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Mathematical Modeling of Physical Systems

The Theoretical Underpinnings of 
the Bond Graph Methodology

• In this lecture, we shall look more closely at the
theoretical underpinnings of the bond graph
methodology: the four base variables, the
properties of capacitive and inductive storage
elements, and the duality principle.
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• We shall also introduce the two types of energy
transducers: the transformers and the gyrators, and
we shall look at hydraulic bond graphs.
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• The duality principle
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The Four Base Variables of the 
Bond Graph Methodology

• Beside from the two adjugate variables e and f, there are
two additional physical quantities that play an important
role in the bond graph methodology:

p  =   e · dtGeneralized Momentum:
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Generalized Position: q  =   f · dt
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Relations Between the Base Variables

i R( f )
qp

 
CI

Resistor:

Capacity:

Inductivity:

e  =  R( f )

q  =  C( e )

p  =  I( f )


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e fR


Arbitrarily non-linear functions 
in 1st and 3rd quadrants

 There cannot exist other storage elements besides  C and  I.
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Linear Storage Elements

G l iti ti C( )General capacitive equation: q  =  C( e )

Linear capacitive equation: q  =  C · e

Linear capacitive equation 
differentiated:

f  =  C · de
dt
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ff

“Normal” capacitive equation, as 
hitherto commonly encountered.
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Effort Flow Generalized 
Momentum

Generalized Position 

e f p q

Electrical Voltage Current Magnetic Flux ChargeElectrical 
Circuits

Voltage
u (V)

Current
i (A)

Magnetic Flux
 (V·sec)

Charge
q (A·sec)

Translational 
Systems

Force
F (N)

Velocity
v (m / sec)

Momentum
M (N·sec)

Position
x (m)

Rotational 
Systems

Torque
T (N·m)

Angular Velocity
 (rad / sec)

Torsion
T (N·m·sec)

Angle
 (rad)

Hydraulic 
Systems

Pressure
p (N / m2)

Volume Flow
q (m3 / sec)

Pressure 
Momentum

Volume
V (m3)
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y p (N / m ) q (m / sec)
Γ (N·sec / m2)

V  (m )

Chemical 
Systems

Chem. Potential
 (J / mol)

Molar Flow
 (mol/sec)

- Number of Moles
n (mol)

Thermodynamic 
Systems

Temperature
T (K)

Entropy Flow
S’ (W / K)

- Entropy
S (J / K )
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Hydraulic Bond Graphs I
• In hydrology the two adjugate variables are the pressure pIn hydrology, the two adjugate variables are the pressure p

and the volume flow q. Here, the pressure is considered
the potential variable, whereas the volume flow plays the
role of the flow variable.

Phydr = p · q
[W] = [N/ m2] · [m3 / s]

= kg · m -1 · s-2] · [m3 · s-1]
= [kg · m2 · s-3]
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• The capacitive storage describes the compressibility of the
fluid as a function of the pressure, whereas the inductive
storage models the inertia of the fluid in motion.
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Hydraulic Bond Graphs II

q
Compression:

qin

qout
p dp

dt = c · ( qin – qout )
p

q C : 1/c

q = k · pp1

Laminar Flow:
q

p2

p
R : 1/k
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q p
= k · ( p1 – p2 )

p1 p2 q R : 1/k

Turbulent Flow:
p
q G : kp2p1

q
q = k · sign(p) · |p|

Hydro
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Energy Conversion
• Beside from the elements that have been considered so farBeside from the elements that have been considered so far

to describe the storage of energy ( C and I ) as well as its
dissipation (conversion to heat) ( R ), two additional
elements are needed, which describe the general energy
conversion, namely the Transformer and the Gyrator.

• Whereas resistors describe the irreversible conversion of
free energy into heat, transformers and gyrators are used to
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free energy into heat, transformers and gyrators are used to
model reversible energy conversion phenomena between
identical or different forms of energy.
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Transformers

T f ti (1)
f 1

e1
f 2

e2TF
m

Transformation: e1 = m · e2

Energy Conservation: e1 · f1 = e2 · f2

 (m ·e2 ) · f1 = e2 · f2

 f2 = m · f1 (4)

(3)

(2)

(1)

 The transformer may either be described by means of
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f y y f
equations (1) and (2) or using equations (1) and (4).
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The Causality of the Transformer

e = m · e
f 1

e1
f 2

e2TF
m

e1 = m · e2

f2 = m · f1

f 1

e1
f 2

e2TF
m

e2 = e1 / m
f1 = f2 / m
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 As we have exactly one equation for the effort and
another for the flow, it is mandatory that the
transformer compute one effort variable and one flow
variable. Hence there is one causality stroke at the TF
element.
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Examples of Transformers
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Electrical 
Transformer

(in AC mode)

Mechanical 
Gear

Hydraulic Shock 
Absorber

m = 1/M m = r1 /r2 m = A
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Gyrators

T f ti f (1)
f 1

e1
f 2

e2GY
r

Transformation: e1 = r · f2

Energy Conservation: e1 · f1 = e2 · f2

 (r ·f2 ) · f1 = e2 · f2

 e2 = r · f1 (4)

(3)

(2)

(1)

 The gyrator may either be described by means of
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gy y y f
equations (1) and (2) or using equations (1) and (4).
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The Causality of the Gyrator

e = r · f
f 1

e1
f 2

e2GY
r

f 1

e1
f 2

e2GY
r

e1 = r · f2

e2 = r · f1

f2 = e1 / r
f1 = e2 / r
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 As we must compute one equation to the left, the other
to the right of the gyrator, the equations may either be
solved for the two effort variables or for the two flow
variables.

Mathematical Modeling of Physical Systems

Examples of Gyrators

r = 

Start Presentation© Prof. Dr. François E. CellierOctober 11, 2012

The DC motor generates a torque m proportional to the
armature current ia , whereas the resulting induced Voltage ui
is proportional to the angular velocity m.
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Example of an Electromechanical System

iauRa ω1τB3 τB1 ω12 ω2τk1 vFB2

Causality conflict (caused 
by the mechanical gear)

Start Presentation© Prof. Dr. François E. CellierOctober 11, 2012

ua
ia

ia

ia
uLa

ui τ
ω1

ω1

ω1

τB1 τB1

τJ1

ω2
ω2

ω2

τG FG

v

vv

v
Fk2

Fm -m·g
τJ2
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The Duality Principle
• It is always possible to “dualize” a bond graph by

switching the definitions of the effort and flow variables.
• In the process of dualization, effort sources become flow

sources, capacities turn into inductors, resistors are
converted to conductors, and vice-versa.

• Transformers and gyrators remain the same, but their
transformation values are inverted in the process.

Start Presentation© Prof. Dr. François E. CellierOctober 11, 2012

p
• The two junctions exchange their type.
• The causality strokes move to the other end of each bond.
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1st Example

u0 iL i1

i1 i1

i0u0

u0

u1

uC

uC

uC i2

iC

u0

i0

iL

u0

u0

i1

i1

i1

u1

uC

uC

uC

i2

iC
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The two bond graphs produce identical simulation results.
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2nd Example

ua
ia

ia

ia

ia

uRa

uLa

ui τ
ω1

ω1

ω1

ω1

τB3

τB1

τB1

τB1

τJ1

ω2

ω12

ω2

ω2

ω2

τk1

τG FG

v

v

vv

v

FB2
Fk2

Fm -m·g
τJ2

ia ω1 ω2ω12 vuRa τB1τB3 τk1 FB2
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ua

ia

ia

ia

ia ω1

1

ω1

ω1 ω2

2

ω2

ω2

12

v
v

v

vv

ui

Ra

uLa

τB1

B1

τB1

B3

τJ1

k1

τJ2

τ τG FG

Fm

B2

Fk2

-m·g
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Partial Dualization
• It is always possible to dualize bond graphs only in parts.

It is particularly easy to partially dualize a bond graph at the
transformers and gyrators. The two conversion elements thereby
simply exchange their types.

For example, it may make sense to only dualize the mechanical
side of an electromechanical bond graph, whereas the electrical
side is left unchanged.

H it i l ibl t d li th b d h t b d
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However, it is also possible to dualize the bond graph at any bond.
Thereby, the “twisted” bond is turned into a gyrator with a
gyration of r=1.

Such a gyrator is often referred to as symplectic gyrator in the
bond graph literature.
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Manipulation of Bond Graphs
• Any physical system with concentrated parametersAny physical system with concentrated parameters

can be described by a bond graph.
• However, the bond graph representation is not

unique, i.e., several different-looking bond graphs
may represent identical equation systems.

• One type of ambiguity has already been
i d d h d li i
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introduced: the dualization.
• However, there exist other classes of ambiguities

that cannot be explained by dualization.
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The Diamond Rule
k12

Fm2 B2B12

m1B1

F

SE:F
v21

R:B2

v2FB20

1

R:B1

v1FB1

C:1/k12

v2Fk12

v1

Fk12

Fk12 v12


SE:FF

v2

v2 Fm2

1

R:B2

v2FB2

Fk12 +FB12

v2

Fk12 +FB12

v1 0
Fk12 +FB12v12

1

R:B1

v1FB1

v1 Fm1

Diamond
More efficient
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SE:FF

I:m2

v2 Fm2

1

0
v12

R:B12

1

I:m1

v1 Fm1
v1 FB12

FB12

FB12

v2 I:m21

R:B12

v12
FB12

I:m1

C:1/k12

v12
Fk12

Different variables
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