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The Theoretical Underpinnings of
the Bond Graph Methodology

* In this lecture, we shall look more closely at the
theoretical underpinnings of the bond graph
methodology: the four base variables, the
properties of capacitive and inductive storage
elements, and the duality principle.

» We shall also introduce the two types of energy

transducers: the transformers and the gyrators, and
we shall look at hydraulic bond graphs.
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The Four Base Variables of the
Bond Graph Methodology
* Beside from the two adjugate variables e and f, there are

two additional physical quantities that play an important
role in the bond graph methodology:

Generalized Momentum: p = / e-dt

Generalized Position: q = /f dt
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R(f)

Resistor: e

Relations Between the Base Variables
\
/LT‘I_] Capacity: q

/ @\
/ Inductivity: p = I(f)

i
\ R / Arbitrarily non-linear functions

in I° and 3" quadrants

C(e)

1_C

—> There cannot exist other storage elements besides C and I.
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Linear Storage Elements

General capacitive equation: q =C(e)
Linear capacitive equation: q = C-e

. " ) _ de
Linear capacitive equation f=c- dr

differentiated:

I

“Normal” capacitive equation, as
hitherto commonly encountered.

Effort Generalized Generalized Position

Momentum
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Electrical \oltage Current Magnetic Flux Charge

Circuits u (V) N @ (V-sec) g (A-sec)

Translational Force Velocity Momentum Position

Systems F (N) v (m/ sec) M (N-sec) x (m)

Rotational Torque Angular Velocity  Torsion Angle

Systems T (N-m) o (rad / sec) T (N-m-sec) ¢ (rad)

Hydraulic Pressure Volume Flow Pressure Volume

Systems p (N/m?) g (m3/sec) Momentum V (m)

I (N-sec / m?)

Chemical Chem. Potential  Molar Flow - Number of Moles

Systems 4 (J/ mol) v (mol/sec) n (mol)

Thermodynamic  Temperature Entropy Flow - Entropy

Systems () S (W /K) S (/K)
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Hydraulic Bond Graphs |

* In hydrology, the two adjugate variables are the pressure p
and the volume flow q. Here, the pressure is considered
the potential variable, whereas the volume flow plays the
role of the flow variable.

[W] = [N/m?] - [m*/ 5]

kg m- s s

=/kg o mZ o S'3]

* The capacitive storage describes the compressibility of the
fluid as a function of the pressure, whereas the inductive
storage models the inertia of the fluid in motion.

Hydraulic Bond Graphs I1

Compression:

Din
dp P; 5
p Yout E =c: (qin_qout) Aq C 5 1/C

Laminar Flow:
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Energy Conversion

» Beside from the elements that have been considered so far
to describe the storage of energy ( C and I') as well as its
dissipation (conversion to heat) ( R ), two additional
elements are needed, which describe the general energy
conversion, namely the Transformer and the Gyrator.

e Whereas resistors describe the irreversible conversion of

free energy into heat, transformers and gyrators are used to
model reversible energy conversion phenomena between
identical or different forms of energy.

= e
Transformers

e TE e Transformation: e, =m-e, a

fa = fz Energy Conservation: e, f;=e,"f, )

= (m-e;) fi=e,f, (3)
= fo=mfi ()

—> The transformer may either be described by means of
equations (1) and (2) or using equations (1) and (4).
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The Causality of the Transformer

L & El e, e;=m-e,

I fl rnI f2 fzszl

& g € e;=e;/m
TF

f, Ui fi=f/m

—> As we have exactly one equation for the effort and
another for the flow, it is mandatory that the
transformer compute one effort variable and one flow
variable. Hence there is one causality stroke at the TF
element.

Examples of Transformers

Wy Area A
.M { _\mz
h ¢ 12

T T2 L

T
Tp= ?% T .
ug=M 0y ry F, = Apy
==
iy= Mg =, 2‘ | Qz =A%
m=1/M m=r;/r, m=A
Electrical . )
Transformer Mechanical Hydraulic Shock
(in AC mode) Gear Absorber
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Gyrators

e Gy ey Transformation: e, =r-f, )
Energy Conservation: e;°f;=e,"f, @]
= f) fi=erf; )

= e=rf (4

—> The gyrator may either be described by means of
equations (1) and (2) or using equations (1) and (4).

The Causality of the Gyrator

e e e, =r-f
1 1 2 N 1 2
I fl GrY f2 ! e2=r~f,
e JGvl e, fo=e/r
fy = f, fi=e/r

—> As we must compute one equation to the left, the other
to the right of the gyrator, the equations may either be
solved for the two effort variables or for the two flow
variables.
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Examples of Gyrators

ia
Tm=VYia
ui=ywn
r=y

The DC motor generates a torque T, proportional to the
armature current ia, whereas the resulting induced Voltage u;

is proportional to the angular velocity @,,.

Example of an Electromechanical System

Causality conflict (caused
by the mechanical gear)

o4 sOF

Upy| i, Txiwz T1| Wy Tk1 |,
= u, u; T T T, F
Se =ty 1 | GY Iy 1 BN 0 2y pED 1 b~ C
i i, == O ,; , 2) .

A
t‘,‘LuLa |z, w{l:”
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The Duality Principle

o It is always possible to “dualize” a bond graph by
switching the definitions of the effort and flow variables.

 In the process of dualization, effort sources become flow
sources, capacities turn into inductors, resistors are
converted to conductors, and vice-versa.

e Transformers and gyrators remain the same, but their
transformation values are inverted in the process.

» The two junctions exchange their type.
 The causality strokes move to the other end of each bond.

1st Example
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The two bond graphs produce identical simulation results.
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2nd Example

s i ey O} s
“mj[_ia 7351101 Tp1|@W; Ti1| @, Flev
u, u; S 71 Ta1 Tg, 4L I'g Fi, s
o u i
St byt Ao Pt p kg

el L T

i 20 (01 -

(0§
iaTuRa wl7|‘- Tp3 wlzT Tp1 ‘UZTTM VTF B2

wo i, oy ,; @, w, m v y o
St 0w D 1 0 s Rt 0wt

e

u,_,,—Eia T Iw 1 T2 —[w;
F Lv vji: mg

ok Q) 0

Partial Dualization

 Itisalways possible to dualize bond graphs only in parts.

= |t is particularly easy to partially dualize a bond graph at the
transformers and gyrators. The two conversion elements thereby
simply exchange their types.

= For example, it may make sense to only dualize the mechanical
side of an electromechanical bond graph, whereas the electrical
side is left unchanged.

= However, it is also possible to dualize the bond graph at any bond.
Thereby, the “twisted” bond is turned into a gyrator with a
gyration of r=1.

= Such a gyrator is often referred to as symplectic gyrator in the
bond graph literature.
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Manipulation of Bond Graphs

» Any physical system with concentrated parameters
can be described by a bond graph.

» However, the bond graph representation is not
unique, i.e., several different-looking bond graphs
may represent identical equation systems.

* One type of ambiguity has already been
introduced: the dualization.

» However, there exist other classes of ambiguities
that cannot be explained by dualization.
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Diamond

The Diamond Rule
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