier circuit.

values are for example: (a) Use the relation values com-
puted in the last iteration. (b) Try all possible combina-
tions of the values of the relations systematically (= exhaus-
tive search). In the above example, both approaches can be
simply applied, because there are only two possible values
(s< 0 is falseor true). However, ifn switches are coupled,
there aren relations and therefore 2n possible combinations
which have to be checked in the worst case.

In table 1 parameterized curve descriptions of the ideal
thyristor and the ideal GTO thyristor are shown for further
demonstration. Especially note that also non-unique curve
parameterss can be used by introducing additional discrete
variables (here:fire) to distinguish the branches with the

Table 1: Ideal electrical switches

i1 i2

v1 v2u

u

i1

s=0

s
s

ideal diode

0 = i1+ i2
u = v1�v2

off = s< 0
u = if off then s else0
i1 = if off then 0 elses

i1 i2

v1 v2u

u

i1

s=0

s
s

fire

s

fire = true

ideal thyristor

0 = i1+ i2
u = v1�v2

off = s< 0 or
pre (off) and not fire

u = if off then s else0
i1 = if off then 0 elses

i1 i2

v1 v2u

u

i1

s=0

s
s

fire

s

fire = true

fire =
false

ideal GTO-thyristor

0 = i1+ i2
u = v1�v2

off = s< 0 or not fire
u = if off then s else0
i1 = if off then 0 elses

CACSD’99, August 22.–26., Hawaii, USA, 1999. 5

same parameterization values.
The technique of parameterized curve descriptions was

introduced in [Clau95] and a series of related papers. How-
ever, no proposal was yet given how to actually implement
such models in a numerically sound way. In Modelica the
(new) solution method follows logically because the equa-
tion based system naturally leads to a system of mixed con-
tinuous/discrete equations which have to be solved at event
instants.

In the past, ideal switching elements have been han-
deled by (a) using variable structure equations which are
controlled byfinite automatato describe the switching be-
haviour, see e.g. [Bart92, Elmq93, Most96], or by (b) using
a complementarity formulation, see e.g. [Loet82, Pfei96].
(a) has the disadvantage that the continuous part is de-
scribed in a declarative way but not the part describing the
switching behaviour. As a result, e.g., algorithms with bet-
ter convergence proporties for the determination of a con-
sistent switching structure cannot be used. Furthermore,
this involves a global iteration overall model equations
whereas parameterized curve descriptions lead to local it-
erations over the equations of the involved elements. (b)
seems to be difficult to use in an object-oriented modeling
language and seems to be applicable only in special cases
(e.g. it seems not possible to describe ideal thyristors).

4.2 Friction
The simulation of components with ideal switch elements
becomes difficult, if switching results in an index change
of the DAE, i.e., if the number of states is changing. A
typical example is Coulomb friction where this situation is
present even in the most simple case. To concentrate on the
essentials, first the simplified friction element in figure 5 is
discussed:

The friction forcef acts between two surfaces, see right
part of figure 5, and is a linear function of the relative ve-
locity v between the friction surfaces when the surfaces are
sliding relative to each other. When the relative velocity be-
comes zero, the two surfaces are stuck to each other and
the friction force is no longer a function ofv. The element
starts sliding again if the friction force becomes larger than
the maximum static friction forcef0. This element can also
be described as a parameterized curve, as indicated in fig-
ure 5, leading to the following equations:

forward = s > 1;
backward = s < -1;
v= if forward then s - 1 else

if backward then s + 1 else 0;
f= if forward then f0+f1*(s-1) else

if backward then -f0+f1*(s+1) else f0*s;

This model completely describes the simplified friction el-
ement in adeclarativeway. Unfortunately, currently we
do not know, how to transform such an element descrip-
tion automaticallyin a form which can be simulated. Let us
analyse the difficulties by applying this model to the simple
block on a rough surface shown in the right part of figure 5

v

f

f0

v

f

backward sliding

forward sliding

s

s

s = -1

-f0

s = 1 u(t)

Figure 5: Simplified Coulomb friction element.

which is described by the following equation:

m� v̇ = u� f (4.4)

Note, thatm is the mass of the block andu(t) is the given
driving force. If the element is in itsforward slidingmode,
i.e.,s� 1, this model is described by

m� v̇ = u� f

v = s�1

f = f0+ f1 � (s�1)

which can be easily transformed into state space form with
v as the state. If the block becomes stuck, i.e.,�1� s� 1,
the equationv = 0 becomes active and thereforev can no
longer be a state, i.e., an index change takes place. Besides
the difficulty to handle the variable state change, there is a
more serious problem: Assume that the block is stuck and
that s becomes greater than one. Before the event occurs,
s� 1 andv= 0; at the event instants> 1 because this rela-
tion is the event triggering condition. The element switches
into the forward sliding mode wherev is a state which is
initialized with its last valuev= 0. Sincev is a state,s is
computed fromv via s := v+1, resulting ins= 1, i.e., the
relations> 1 becomesfalseand the element switches back
into the stuck mode. In other words, it is never possible
to switch into the forward sliding mode. Taking numerical
errors into account, the situation is even worse.

The key to the solution is the observation thatv= 0 in
the stuck mode and when forward sliding starts, but ˙v > 0
when sliding starts and ˙v= 0 in the stuck mode, see figure 6.
Since the friction characteristic in figure 6 at zero velocity
is no functional relationship, again a parameterized curve
description with a new curve parametersa has to be used
leading to the following equations (note: at zero velocity):

a = v

f

f0

start backward sliding

start forward sliding

sa

sa

sa = -1
-f0

sa = 1

.

v = 0

Figure 6: Friction characteristic atv= 0.

CACSD’99, August 22.–26., Hawaii, USA, 1999. 6

startFor = sa > 1;
startBack = sa < -1;
a = der (v);
a = if startFor then sa-1 else

if startBack then sa+1 else 0;
f = if startFor then f0 else

if startBack then -f0 else f0*sa;

At zero velocity, these equations and the equation of the
block (4.4) form again a mixed continuous/discrete set of
equations which has to be solved at event instants, similar-
ily as in the simple rectifier circuit discussed above. When
switching from sliding to stuck mode, the velocity is small
or zero. Since the derivative of the constraint equation ˙v= 0
is fulfilled in the stuck mode, the velocity remains small
even if v= 0 is not explicitly taken into account. By this
well-know procedure, the velocityv remains a state in all
switching configurations.

Consequently,v is small but may have any sign when
switching from stuck to sliding mode; if the friction ele-
ment starts to slide, say in the forward direction, one has
to wait until the velocity is really positive, before switching
to forward mode (note, that even for exact calculation with-
out numerical errors a ”waiting“ phase is necessary, because
v= 0 when sliding starts). Since ˙v> 0, this will occur after
a small time period. This ”waiting“ procedure is most easily
described by the state machine of figure 7. Collecting all the
pieces together, finally results in the following equations of
a simple friction element:

// part of mixed system of equations
startFor = pre (mode)== Stuck and sa > 1;
startBack = pre (mode)== Stuck and sa < -1;
a=der (v);
a=if pre (mode)== Forward or startFor then

sa - 1 else
if pre (mode)== Backward or startBack then

sa + 1 else 0;
f= if pre (mode)== Forward or startFor then

f0 + f1*v else
if pre (mode)== Backward or startBack then

-f0 + f1*v else f0*sa;

// state machine to determine configuration
mode=if (pre (mode)== Forward or startFor)

and v>0 then Forward else
if (pre (mode)== Backward or startBack)

and v<0 then Backward else Stuck ;

Note, that the equations within the mixed system are evalu-
ated based on the value of ”mode“ when the event occured,

Backward Stuck Forward

v <= 0v >= 0

startBack and v < 0 startFor and v > 0

Figure 7: Switching structure of friction element.

i.e., onpre(mode). After the new sliding or stuck mode
is determined by the solution of a mixed set of continu-
ous/discrete equations, the new value of mode is computed
by the last equation which is just a direct mapping of the
state machine of figure 7.

The described procedure can be easily applied also for
the more general friction element in figure 8 where the slid-
ing friction force has a nonlinear characteristic and there is
a jump in the friction force fromfmax to f0 when sliding
starts. The element equations of the simple friction element

v

f

f0

s

s

s = -1-f0

s = 1

a = v

f

sa

sa

sa = -1

sa = 1

.

v = 0

-fmax s = -peak

fmaxs = peak fmax

sa = -peak

sa = peak

-fmax

Figure 8: Coulomb friction characteristic.

need only two changes: (1) the linear equation of the sliding
friction force has to be replaced by an appropriate nonlinear
relationship (usually realized by interpolation in a table) and
(2) the sliding conditions have to be modified to:

startFor = pre (mode)==Stuck and (sa > peak
or pre (startFor) and sa > 1);

startBack = pre (mode)==Stuck and (sa< -peak
or pre (startBack) and sa < -1);

wherepeak = fmax= f0 � 1. All other equations are iden-
tical to the simple friction element. It is straightforward to
adapt this general friction element, e.g., to model clutches
or brakes.

A simple example of dynamic coupling of friction el-
ements is shown in figure 9 where two blocks are slid-
ing on each other and on every surface friction is present
which is described according to the discussed general fric-
tion element. By applying appropriate time varying exter-

v1

f1

u2(t)
f2

f2

v2

u1(t)

m2

m1

Figure 9: Two blocks with friction.

nal forcesu1(t);u2(t) on the two blocks, a stick-slip like
behaviour occurs. For this situation, a simulation was car-
ried out with Dymola [Dymo99] leading to the simulation
results of figure 10. The discontinuities in the friction forces
when switching from stuck to sliding mode are due to a
peak value of 1.25. The iteration to find a consistent set

CACSD’99, August 22.–26., Hawaii, USA, 1999. 7

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1
R

el
at

iv
e

ve
lo

ci
ty

 in
 [m

/s
]

v1

v2

0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

Time in [s]

F
ric

tio
n

an
d

dr
iv

in
g

fo
rc

es
 in

 [N
]

f2

f1

u1

u2

Figure 10: Simulation results of two block system.

of relations and continuous variables can be manually eas-
ily checked for demonstration purposes with the following
settings (m1 = m2 = 1; peak1 = peak2 = 1):

u1 = 0.9 * f0;
u2 = if time<0.1 then 0 else 1.1*f0;

At the beginning of the simulation the two blocks are stuck.
At time=0.1 s an event occurs and forcef2 jumps from 0
to 1:1 � f0. After evaluating all equations under the assump-
tion that both blocks are stuck, it turns out that both friction
forces become larger thanf0. Therefore, it is natural to have
the assumption that both elements start to slide in forward
direction. Re-evaluating leads to an acceleration of block 2
which is negative, i.e., block 2 cannot slide in forward di-
rection. The assumption that block 1 slides and block 2 is
stuck, finally leads to a consistent configuration.

5 Conclusion

Modelica is based on synchronous differential, algebraic
and discrete equations, leading to a unified mathematical
description form of continuous time and discrete event parts
of a model. This gives great potential for model analy-
sis and verification of hybrid elements. A typical exam-
ple is the treatment of ideal switch elements, such as ideal
diodes or Coulomb friction, where the Modelica approach
together with the technique of parameterized curve descrip-
tions leads to a very promising new method to handle such
systems in an efficient and reliable way.

Acknowledgements

The authors would like to thank the other members of the
Modelica Design Group for inspiring discussions and their
contributions to the Modelica Design.

References

[Bart92] Barton P.I.: The Modelling and Simulation of Com-
bined Discrete/Continuous Processes. Ph.D. Thesis, Univer-
sity of London, Imperial College, 1992

[Cell79] Cellier F.E.: Combined Continuous/Discrete System
Simulation by Use of Digital Computers: Techniques and
Tools.Diss ETH No 6483, ETH Zürich, Switzerland, 1979.

[Clau95] Clauß C., J. Haase, G. Kurth, and P. Schwarz:Ex-
tended Amittance Description of Nonlinear n-Poles.Archiv
für Elektronik und Übertragungstechnik / International Jour-
nal of Electronics and Communications, 40, pp. 91-97, 1995.

[Dymo99] Dymola.Homepage: http://www.dynasim.se/.

[Eich98] Eich-Soellner E., and C. Führer.Numerical Methods
in Multibody Dynamics. Teubner, 1998.

[Elmq92] Elmqvist H.:An Object and Data-Flow based Visual
Language for Process Control.ISA/92-Canada Conference &
Exhibit, Instrument Society of America, Toronto, April 1992.

[Elmq93] Elmqvist H., F. E. Cellier, and M. Otter:Object–
Oriented Modeling of Hybrid Systems. Proceedings ESS’93,
European Simulation Symposium, pp. xxxi-xli, Delft, The
Netherlands, Oct. 1993.

[Elmq98] Elmqvist H., B. Bachmann, F. Boudaud, J. Broenink,
D. Brück, T. Ernst, R. Franke, P. Fritzson, A. Jeandel,
P. Grozman, K. Juslin, D. Kagedahl, M. Klose, N. Lou-
bere, S.E. Mattsson, P. Mosterman, H. Nilsson, M. Otter,
P. Sahlin, A. Schneider, H. Tummescheit, and H. Vangheluwe:
ModelicaTM – A Unified Object-Oriented Language for
Physical Systems Modeling, Version 1.1, 1998. Modelica
homepage: http://www.modelica.org/.

[Elmq99] Elmqvist H., S.E. Mattsson, and M. Otter:Modelica –
A language for Physical System Modeling, Visualization and
Interaction. Plenary talk, CACSD’99, Hawaii, 1999.

[Gaut94] Gautier T., P. Le Guernic, and O. Maffeis.For a New
Real-Time Methodology. Publication Interne No. 870, Institut
de Recherche en Informatique et Systemes Aleatoires, Campus
de Beaulieu, 35042 Rennes Cedex, France, 1994.

[Halb91] Halbwachs N., P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language LUS-
TRE. Proc. of the IEEE, 79(9), pp. 1305–1321, Sept. 1991.

[Halb93] Halbwachs N.Synchronous Programming of Reac-
tive Systems. Kluwer, 1993.

[Loet82] Lötstedt P.:Mechanical systems of rigid bodies subject
to unilateral constraints. SIAM J. Appl. Math., Vol. 42, No. 2,
pp. 281-296, 1982.

[Most96] Mosterman P. J., and G. Biswas:A Formal Hybrid
Modeling Scheme for Handling Discontinuities in Physi-
cal System Models. Proceedings of AAAI-96, pp. 905-990,
Aug. 2.-4., Portland, OR, 1996.

[Most98] Mosterman P. J., M. Otter, and H. Elmqvist:Modeling
Petri Nets as Local Constraint Equations for Hybrid Systems
using Modelica.SCSC’98, Reno, Nevada, 1998.

[Pfei96] Pfeiffer F., and C. Glocker:Multibody Dynamics with
Unilateral Contacts. John Wiley, 1996.

